用户名: 密码: 验证码:
K562与K562/A02细胞株中白血病耐药相关microRNA的筛选研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
研究背景:化疗是白血病以及其它肿瘤的主要治疗手段,随着化疗药物的广泛应用,肿瘤的耐药性问题越来越突出,已成为肿瘤化疗失败的主要原因之一。肿瘤多药耐药(MDR)是指肿瘤细胞对一种抗肿瘤药物出现耐药性的同时,对其他多种化学结构不同、作用靶位不同的抗肿瘤药物也产生耐药。目前有关肿瘤耐药机制的研究主要是从多药耐药基因表达的蛋白入手,探讨这些蛋白在形成耐药机制中的作用。研究表明,P-gp糖蛋白、多药耐药相关蛋白、肺耐药蛋白、乳腺癌耐药相关蛋白、DNA拓扑异构酶Ⅱ和谷胱甘肽S转移酶等多药耐药相关蛋白质与肿瘤多药耐药性相关。虽然已有的研究揭示了一些肿瘤多药耐药机制,但目前仍然不能完全解释肿瘤多药耐药现象,临床上也缺乏逆转肿瘤细胞多药耐药的有效途径。
     微小RNA(MicroRNA,简称miRNA)是一类长约19nt-23nt的单链非编码RNA,广泛存在于植物及动物中,具有物种及组织特异性,进化上高度保守。miRNA可与其靶mRNA的3′非翻译区(3′untranslated regions,3'-UTRs)特异性结合,导致靶mRNA的翻译抑制或降解,在细胞分化、增殖与凋亡、个体发育、机体代谢、病毒感染及肿瘤的发生发展等方面具有重要的生物学功能。新近,miRNA在肿瘤多药耐药中的作用也引起了关注,与乳腺癌、卵巢癌、胃癌等相关的多药耐药miRNA相继报道,但白血病耐药相关miRNA的研究在世界范围内尚未见报道。本研究拟通过白血病细胞株及其耐药株的对比研究,筛选出白血病的多药耐药相关miRNA,首次从miRNA调节环节探索白血病耐药机制,为进一步研究其在多药耐药机制中的作用奠定基础。
     目的:采用microRNA芯片筛选出K562细胞及其耐药株K562/A02细胞差异表达的miRNA,并用荧光定量RT-PCR对筛选出来的miRNA进行验证,进一步确定白血病耐药相关miRNA。
     方法:常规培养K562及K562/A02细胞株,取等量K562细胞和K562/A02细胞,Trizol法分别抽提两种细胞的总RNA;通过YM-100(Millipore)微离心过滤柱得到片段小于300nt的小RNA,对K562和K562/A02细胞的小RNA分别进行Cy3和Cy5荧光标记,然后进行microRNA芯片杂交反应;采集芯片原始信号值并将图像信号转化为数字信号,将两芯片的信号值进行比对筛选出差异表达miRNA;应用实时荧光定量RT-PCR方法对筛选出的miRNA进行可靠性验证,鉴定出白血病耐药相关miRNA。
     结果:microRNA芯片结果显示,与K562细胞相比,K562/A02细胞中有22条miRNA存在表达差异(P<0.01),表达差异在2倍以上的有9条,其中miR-221,miR-155,miR-451表达上调;miR-98,miR-181a,let-7f,miR-424,let-7g和miR-563表达下调。荧光定量RT-PCR对miR-221,miR-181a,miR-451和let-7f的检测结果与miRNA芯片的结果相符合,miR-451、let-7f在白血病细胞株表达差异显著。
     结论:miR-221,miR-181a,miR-155,miR-451,miR-98,let-7f,miR-424,let-7g和miR-563在K562细胞和K562/A02细胞之间存在差异表达,提示这些miRNA尤其是miR-451与let-7f可能与白血病多药耐药相关。
Background:Chemotherapy is the main treatment for leukemia and other tumors. With the widely using of chemotherapy drugs, drug resistance is becoming increasingly prominent. Resistance to anticancer drugs has become one of the major reasons of the failure of tumor treatment. Multidrug resistance (MDR) describes a phenomenon of cross-resistance of tumor cells to several structurally unrelated chemotherapeutic agents after exposing to a single cytotoxic drug. The current mechanisms of tumor drug resistance focus on the proteins related to multidrug resistance. Several proteins have been found be related to MDR, such as P-glycoprotein (P-gp), multidrug resistance related protein (MRP), lung resistance related protein (LRP), breast cancer multidrug resistance related protein (BCRP), topoisomerase II (TOP II) and glutathione-S-transferase (GST). Although the genesis of MDR has been extendedly investigated, an efficient agent to overcome drug-resistance has not been available. The mechanisms of MDR remain unclear and require further study.
