用户名: 密码: 验证码:
普萘洛尔对映体在经不同诱导剂诱导的人肝细胞中的代谢特征
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
研究背景
     手性(Chirality)是一种化学结构特征,它引起分子的不对称性。近年来,药物手性的临床意义已引起了人们的注意。人体的手性环境和特异的对映体相互作用,导致手性药物对映体药代动力学和药效学的立体选择性(stereo-selectivity)差异。在药理手性差异中研究较多的是药代动力学的手性特征。它是基于药物吸收、分布、代谢和排泄过程的对映体选择性。其中代谢性对映体选择性发生率最高(约占40%),且临床意义更大。以往由于没有认识到手性药物各对映体的药动学行为,特别是代谢的手性差异,所以在药物相互作用研究中常常将消旋体药物当作单一化合物来处理。由此得出的结论常与临床疗效或不良反应的发生存在着不一致的现象,甚至会错误地指导临床用药。
     药物代谢主要在肝脏,依赖于细胞色素P450 ( cytochrome P450, CYP 450) ,它是药物进入体内进行生物转化的重要代谢酶,参与各种内源性和外源性化合物在体内的代谢过程。该酶系具有专一性不强的特点,即同一种酶可以代谢多种药物,而同一药物又可被多个肝药酶所代谢。由于在肝细胞内蕴含有大量不同种类的肝药酶,每一种药物进入体内后,都可能由多种酶参与其代谢。因此宏观的血药浓度只能检测出总体结果,不能考察每种酶对药物的代谢情况。在联合用药过程中,特别是其中某一药物使参与催化代谢的酶活性显著增强或减弱时,就会引起其他合用药物的毒副作用出现或未达疗效的情况。对于对映体来说,酶还表现出立体选择性的差异,从而可能使其中占主药效的一个对映体的代谢速度改变甚至逆转。因此,了解各种酶参与对映体的代谢的过程,可为临床用药提供参考依据。
     本实验研究的手性药物是普萘洛尔(Propranolol, PPL)对映体。普萘洛尔为非选择性β-肾上腺素受体阻滞剂,口服后药物达峰时间为1~3小时,t1/2为2~5小时。主要在肝脏代谢,首过效应60%~70%,生物利用度仅为30%。临床上使用的普萘洛尔是左旋异构体S(-)- PPL和右旋异构体R(+)- PPL等量混合的消旋品。目前已证实S(- )型对映体的β受体阻断作用要比R (+)型约强100倍。
     普萘洛尔在CYP450酶系中代谢,各亚族均有不同程度的催化作用,文献显示以CYP 2D6和CYP 1A2作用较强。以往的研究主要是集中在两个酶对普萘洛尔的代谢,而对其它酶参与其代谢的研究则甚少涉及。本课题选择CYP 1A1和CYP 3A4进行考察。其主要的原因是CYP 1A1虽在肝脏中的含量很低,但此酶极容易被诱导、活化,使肝脏含量迅速增加。许多外源性化合物经CYP 1A1代谢后可产生有毒的代谢产物,能诱发肿瘤的产生与发展;CYP 3A4是CYP 450酶系中最重要的亚型,约占成人肝微粒体CYP450总量的30 %~40 %。因此,有必要对这两种具代表性的肝药酶在普萘洛尔对映体的代谢过程中的参与情况进行研究和探讨。
     肝细胞是在人类中检测CYP 450酶活性诱导或抑制最合适的实验研究平台,是最接近临床的研究系统。普萘洛尔甚少体外药动学资料,特别是其对映体的药代动力学参数资料。因此,本实验设计以体外培养人肝细胞作为代谢反应系统。对普萘洛尔对映体在经诱导的肝细胞中代谢过程进行了研究,其目的是明确肝药酶CYP 1A1和CYP 3A4是否参与普萘洛尔对映体的代谢,并探究其酶动力学和药代动力学的特征,同时为分子生物学基础研究和临床合理用药提供参考和实验依据。本实验包括四方面的内容。
     一、肝细胞培养以及肝药酶CYP 1A1、CYP 3A4活性的测定
     目的采用人肝细胞作为体外代谢系统,测定经不同浓度的诱导剂诱导后酶代谢底物的情况,以此来描述酶活性的变化,并确定诱导剂的最佳诱导浓度。
     方法通过肝细胞的传代培养,用MTT法测定细胞存活率;再分别以7-ER和睾酮为底物,测定CYP 1A1和CYP 3A4的活性变化,以确定BNF诱导CYP1A1和RIF诱导CYP3A4的最佳浓度。
     结果BNF诱导CYP 1A1的最佳药物浓度为0.8μmol·L~(-1),而RIF诱导CYP 3A4的最佳药物浓度为15μmol·L~(-1)。
     二、普萘洛尔对映体的手性拆分
     目的采用光学纯对映体分别加入细胞中进行代谢,但对映体在代谢过程中可能发生转化,需要将经过代谢后的对映体进行拆分来验证。
     方法选用GITC作为柱前衍生化试剂,进行对映体的柱前衍生化,并通过反相高效液相色谱法检测。
     结果在本实验的衍生条件下,消旋体可被完全衍生;普萘洛尔对映体在肝细胞系统代谢过程中没有发生结构转化,可以直接向肝细胞中分别加入R(+)-PPL和S(-)-PPL进行代谢,检测液无需再进行拆分前处理。