     MicroRNA(miRNA) is one kind of small noncoding RNA molecules (19nt-23nt) which regulates protein expression by binding 3'-UTRs(3' untranslated regions) of target mRNA of protein-coding genes, resulting in cleavage or translation repression of target mRNA. MiRNAs have been widely identified in plants and animals, and is conserved in sequence between distantly related organisms. MiRNA plays an important role in various cellular processes, such as cell differentiation, proliferation and apoptosis. It is one of regulators of individual development, metabolism, viral infection and the genesis, development of tumor. Recently,more and more attention has been paid on the role of miRNA in tumor multidrug resistance. Several multidrug resistance-related miRNAs of breast cancer, ovarian cancer, gastric cancer have been reported. In this study, for the first time,we will screen and search the multidrug resistance-associated miRNAs of leukemia by using microRNA microarry in combination with Real time PT-PCR.
     Objective: Screen and search the miRNA, which differentially express in K562 cell line and it's adriaraycin -resistant cells --K562/A02 cell line by using microRNA Microarray in combination with Real time RT-PCR.
     Methods: Total RNA of K562 cells and K562/A02 cells was isolated by Trizol. Small RNAs (<300nt) were isolated using a YM-100 Microcon centrifugal filter (from Millipore), which of K562 and K562/A02 cells were Labeled with Cy3 and Cy5 respectively. Then the miRNA was hybridized on microRNA Microarray. Original image signal were collected and digitized. The differentially expressed miRNA were screened and identified through comparison between the two chips. The results of microarray were confirmed by Real time RT-PCR.
     Results: The results of microRNA microarray show that 22 miRNAs expressed differentially between K562 and K562/A02 cells (P<0.01) .As compared to K562 cells, expression of miR-221, miR-155 and miR-451 was up-regulated in K562/A02 cells by more than two folds, while expression of miR-98, miR-181a, let-7f, let-7g, miR-424 and miR-563 was down-regulated by more than two folds. MiR-221, miR-181a, miR-451 and let-7f were further confirmed by Real time RT-PCR. The results of Real time RT-PCR were consistent with that of microarray.
     Conclusion: MiR-98, miR-221, miR-181a, miR-155, miR-424, miR-451, let-7f, let-7g and miR-563 were differentially expressed between K562 and K562/A02 cells. Our results suggest that these differentially expressed miRNAs particularly miR-451 and let-7f may play an important role in the mechanisms of leukemia MDR.
引文
1. Morrow CS, Smitherman PK, Townsend AJ. Role of multidrug-resistance protein in glutathione S-transferase P1-1-mediated resistance to 4-nitroquinoline 1-oxide toxicities in HepG2 cells. Mol Carcinog, 2000, 29(3): 170-178.
    2. Abbott BL. ABCG2 (BCRP) expression in normal and malignant hematopoietic cells. Hematol Oncol, 2003, 21(3): 115-130.
    3. Kusuhara H, Suzuki H, Sugiyama Y. The role of P-glycoprotein and canalicular multispecific organic anion transporter in the hepatobiliary excretion of drugs. J Pharm Sci, 1998, 87(9): 1025-1040.
    4. Qin L, Wang HA, Wu ZQ, et al. Identification and Characterization of hmr19 Gene Encoding a Multidrug Resistance Efflux Protein from Streptomyces hygroscopicus subsp. yingchengensis Strain 10-22. Acta Biochim Biophys Sin, 2004, 36(8): 519-528.
    5. Solbach TF, Konig J, Fromm MF, et al. ATP-binding cassette transporters in the heart. Trends Cardiovasc Med, 2006,16(1): 7-15.
    6. Vincent M. Tesmilifene may enhance breast cancer chemotherapy by killing a clone of aggressive, multi-drug resistant cells through its action on the p-glycoprotein pump. Med Hypotheses, 2006, 66(4): 715-731.
    7. Takano M, Yumoto R, Murakami T. Expression and function of efflux drug transporters in the intestine. Pharmacol Ther, 2006, 109(1-2): 137-161.
    8. Raaijmakers MH, de Grouw EP, Heuver LH, et al. Impaired breast cancer resistance protein mediated drug transport in plasma cells in multiple myeloma. Leuk Res, 2005, 29(12): 1455-1458.
    9. Albermann N, Schmitz-Winnenthal FH, Z'graggen K, et al. Expression of the drug transporters MDR1/ABCB1, MRP1/ABCC1, MRP2/ABCC2, BCRP/ABCG2, and PXR in peripheral blood mononuclear cells and their relationship with the expression in intestine and liver. Biochem Pharmacol, 2005, 70(6): 949-958.
    10. Leslie EM, Deeley RG, Cole SP. Multidrug resistance proteins: role of P-glycoprotein, MRP1, MRP2, and BCRP (ABCG2) in tissue defense. Toxicol Appl Pharmacol, 2005, 204(3): 216-237.
    11. Norman BH, Lander PA, Gruber JM, et al. Cyclohexyl-linked tricyclic isoxazoles are potent and selective modulators of the multidrug resistance protein (MRP1). Bioorg Med Chem Lett, 2005, 15(24): 5526-5530.
    12. Yeh JJ, Hsu NY, Hsu WH, et al. Comparison of chemotherapy response with P-glycoprotein, multidrug resistance-related protein-1, and lung resistance-related protein expression in untreated small cell lung cancer. Lung, 2005, 183(3): 177-183.
    13. Kuo TH, Liu FY, Chuang CY, et al. To predict response chemotherapy using technetium-99m tetrofosmin chest images in patients with untreated small cell lung cancer and compare with p-glycoprotein, multidrug resistance related protein-1, and lung resistance-related protein expression. Nucl Med Biol, 2003, 30(30): 627-632.
    14. Zhu Y, Kong C, Zeng Y, et al. Expression of lung resistance-related protein in transitional cell carcinoma of bladder. Urology, 2004, 63(4): 694-698.
    15. Sunnaram BL, Gandemer V, Sebillot M, et al. LRP overexpression in monocytic lineage. Leuk Res, 2003, 27(8): 755-759.
    16. Joseph E, Ganem B, Eiseman JL, et al. Selective inhibition of MCF-7(piGST) breast tumors using glutathione transferase-derived 2-methylene-cycloalkenones. J Med Chem, 2005,48(21): 6549-6552.
    17. Depeille P, Cuq P, Passagne I, et al. Combined effects of GSTP1 and MRP1 in melanoma drug resistance. Br J Cancer, 2005, 93(2): 216-223.
    18. Pors K, Patterson LH. DNA mismatch repair deficiency, resistance to cancer chemotherapy and the development of hypersensitive agents. Curr Top Med Chem, 2005, 5(12): 1133-1149.
    19. Lelong-Rebel IH, Cardarelli CO. Differential phosphorylation patterns of P-glycoprotein reconstituted into a proteoliposome system: insight into additional unconventional phosphorylation sites. Anticancer Res, 2005, 25(6B): 3925-3935.
    20. Lahn M, Kohler G, Sundell K, et al. Protein kinase C alpha expression in breast and ovarian cancer. Oncology, 2004, 67(1): 1-10.
    21. Hong L, Piao Y, Han Y, et al. Zinc ribbon domain-containing 1 (ZNRD1) mediates multidrug resistance of leukemia cells through regulation of P-glycoprotein and Bcl-2. Mol Cancer Ther, 2005, 4(12): 1936-1942.
    22. Cai X, Schafer A, Lu S, et al. Epstein-Barr virus microRNAs are evolutionary conserved and diferentially expressed. Plos Pathog. 2006, 2(3): e23.
    23. Bartel DP. MicroRNAs: genomics, biogenesis, mechanism, and function. Cell, 2004,116(2): 281-297.
    24. Novina CD, Sharp PA. The RNAi revolution. Nature, 2004, 430(6996): 161-164.
    25. Wu L, Fan J, Belasco JG. MicroRNAs direct rapid deadenylation of mRNA. Proc Natl Acad Sci USA, 2006, 103(11): 4034-4039.
    26. Ambros V. MicroRNA pathways in flies and worms: growth, death, fat, stress,and timing. Cell, 2003,113(6): 673-676.
    27. Chen CZ, Li L, Lodish HF, et al. MicroRNAs modulate hematopoietic lineage diferentiation. Science, 2004, 303(5654): 83-86.