     三、HPLC中检测细胞液中普萘洛尔对映体的浓度
     目的建立一种用于体外细胞实验检测药物浓度的高效、简便、快速、专属性强的分析方法。
     方法1.反相高效液相色谱-荧光检测法定量检测普萘洛尔对映体的浓度。
     2.通过指定标准曲线,测定萃取回收率、方法回收率和精密度,对HPLC方法学进行确证。
     结果1. S(-)-PPL和R(+)-PPL在测定范围内(0.5~20μmol·L-1)线性关系良好,它们的回归方程分别为Y = 0.5627X + 0.0581和Y = 0.6699X - 0.2068,相关系数(r)分别为0.9993和0.9994。最低定量浓度(LOD,S/N≥9)均为0.5μmol·L-1。
     2. S(-)-PPL和R(+)-PPL萃取回收率均大于80%,方法回收率均大于90%。日内差均小于8.8%,日间差均小于13.1%。3.本方法快捷、准确、专一性强,可用于细胞液样品中的药物研究。
     四、普萘洛尔对映体的代谢特征
     目的通过处理酶动力学参数,考察CYP 1A1和CYP 3A4是否参与普萘洛尔的代谢,并且探究对映体在代谢过程中的立体选择性;同时处理和归纳药代动力学参数,为临床合理用药提供参考。
     方法1.测定在BNF和INF的诱导下,以及不经诱导时普萘洛尔酶动力学参数。2.分别测定不同时间点时经BNF和RIF的诱导以及不经诱导空白对照的普萘洛尔剩余浓度,建立底物浓度-反应时间曲线。
     结果1.BNF诱导的CYP1A1明显增强了两对映体催化能力,尤其是对S(-)型对映体的选择性。CYPP 3A4在普萘洛尔的代谢中作用较大,并表现出对R(+)-普萘洛尔作用较强的立体选择性。
     2.R(+)-PPL比S(-)-PPL的代谢消除快。经过诱导后,两对映体的代谢均加快。
     结论
     1.本实验所选取的两个酶均参与了普萘洛尔对映体的代谢。
     2.肝药酶CYP 1A1对S(-)-PPL有较强的立体选择性,而肝药酶CYP 3A4则对R(+)-PPL有显著的立体选择性。
     3. R(+)-PPL比S(-)-PPL的代谢消除快。诱导CYP 3A4活性的药物能显著增加R(+)-PPL的代谢,而诱导CYP 1A1活性的药物能显著增加S(-)-PPL的代谢。
Chirality is a structural characteristics of chemical substance. Almost 75% drugs used in clinical practice exist molecular asymmetry, so called as chiral drugs. Recently, the clinical significance of drug chirality has been closely remarked. The interaction of demic chiral environment and specific enantiomers has resulted in pharmacokinetic or/and pharmacodynamic stereoselectivity differences between various enantiomers. Chiral characteristics of pharmacokinetics are studied much more than of pharmacodynamics. The former is based on the stereoselective processes of drug absorption, distribution, metabolism and excretion. Among them, the incidence rate of metabolic stereoselectivity of drugs is the highest (ca. 40%). However, the researches on drug-interaction were usually dealt with racemics as single compounds owing to ignoring the differences in metabolic stereoselectivity between enantiomers. As a result, the obtained conclusions were probably discordancy in curative effect and adverse reaction, and can not correctly guide rational use of clinical medication.