    28. Xu P, Vemooy SY, Guo M, et al. The Deosophlia microRNA mir-14 suppresses cell death and is required for normal fat metabolism. Curr Biol, 2003,13(9): 790-795.
    29. Pfefer S, Zavolan M, Grasser FA, et al. Identification of virus-encoded microRNAs. Science, 2004, 304(5671): 734-736.
    30. Iorio MV, Casalini P, Tagliabue E, et al. MicroRNA profiling as a tool to understand prognosis, therapy response and resistance in breast cancer. Eur J Cancer, 2008, 44(18): 2753-2759.
    31. Yang H, Kong W, He L, et al. MicroRNA expression profiling in human ovarian cancer: miR-214 induces cell survival and cisplatin resistance by targeting PTEN. Cancer Res, 2008, 68(2): 425-433.
    32. Kovalchuk O, Filkowski J, Meservy J, et al. Involvement of microRNA-451 in resistance of the MCF-7 breast cancer cells to chemotherapeutic drug doxorubicin. Mol Cancer Ther, 2008, 7(7): 2152-2159.
    33. Cui XY, Guo YJ, Yao HR, et al. Analysis of microRNA in drug-resistant breast cancer cell line MCF-7/ADR. Nan Fang Yi Ke Da Xue Xue Bao, 2008, 28(10): 1813-1815.
    34. Xia L, Zhang D, Du R, et al. miR-15b and miR-16 modulate multidrug resistance by targeting BCL2 in human gastric cancer cells. Int Cancer, 2008, 123(2): 372-379.
    35. Lee RC, Feinbaum RL, Ambms V. The C.elegans heterochronic gene lin-4 ecodes small RNAs with antisensec omplementarity to lin-14. Cell, 1993, 75: 843-854.
    36. Reinhart BJ, Slact FJ, Basson M, et al. The 21-nucleotide let-7 RNA regulates developmental timing in Caenorhabditis elegans. Nature, 2000, 403(6772): 901-906.
    37. Griffiths-Jones S, Saini HK, van Dongen S, et al. miRBase: tools for microRNA genomics. Nucleic Acids Res, 2008, 36: D154-D158.
    38. Lee Y, Ahn C, Han J, et al. The nuclear RNaseⅢ Drosha initiates microRNA processing. Nature, 2003, 425(6956): 415-419.
    39. Hutvagner G, Mclachlan J, Pasquinelli AE, et al. A cellularfunction for the RNA-interference enzyme dicer in the maturation of the let-7 small temporal RNA. Science, 2001, 293 (5531): 834-838.
    40. Du T, Zamore PD. Microprimer: the biogenesis and function of micorRNA. Development, 2005,132(21): 4645-4652.
    41. Tay Y, Zhang J, Thomson AM, et al. MicroRNAs to Nanog,Oct4 and Sox2 coding regions modulate embryonic stem cell differentiation. Nature, 2008, 455(7216): 1124-1128.
    42. Berezikov E, Guryev V, van de Belt J, et al. Phylogenetic shadowing and computational identification of human microRNA genes. Cell, 2005, 120(1): 21-24
    43. Calin GA, Dumitru CD, Shimizu M, et al. Frequent deletions and down regulation of microRNA genes miR15 and miR16 at 13ql4 in chronic lymphocytic leukemia. Proc Natl Acad Sci USA, 2002, 99(24): 15524-15529.
    44. Michael MZ, O' Connor SM, van Holst Pellekaan NG, et al. Reduced accumulation of specific microRNAs in colorectal neoplasia. Mol Cancer Res, 2003, 1(12): 882-891.
    45. Takamizawa J, Konishi H, Yanagisawa K, et al. Reduced expression of the let-7 microRNAs in human lung cancers in association with shortened postoperative survival. Cancer Res. 2004, 64(11): 3753-3756.
    46. Metzler M, Wilda M, Busch K, et al. High expression of precursor microRNA-155/BIC RNA in children with Burkit lymphoma.Genes Chromosomes Cancer,2004,39(2):167-169.
    47.He H,Jazdzewski K,Li W,et al.The role of microRNA genes in papillary thyroid carcinoma.Proc Natl Acad Sci USA,2005,102(52):19075-19080.
    48.Cimmino A,Calin GA,Fabbri M,et al.miR-15 and miR-16 induce apoptosis by targeting BCL2.Proc Natl Acad Sci USA,2005,102(39):13944-13949.
    49.Johnson SM,Grosshans H,Shingam J,et al.RAS is regulated by the let-7microRNA family.Cell,2005,120(5):635-647.
    50.栾凤君,杨纯正,马建国,等.一株人红白血病多药耐药细胞系(K562/A02)的建立及其耐药特性的研究.中华肿瘤杂志,1993,15:101-103.
    51.Chen C,Ridzon DA,Broomer A J,et al.Real-time quantification of microRNAs by stem-loop RT-PCR.Nucleic Acids Res,2005,33(20):e179.
    52.Livak KJ,Schmittgen TD.Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method.Methods,2001,25(4):402-408.
    53.Calin GA,Croce CM.MicroRNA-cancer connection:the beginning of a new tale.Cancer Res,2006,66(15):7390-7394.
    54.Schmittgen TD.Regulation of microRNA processing in development,differentiation and cancer.J Cell Mol Med,2008,12(5B):1811-1819.
    55.Ambros V.MicroRNA pathways in flies and worms:Growth,death,fat,stress,and timing.Cell,2003,113(6):673-676.
    56.Sorrentino A,Liu CG,Addario A.et al.Role of microRNAs in drug-resistant ovarian cancer cells.Gynecol Oncol,2008,111(3):478-486.
    57.Zhu H,Wu H,Liu X,et al.Role of MicroRNA miR-27a and miR-451 in the regulation of MDR1/P-glycoprotein expression in human cancer cells.Biochem Pharmacol,2008,76(5):582-588.
    58.Yang N,Kaur S,Volinia S,et al.MicroRNA microarray identifies Let-7i as a novel biomarker and therapeutic target in human epithelial ovarian cancer.Cancer Res,2008,68(24):10307-10314.
    59.Lc YP,Handberg KJ,Kabell S,et al.Relative quantification and detection of different types of infectious bursal disease virus in bursa of Fabricius and caoacal swabs using real time RT PCR SYBR green technology.Res Vet Sci,2007,82(1):126-133.
    60.Stanley KK,Szewczuk E.Multiplexed tandem PCR:gene profiling from small amounts of RNA casing SYBR Green detection.Nucleic Acids Res,2005,33:180-193.
    61.Shi R,Chiang VL.Facile means for quantifying microRNA expression by real-time PCR.Biotechniques,2005,39(4):519-525.
    1.Lee RC,Feinbaum RL,Ambros V.The C.elegans heterochronic gene Lin-4encodes small RNAs with antisense complementarity to lin-14.Cell,1993,75(5):843-854.
    2.Reinhart BJ,Slack FJ,Basson M,et al.The 21 nucleotide let-7 RNA regulates developmental timing in Caenorhabditis elegans.Nature,2000,403(6772):901-906.
    3.Pasquinelli AE,Reinhart BJ,Slack F,et al.Conservation across animal phylogeny of the sequence and temporal regulation of the 21 nucleotide let27 heterochronic regulatory RNA.Nature,2000,408(6808):86-89.
    4.GritTlths-Jones S,Saini HK,van Dongen S,et al.miRBase:tools for microRNA genomics.Nucleic Acids Res,2008,36:D154-D158.
    5.Lee Y,Ahn C,Han J,et al.The nuclear RNaseⅢ Drosha initiates microRNA processing.Nature,2003,425(6956):415-419.
    6.Hutvagner G,Mclachlan J,Pasquinelli AE,et al.A cellular function for the RNA-interference enzyme Dicer in the maturation of the let-7 small temporal RNA.Science,2001,293(5531):834-838.
    7.Lagos-Quintana M,Rauhut R,Lendeckel W,et al.Identification of novel genes coding for small expressed RNAs.Science,2001,294(5543):853-858.
    8.Berezikov E,Guryev V,van de Belt J,et al.Phylogenetic shadowing and computational identification of human microRNA genes.Cell,2005,120(1): 21-24.
    9. KrekA, Grun D, Poy MN, et al. Combinatorial micorRNA target predictions. Nat Genet, 2005, 37(5): 495-500.
    10. Du T, Zamore PD. Microprimer:the biogenesis and function of micorRNA. Development, 2005,132(21): 4645-4652.
    11. Tay Y, Zhang J, Thomson AM, et al. MicroRNAs to Nanog,Oct4 and Sox2 coding regions modulate embryonic stem cell differentiation. Nature, 2008, 455(7216): 1124-1128.