     Drugs are mainly metabolized in liver, depending on cytochrome P450 (CYP 450). It is essential enzyme system of drug biotransformation and participates metabolic processes of endogenous and exogenous compounds in vivo. There are generous liver drug enzymes in organelle of liver cells. Thus every drug will be metabolized by various kinds of enzymes. Blood drug level could just figure out total results without detecting metabolic participation of enzyme. There would be side effects or inadequacy of therapeutic effects during drug combination, especially when the drugs could strikingly strengthen or reduce enzyme activity. And enzymes would also show up stereoselectivity to entiomers, altering or even deteriorating the accretion rate of one of them.
     The chiral drug of this assay is propranolol(PPL). Propranolol is nonselective blocking agent ofβ-adrenoceptor. Cmax after oral administration is 1-3 hours, and t1/2 is 2-5 hours. It is mainly metabolized in liver, with 60%-70% first pass effect and 30% bioavailability. Propranolol is used clinically as racemics with partes aequales of S(-)-PPL and R(+)-PPL, but theβ-adrenoceptor blocking effects of S(-)-PPL is 100 times more than R(+)-PPL.
     There are various kinds of enzyme participating metabolism of propranolol in CYP 450, especially CYP 2D6 and CYP 1A2. Nevertheless, the previous researches just concentrate on portrait study of them. This essay selected CYP 1A1 and CYP 3A4 to investigate. The contents of CYP 1A1 are very low in liver. But it is very easily induced to create tumors. CYP 3A4 is the major components of CYP 450, occupying 30%-40%. Therefore, it is necessary to study these two enzymes participation in metabolism of propranolol enantiomers.
     Hepatocytes are suitable for studying in CYP 450 enzyme activity induction and inhibiton. This essay was used human hepatocyte as reaction system, and did the research in metabolic characteristics of the enantiomers of propranolol in the human hepatocytes treated with different inducers, including enzymatics and pharmacokinetics, in order to identify whether the enzymes participate the metabolism of enantiomers.
     I. The culture of human hepatocytes and the activity detection of CYP 1A1, CYP 3A4
     Object To observe metabolism with enzyme in hepatocytes. To describe enzyme activity through detection of substrates metabolism by enzyme treated with inducers and define the best induced concentration.
     Method 1. The culture of human hepatocytes.
     2. Detection of cells survival rate with MTT.
     3. Using 7-ER and Rifampicine as specific substrates to determine the activities of CYP1A1 and CYP3A4 and to define the best induced concentration.
     Result 1. The best induced concentration of BNF is 0.8μmol·L-1. 2. The best induced concentration of RIF is 15μmol·L-1.
     II. Chiral separation of propranolol enantiomers
     Object To verificate whether the enantiomers would convert structure after metabolism.
     Method The enantiomers were reacted with a pre-column chiral derivatization reagent 2,3,4,6-tetra-O-acetyl-β-D-glucopyranosyl isothiocyanate(GITC) and separated on HPLC.
     Result The enantiomers could be separated completely with this method.And they don’t convert after metabolism. They could be detected without separation.
     III. HPLC detection of propranolol enantiomers in cell cultures
     Object To establish a high performance, convenient, fast method for drug detection in medium in vitro.
     Method 1. Preparation of standard solution and sample pretreatment.