    12. Calin GA, Dumitru CD, Shimizu M, et al. Frequent deletions and down-regulation of micro-RNA genes miR15 and miR16 at 13ql4 inchronic lymphocytic leukemia. Proc Natl Acad Sci U S A, 2002, 99(24): 15524-15529.
    13. Dohner H, Stilgenbauer S, Benner A, et al. Genomic aberrations and survival in chronic lymphocytic leukemia. N Engl J Med, 2000, 343(26): 1910-1916.
    14. Cimmino A, Calin GA, Fabbri M, et al. MiR-15 and miR-16 induce apopotsis by targeting BCL2. Proc Natl Acad Sci USA, 2005,102(39): 13944-13949.
    15. Oscier DG, Gardiner AC, Mould SJ, et al. Multivariate analysis of prognostic factors in CLL: clinical stage, IGVH gene mutational status, and loss or mutation of the p53 gene are independent prognostic factors. Blood, 2002, 100(4): 1177-1184.
    16. Rassentil Z, Huynh L, Toy TL, et al. ZAP-70 compared with immunoglobulin heavy-chain gene mutation status as a predictor of disease progression in chronic lymphocytic leukemia. N Engl J Med, 2004, 351 (9): 893-901.
    17. Orchard JA, Ibbotson RE, Davis Z, et al. ZAP-70 expression and prognosis in chronic lymphocytic leukaemia. Lancet, 2004, 363(9403): 105-111.
    18. Calin GA, Liu CG, Sevignani C, et al. MicroRNA profiling reveals distinct signatures in B cell chronic lymphocytic leukemias. Proc Natl Acad Sci USA, 2004,101(32): 11755-11760.
    19. Fulci V, Chiaretti S, Goldoni M, et al.Quantitative technologies establish a novel microRNA profile of chronic lymphocytic leukemia. Blood, 2007, 109(11): 4944.4951.
    20. Calin GA, Ferracin M, Cimmino A, et al. A microRNA signature associated with prognosis and progression in chronic lymphocytic leukemia. N Engl J Med, 2005, 353(17):1793-1801.
    21. Pekarsky Y, Santanam U, Cimmino A, et al. Tcl1 expression in chronic lymphocytic leukemia is regulated by miR-29 and miR-181. Cancer Res, 2006, 66(24): 11590-11593.
    22. Herling M, Patel KA, Khalili J, et al. TCL1 shows a regulated expression pattern in chronic lymphocytic leukemia that correlates with molecular subtypes and proliferative state. Leukemia, 2006, 20: 280-285.
    23. Zanette DL, Rivadavia F, Molfetta GA, et al. miRNA expression profiles in chronic lymphocytic and acute lymphocytic leukemia. Braz J Med Biol Res, 2007, 40(11): 1435-1440.
    24. Lagos-Quintana M, Rauhut R, Yalcin A, et al. Identification of tissue-specific microRNAs from mouse. Curr Biol, 2002, 12 (9): 735-739.
    25. Chen CZ, Lodish HF. MicroRNAs as regulators of mammalian hematopoiesis. Semin Immunol, 2005,17 (2): 155-165.
    26. Dixon-Mclver A, East P, Mein CA, et al. Distinctive patterns of microRNA expression associated with karyotype in acute myeloid leukaemia. PloS ONE, 2008, 3(5): e2141.
    27. Isken F, Steffen B, Merk S, et al. Identification of acute myeloid leukaemia associated microRNA expression patterns. Br J Haematol, 2008, 140(2): 153-161.
    28. Mi S, Lu J, Sun M, et al. MicroRNA expression signatures accurately discriminate acute lymphoblastic leukemia from acute myeloid leukemia. Proc Natl Acad Sci USA, 2007, 104(50): 19971-19976.
    29. Jongen-Lavrencic M, Sun SM, Dijkstra MK, et al. MicroRNA expression profiling in relation to the genetic heterogeneity of acute myeloid leukemia. Blood, 2008, 111(10): 5078-5085.
    30. Garzon R, Garofalo M, Martelli MP, et al. Distinctive microRNA signature of acute myeloid leukemia bearing cytoplasmic mutated nucleophosmin. Proc Natl Acad Sci USA, 2008, 105(10): 3945-3950.