     2. HPLC detection of propranolol enantiomers and methodology corroboration.
     Result 1. The regression equation of S(-)-PPL and R(+)-PPL are Y = 0.5627X + 0.0581 and Y = 0.6699X - 0.2068. correlation coefficient are 0.9993 and 0.9994. The minimum quantitated concentration(LOD,S/N≥9)is 0.5μmol·L-1
     2. The extraction are larger than 80% and method recovery are 90%. The intra-day and inter-day precision.
     3. This method is sensitive, accurate, and could be used as study of medium sample.
     IV. Metabolic characteristics of the enantiomers of propranololin the human hepatocytes
     Object To inspect whether the enzyme participate propranolol metabolism.
     Method R(+) , S(-) propranolol are metabolized by BNF and RIF induced cells. Then the substrate concentration-time curves and enzyme parameters (Km , V max) of carvedilol enantiomers were provided.
     Result Enantiomers were metabolized faster after induction. Enzyme catalytic abilities had a stereoselectivity to R(-)-PPL in control group and RIF induced group, while there is stereoselectivity to S(-)-PPL in BNF induced group.
     Conclusion
     1. Both these two enzymes are partipated in metabolism of propranolol enantiomers.
     2. their catalytic abilities had a stereoselectivity to R(-)-PPL in control group and RIF induced group, while there is stereoselectivity to S(-)-PPL in BNF induced group.
     3. Metabolism of R(-)-PPL will be increased when used the drugs which can strikingly strengthen the activity of CYP 3A4, while metabolism of S(+)-PPL will be increased when used the drugs which can sharply increase the activity of CYP 1A1.
引文
[1]周权,姚彤炜,曾苏.手性药物相互作用.中国药学杂志.1999;34(11):721~24
    [2] Ariens EJ. Stereochemistry: A source of problems in medicinal chemistry. M ed Res Revs, 1986; 6: 451
    [3]芮建中,吴锦芳,庞晓东.手性药物对映体选择性的药代动力学和药效学与临床合理用药.中国药理学通报. 1998 Feb;14(1):14~18
    [4]马景,钱蓓丽.人类细胞色素P450s研究概况及其在新药安全性评价中的应用中国新药杂志,2002,11(1):36~42
    [5]刘国卿.药理学(第五版).中国医药科技出版社.2000年3月. 93-94
    [6] Barrett AM , Cullum VA. The biological properties of the optical isomers of propranolo l and their effects on cardiac arrhythmias. Br J Pharmacol, 1968, 34: 43~55
    [7]王似菊等.心血管药物的立体选择性活性及临床意义.中国医院药学杂志.1995;15(6):284~285.
    [8] Y Masubuchi, S Hosokawa, T Horie, T Suzuki, S Ohmori, M Kitada and S Narimatsu. Cytochrome P450 isozymes involved in propranolol metabolism in human liver microsomes. The role of CYP2D6 as ring-hydroxylase and CYP1A2 as N-desisopropylase. Drug Metab Dispos.1994;22(6): 909~915
    [9] Ching M S, Bichara N , Blake CL , Ghabrial H, Tukey RH,Smallwood RA. Proprano nol 4- and 5-hydroxylation and N -desisopropylation by cloned human cytochrome P450 1A1 and P450 1A2. Drug Metab Dispos,1996,24(6):692-694
    [10] N. Bichara, MS. Ching, CL. Blake, H. Ghabrial and RA. Smallwood. Propranolol hydroxylation and N-desisopropylation by cytochrome P450 2D6: studies using the yeast-expressed enzyme and NADPH/O2 and cumene hydroperoxide-supported reactions. Drug Metab Dispos.1996,24(1):112~118
    [11] Yoshimoto K, Echizen H, Chiba K, TaniM, Ishizaki T. Identification of human CYP isoforms involved in the metabolism of propranolol enantiomers - N -desisopropylation is mediated mainly by CYP 1A2. Br J Clin Pharmacol, 1995,39(4):421~431.
    [12] Jun Haginaka, Yuki Sakai, Shizuo Narimatsu. Uniform-Sized Molecularly Imprinted Polymer Material for Propranolol. Recognition of Propranolol and Its Metabolites. Anal Sci.1998;14:823~826.
    [13] Ebihara A,Fujimura A..Metabolites of antihypertensive drugs. An updated review of their clinical pharmacokinetic and therapeutic implications. Clin Pharmacokinet. 1991 Nov;21(5):331~43.
    [14] JA Ring, H Ghabrial, MS Ching, A Shulkes, RA Smallwood and DJ Morga.Fetal hepatic propranolol metabolism. Studies in the isolated perfused fetal sheep liver. Drug Metab Dispos. 1995;23(2)190~196
    [15] Daniel E. Salazar, Punit H. Marathe, I.Edgar Fulmor, Jim S.Lee, Ralph H. Raymond, Howard D. Uderman. Pharmacokinetic and pharmacodynamic evaluation during coadministration of nefazodone and propranolol in healthy men. J Clin Pharmacol. 1995 Nov;35(11):1109-1118.
    [16] Punit H. Marathe, Douglas S. Greene, Georgia D. Kollia, Rashmi H. Barbhaiya.A pharmacokinetic interaction study of avitriptan and propranolol. Clin Pharmacol Ther. 1998 Mar;63(3):367~378.
    [17] Bai SA, Abramson FP. Interaction of phenobarbital with propranolol in the dog. 3. Beta blockade. J Pharmacol Exp Ther. 1983 Jan;224(1):62~67.
    [18] Hakkola J , Tanaka E , Pelkonen O. Developmental expression of cytochrome P450 enzymes in human liver [J ] . Pharmacol Toxicol ,1998 ,82∶209.
    [19]庞莉萍,崔景荣.细胞色素P450 1A1的研究进展,国外医学遗传学分册,2005,28(2):80~84
    [20] Hakkola J , Tanaka E , Pelkonen O. Developmental expression ofcytochrome P450 enzymes in human liver [J ] . Pharmacol Toxicol ,1998 ,82∶209.
    [21]郑英,张捷,楼宜嘉.大鼠肝微粒体谷胱甘肽S-转移酶简易制备法对活性影响.浙江大学学报(医学版), 2002,31(6):429-432.
    [22]朱燕萍,金念祖,周建伟,茅力,赵人峥,童建.槲皮素在人肝微粒体和细胞株中对细胞色素450 1A1的影响.中华肝脏病杂志, 2005,13(3):233-234.
    [23] DeKanter R, Olinga P, DeJager MH. Organ slices as invitro test system for drug mertabolism in human liver,lung and kidney[J]. Toxicolin Vitro, 1999,13(45):737.
    [24]毕惠嫦,陈孝,黄民.肝脏灌流技术及其在药物研究中的应用进展.中国药理学通报. 2004;20(9):968~71
    [25] Li AP,Maurel P,Gomez-Lechon MJ,et al. Preclinical evaluatlon of drug-drug interaction potential:present status of the application of primary human hepatecytes in the evaluation of cytochrome P450 induction.Chem Biol Interact,l997,107:5-16.
    [26]李新,曾苏.普萘洛尔光学异构体在经不同诱导剂诱导的大鼠肝微粒体P450系统中的代谢特征.中国药理学与毒理学杂志.1999;13(1):53~56.
    1.薛庆善.体外培养的原理与技术.科学出版社.2001年2月.
    2.司徒镇强,吴军正.细胞培养培养.世界图书出版公司,2004年3月:5-20,250-251.
    3.朱燕萍,金念祖,周建伟,茅力,赵人峥,童建.槲皮素在人肝微粒体和细胞株中对细胞色素450 1A1的影响.中华肝脏病杂志, 2005,13(3):233-234.
    4.庄鹏,江元森等.长期培养的大鼠原代肝细胞功能和形态学观察.中国病理生理杂志. 2005,21(5):1001~1005
    5.刘振威,胡卓汉,蔡映云.异烟肼和利福平联合用药对健康成人原代肝细胞CYP450同工酶1A2和3A4活性的影响.中华结核和呼吸杂志.2005年11月28 (11) ,785-788.