    31. Fazi F, Racanicchi S, Zardo G, et al. Epigenetic silencing of the myelopoiesis regulator microRNA-223 by the AML1/ETO oncoprotein. Cancer Cell, 2007, 12(5): 457-466.
    32. Debernardi S, Skoulakis S, Molloy G, et al. MicroRNA miR-181a correlates with morphological sub-class of acute myeloid leukaemia and the expression of its target genes in global genome-wide analysis. Leukemia, 2007, 21(5): 912-916.
    33. Garzon R, Pichiorri F, Palumbo T, et al. MicroRNA gene expression during retinoic acid-induced differentiation of human acute promyelocytic leukemia. Oncogene, 2007,26(28): 4148-4157.
    34. Agirre X, Jimenez-Velasco A, et al. Down-regulation of hsa-miR-lOa in chronic myeloid leukemia CD34+ cells increases USF2-mediated cell growth. Mol Cancer Res, 2008, 6(12): 1830-1840.
    35. Tanzer A, Stadler PR Molecular evolution of a microRNA cluster. J Mol Biol, 2004, 339: 327-335.
    36. Venturini L, Battmer K, Castoldi M, et al. Expression of the miR-17-92 polycistron in chronic myeloid leukemia (CML) CD34+ cells. Blood, 2007, 109(10): 4399-4405.
    37. Bueno MJ, Perez de Castro I, Gomez de Cedron M, et al. Genetic and epigenetic silencing of microRNA-203 enhances ABL1 and BCR-ABL1 oncogene expression. Cancer cell, 2008, 13(6): 496-506.
    38. Faber J, Gregory RI, Armstrong SA. Linking miRNA regulation to BCR-ABL expression: the next dimension. Cancer Cell, 2008, 13(6): 467-469.
    39. Sorrentino A, Liu CG, Addario A, et al. Role of microRNAs in drug-resistant ovarian cancer cells. Gynecol Oncol, 2008, 111(3): 478-486.
    40. Yang H, Kong W, He L, et al. MicroRNA expression profiling in human ovarian cancer: miR-214 induces cell survival and cisplatin resistance by targeting PTEN. Cancer Res, 2008, 68(2): 425-433.
    41. Cui XY, Guo YJ, Yao HR. Analysis of microRNA in drug-resistant breast cancer cell line MCF-7/ADR. Nan Fang Yi Ke Da Xue Xue Bao, 2008, 28(10): 1813-1815.
    42. Xia L, Zhang D, Du R. miR-15b and miR-16 modulate multidrug resistance by targeting BCL2 in human gastric cancer cells. Int J Cancer, 2008, 123(2): 372-379.
    43.Mishra PJ,Humeniuk R,Mishra PJ,et al.A miR-24 microRNA binding-site polymorphism in dihydrofolate reductase gene leads to methotrexate resistance.Proc Natl Acad Sci U S A,2007,104(33):13513-13518.
    44.Si ML,Zhu S,Wu H,et al.miR-21-mediated tumor growth.Oncogene,2007,26(19):2799-2803.
    45.Zhu H,Wu H,Liu X,et al.Role of MicroRNA miR-27a and miR-451 in the regulation of MDR1/P-glycoprotein expression in human cancer cells.Biochem Pharmacol,2008,76(5):582-588.
    1 Wolffe AP,Matzke MA.Epigenetics:regulation through repression.Science,1999,286(5439):481-486.
    2 Bird A.DNA methylation patterns and epigenetic memory.Genes Dev,2002,16(1):6-21.
    3 Zamore PD,Tuschl T,Sharp PA,et al.RNAi:double-stranded RNA directs the ATP-dependent cleavage of mRNA at 21 to 23 nucleotide intervals.Cell,2000,101(1):25-33.
    4 Couzin J.Small RNAs make big splash.Science,2002,298(5602):2296-2297.
    5 Kusaba H,Nakayama M,Harada T,et al.Maintenance of hypomethylation status and preferential expression of exogenous human MDR1/PGY1 gene in mouse L cells by YAC mediated transfer.Somat Cell Mol Genet,1997,23(4):259-274.
    6 Nakayama M,Wada M,Harada T,et al.Hypomethylation status Of CpG sites at the promoter region and overexpression of the human MDR1 gene in acute myeloid leukemias.Blood,1998,92(11):4296-4307.