    1.余露山,姚彤炜,王向军等.手性固定相法和手性衍生化法拆分β-受体阻断剂类药物及其结构类似物.浙江大学学报(医学版),2002,31(6):414-418,428.
    2.余细勇,林曙光.柱前衍生化HPLC测定人血浆中的对映体.中国药学杂志. 1994,29(9),543-546.
    3. Steven T. Wu, Tu Ping Chang, Winnie L. Gee, et al. Stereoselective high-performance liquid chromatography determination of propranolol and 4-hydroxypropranolol in human plasma after pre-column derivatization. Journal of Chromatography B,1997,692:133-140
    4.周权,姚彤炜,曾苏.手性衍生化-反相高效液相色谱法测定大鼠肝微粒体中盐酸普罗帕酮对映体及其在代谢研究中的应用.药学学报.2000,35(5): 370-373
    5.曾苏.高效液相色谱手性试剂衍生化法及其应用.色谱,1994,12(6),406-409.
    1. Roux A., Blanchot G., Baglin A., et al.Liquid chromatographic analysis of propranoloi enantiomers in human blood using precolumn derivatization with (+)-l- (9-fluorenyl)ethyl chloroformate. Journal of Chromatograph), 1991,570 : 453~461
    2.栾连军,邵青,张晓红,等.苯巴比妥诱导对普萘洛尔对映体葡醛酸化立体选择性的影响.浙江大学学报(医学版). 2004,33(1):7-10
    3.余细勇,林曙光,杨敏,等.普萘洛尔及其代谢物4-羟普萘洛尔的药代动力学.中国临床药理学杂志,1991,7(4):233-240
    1.生物化学(第六版).人民卫生出版社,2002,122-124.
    2.刘国卿.药理学(第五版).中国医药科技出版社.2000年3月:93-94
    3.周权,姚彤炜,曾苏.手性药物相互作用.中国药学杂志.1999;34(11):721~24
    [1]孙忠实,朱珠.药物代谢性相互作用研究进展[J].药物不良反应杂志, 2000, 2(1):6.
    [2]朱曼,王睿,张永青,梁蓓蓓.大鼠肝微粒体细胞色素P450酶系检测方法学研究[J].中国临床药理学与治疗学, 2004, 9(5):500.
    [3]郑英,张捷,楼宜嘉.大鼠肝微粒体谷胱甘肽S-转移酶简易制备法对活性影响[J].浙江大学学报(医学版), 2002, 31(6):429.
    [4]马璟,钱蓓丽,顾性初,等.人肝细胞色素P450含量及其同工酶1A1、2A6活性的测定[J].中国医药工业杂志. 1999, 30(10):449.
    [5]马璟,钱蓓丽,顾性初,等.人肝细胞色素P450 2C8/9、2E1比活性测定[J].中国药理学通报. 2002, 18(1):36.
    [6]孟群,柳晓泉,王广基.人肝微粒体内红霉素等药物对西尼地平代谢的影响[J].中国药科大学学报,2004, 35(6):524.
    [7]代方国,罗仁,王宇光,等.甘遂配伍甘草对大鼠肝脏CYP2E1表达及活性的影响[J].第三军医大学学报, 2005, 27(8):742.
    [8]张金兰,周同惠.抗焦虑新药AF-5及其代谢物在人肝微粒体体外温孵体系中代谢研究[J].药学学报, 2001, 36(7):528.
    [9]周权,姚彤炜,曾苏.手性衍生化-反相高效液相色谱法测定大鼠肝微粒体中盐酸普罗帕酮对映体及其在代谢研究中的应用[J].药学学报, 2000, 35(5):370.
    [10] CHING M S, BICHARA N , BLAKE C L, et al. Propranonol 4- and 5-hydroxylation and N -desisopropylation by cloned human cytochrome P450 1A1 and P450 1A2[J]. Drug Metab Dispos, 1996, 24(6):692.
    [11] BICHARA N, CHING M S, BLAKE C L, et al. Propranolol hydroxylation and N-desisopropylation by cytochrome P4502D6: studies using the yeast-expressed enzyme and NADPH/O2 and cumene hydroperoxide-supported reactions[J]. Drug Metab Dispos, 1996, 24(1):112.
    [12] YOSHIMOTO K, ECHIZEN H, CHIBA K, et al. Identification of human CYP isoforms involved in the metabolism of propranolol enantiomers - N -desisopropylation is mediated mainly by CYP 1A2[J]. Br J Clin Pharmacol, 1995, 39(4):421.
    [13] MASUBUCHI Y, HOSOKWA S, HORIE T, et al. Cytochrome P450 isozymes involved in propranolol metabolism in human liver microsomes. The role of CYP2D6 as ring-hydroxylase and CYP1A2 as N-desisopropylase[J]. Drug Metab Dispos, 1994, 22(6):909.
    [14]韩聚强.体外肝细胞培养技术新进展[J].河北医科大学学报, 2002,23(3):184.
    [15]刘友平,丁慧荣,何涛,等.一种简单、经济、高效的大量肝细胞培养方法[J].生物学通报, 2005, 40(1): 47.
    [16] HENGSTLER J G, UTESCH D, STEINBERG P, et al. Cryoperserved primany hepatocytes asa constantly avaible in vitro model for the evaluation of human and animal drug metabolism and enzyme induction[J]. Drug Metab Review, 2000, 32(1):81.
    [17] NAKAGAWA Y, SUZUKI T. Metabolism of bisphenol A in isolated rat hepatocytes and oestrogenic activity of a hydroxylated metabolite in MCF-7 human breast cancer cells[J]. Xenobiotica, 2001, 3(3):113.
    [18] POTTENGER,DOMORADZKI L H,MANKHAM J Y,et al. The relative bioavilability and metabolism of bisphenol A in rats is dependent upon the route of administration[J].ToxicolSci,2000, 54(1):3.
    [19] SHIBATA Y, TAKAHASHI H, CHIBA M, et al. Prediction of hepatic clearance and availability by cryopreserved human hepatocytes: an application serum incubation method[J]. Drug Metab Dispos, 2002, 30(8):892.
    [20] GRIFFIN S J, HOUSTON J B. Prediction of in vitro intrinsic clearance from hepatocytes: comparison of suspensions and monolayer cultures [J]. Drug Metab Dispos, 2005, 33(1):115.
    [21] LI AP. Human hepatocytes: Isolation, cryopreservation and applications in drug development.[J] Chem Biol Interact, 2007 Jan 9; [Epub ahead of print]
    [22] CERVENKOVA K, BELEJOVA M, VESELY J, et al. Cell suspensions, cell culture, and tissue slices ? important metabolic in vitro systems[J]. Biomed Pap Med Fac Univ Palacky Olomouc Czech Repub, 2001, 145(2):57.
    [23] DEKANTER R, OLINGA P, DEJAGER M H. Organ slices as invitro test system for drug mertabolism in human liver,lung and kidney[J]. Toxicolin Vitro, 1999, 13(45):737.
    [24] VICKERS A E. Use of human organ slices to evaluate the biotransformation and drug-induced side-effects of pharmaceuticals[J]. Cell Biol Toxicol, 1994, 10(5-6):407
    [25] Wang BO, SEMPLE H A. Inhibition of metoprolol metabolism by amino acids in perfused rat livers[J]. Drug Metab Dispos, 1997, 25(3):287.
    [26] LAU Y Y, OKOCHI H, HUANG Y, et al. Pharmacokinetics of atorvastatin and its hydroxy metabolites in rats and the effects of concomitant rifampicin single doses: relevance of first-pass effect from hepatic uptake transporters, and intestinal and hepatic metabolism[J]. Drug Metab Dispos, 2006, 34(7):1175
    [27] LUCAS A N, NATION R L, MILNE R W, et al. The effects of phytoestrogenic isoflavones on the formation and disposition of paracetamol sulfate in the isolated perfused rat liver[J]. J Pharm Pharmacol, 2003, 55(5):639

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700