    7 Toyota M,Kopecky KI,Toyota MO,et al.Methylation profiling in acute myeloid leukemia.Blood,2001,97(9):2823-2829.
    8 List AF,Spier CS,Grogan TM,et al.Overexpression of the major vault transporter protein lung-resistance protein predicts treatment outcome in acute myeloid leukemia.Blood,1996,87(6):2464-2469.
    9 Filipits M,Pohl G,Stranzl T,et al.Expression of the lung resistance protein predicts poor outcome in de novo acute myeloid leukemia.Blood,1998,91(5):1508-1513.
    10 徐周敏,于力,楼方定,等.LRP15基因启动子区甲基化与其表达的关系.中 国实验血液学杂志,2005,13(2):188-191.
    11 Fukuda T,Kamishima T,Kakihara T,et al.Characterization of newly established human myeloid leukemia cell line(KF-19)and its drug resistant sublines.Leuk Res,1996,20(11-12):931-939.
    12 Leith CP,Kopecky KJ,Godwin J,et al.Acute myeloid leukemia in the elderly:assessment of multidrug resistance(MDRI) and cytogenetics distinguishes biologic subgroups with remarkably distinct responses to standard chemotherapy.A Southwest Oncology Group study.Blood,1997,89(9):3323-3329.
    13 谢晓宇,单根法,钟竑,等.肺腺癌细胞MRP基因甲基化与多药耐药的相关性.上海交通大学学报(医学版),2003-S1-001:5-8.
    14 Perkins C,Kim CN,Fang G,et al.Arsenic induces apoptosis of multidrug-resistant human myeloid leukemia cells that express Bcr-Abl or overexpress MDR,MRP,Bcl-2,or Bcl-x(L).Blood,2000,95(3):1014-1022.
    15 Castro-Galache MD,Ferragut JA,Barbera VM,et al.Susceptibility of multidrug resistance tumor cells to apoptosis induction by histone deacetylase inhibitors.Int J Cancer,2003,104(5):579-586.
    16 Castro-Galache MD,Men(?)ndez-Guti(?)rrez MP,Carrasco Garcia E,et al.Protein kinase C-alpha antagonizes apoptosis induction by histone deacetylase inhibitors in multidrug resistant leukaemia cells.Int J Biochem Cell Biol,2007,39(10):1877-1885.
    17 Batova A,Shao LE,Diccianni MB,et al.The histone deacetylase inhibitor AN-9has selective toxicity to acute leukemia and drug-resistant primary leukemia and cancer cell lines.Blood,2002,100(9):3319-3324.
    18 Cote S,Rosenauer A,Bianchini A,et al.Response to histone deacetylase inhibition of novel PML/RARalpha mutants detected in retinoic acid—resistant APL cells.Blood,2002,100(7):2586-2596.
    19 Cote S,Zhou D,Bianchini A,et al.Altered ligand binding and transcriptional regulation by mutations in the PML/RARalpha ligand-binding domain arising in retinoic acidresistant patients with acute promyelocytic leukemia.Blood,2000,96(9):3200-3208.
    20 Warrell RP Jr,He LZ,Richon V,et al.Therapeutic targeting of transcription in acute promyelocytic leukemia by use of an inhibitor of histone deacetylase. J Natl Cancer Inst, 1998, 90(21): 1621-1625.
    21 Wu H, Hait WH, Yang JM. Small interfering RNA-induced suppression of mdr1(P-glycoprotein ) restores sensitivity to multidrug resistance cancer cells. Cancer Res, 2003, 63 (7): 1515-1519.
    22 Lim MN, Lau NS, Chang KM, et al. Modulating multidrug resistance gene in leukaemia cells by short interfering RNA. Singapore Med J, 2007, 48(10): 932-938.
    23 Shen H, Xu W, Wu Z, et al. Down-regulation of WT1/+17AA gene expression using RNAi and modulating leukemia cell chemotherapy resistance. Haematologica, 2007, 92(9): 1270-1272.
    24 Efferth T, Gillet JP, Sauerbrey A, et al. Expression profiling of ATP-binding cassette transporters in childhood T-cell acute lymphoblastic leukemia. Mol Cancer Ther, 2006, 5(8): 1986-1994.
    25 Steinbach D, Gillet JP, Sauerbrey A, et al. ABC A3 as a possible cause of drug resistance in childhood acute myeloid leukemia.Clin Cancer Res, 2006, 12(14): 4357-4363.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700