闵可夫斯基空间中的时向极值曲面若干问题的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
在此博士论文中,我们主要关心弦理论及粒子物理中的一个重要模型-闵可夫斯基空间中的时向极值曲面的一些分析问题.对于闵可夫斯基空间中时向极值曲面方程初值问题、混合初边值问题的经典解的整体存在唯一性及整体解的渐近性态进行了研究。
     由于物理及力学领域的需要及其它应用领域的相关研究的发展,很多时候所考察的问题最终归结为一个数学问题来解决。闵可夫斯基空间的时向极值曲面作为弦理论及粒子物理中的一个重要而非平凡的模型,在数学上对其进行相应的研究就显得较为重要。它还在流体力学、电磁场理论及黑洞理论中起一定的作用。闵可夫斯基空间中的时向极值曲面能够很好的刻画闵可夫斯基空间中的相对论弦的运动,这就更使得我们对该方程进行系统的研究。时向极值曲面方程可以通过其面积泛函的Euler-Lagrange方程得到,为一维守恒律方程组的形式。所以我们用考察拟线性双曲组的相关方法,对闵可夫斯基空间R~(1+(1+n))中的时向极值曲面方程的相关问题(初值问题(Cauchy problem)、混合初边值问题(Mixed initial boundary value problem,包括第一类(Dirichlet problem)、第二类(Neumann problem)及Robin初边值问题))的整体经典解的存在唯一性及经典解的渐近性态给出了一些有意义的结论。另一方面,闵可夫斯基空间中高维时向极值曲面的研究在几何及物理意义上的理解相应理论也起着重要的意义。
     全文的结构安排如下:
     第一章概要地介绍了闵可夫斯基空间的极值曲面方程有关问题的历史发展和研究进展,前人在处理与本文相关的一些偏微分方程(拟线性双曲型方程组)方面的相关工作及研究整体经典解及解的渐近性态的方法。进一步我们对闵可夫斯基空间中时向极值曲面方程相关问题的提法,处理上的大体思路给出简要说明。同时还简单陈述了本文的主要结果。
     第二章在具有线性退化特征的对角型的拟线性双曲型方程组初值问题整体经典解存在的基础上,考虑其经典解的渐近性态问题。在经典解整体存在的基础上,在初值及其一阶导数的L~1∩L~∞模有界假设条件下,我们证明了,当时间t趋向于正无穷大时,整体经典解趋向于一组C~1行波解的线性组合。作为该结论的一个重要的应用,我们将该结论应用到闵可夫斯基空间中的时向极值曲面方程的相应问题上,得到了整体经典解的存在唯一性及经典解的渐近性态。
     第三章研究了闵可夫斯基空间R~(1+(1+n))中的时向极值曲面方程在半无界区域内的混合初边值问题。在初值有界且边值适当小的假设条件下,我们得到该方程在半无界区域内混合初边值问题的C~2经典解的整体存在性及唯一性。进一步在整体经典解存在的基础上,在边值适当的假设条件下,我们给出了,当时间t趋向于正无穷大时,解的一阶导数趋向于一组C~1行波解。从几何角度上看,这意味着该极值曲面趋向于一个广义的圆柱;同时,该行波解也为极值曲面方程的精确解。
     在第三章的基础上,我们继续研究了闵可夫斯基空间R~(1+(1+n))中的时向极值曲面方程在区域R~+×[0,1]上的混合初边值问题。在边值具有某种意义下小且衰减的假设条件下,我们得到了该问题经典解的整体存在唯一性。详细内容见本文第四章。
     前面四章考虑闵可夫斯基空间R~(1+(1+n))中的二维时向极值曲面的相关问题。本文第五章中,我们考虑闵可夫斯基空间中的高维时向极值曲面的初值问题,高维时向极值曲面方程对应于一个非线性波动方程,且其非齐次项满足零条件。当初始值充分接近任意的时向平面a_0t+a_1x_1+…+a_nx_n+b=0时,我们得到了相应的非线性波动方程的整体光滑解。
The present Ph.D dissertation is devoted to the study of time-like extremal surface in Minkowski space.We prove the global existence of classical solutions of Cauchy problem and the mixed initial-boundary value problem for equation of time-like extremal surface and gets the asymptotic behavior of global classical solutions.
     In the study of physics and other application areas,mosdy the problem can be reduced to the mathematical problem.As an important and non-trivial model in string theory and particle physics,extremal surface in Minkowski space is also an important investigation topic in mathematics.It also plays an important role in fluids mechanics, electromagnetism as well as in the theory of black hole.Extremal surface equation is Euler-Lagrange equation of its area functional,which is a first order system of conservation laws.Using the characteristic methods of quasilinear hyperbolic systems,we consider the related problem of the equation of time-like extremal surface in Minkowski space R~(1+(1+n)),i.e.Cauchy problem,the mixed initial-boundary value problem(including Dirichelt boundary problem,Neumann boundary problem and Robin boundary problem) and get global classical solutions and asymptotic behavior with more interesting phenomena. It also plays a unique role in our understanding in geometry and physics by studying high dimensional time-like extremal surface in Minkowski space.
     The dissertation is organized as follows.
     Chapter One is an introduction.It is devoted to introducing physical background and previous mathematical research works on extremal surface,especially important achievements by other scholars who treated similar problems in quasilinear hyperbolic systems or global classical solutions and its asymptotic behavior related to those of ours that are presented in the following chapters.The main problems we concerned,main results we obtained,and methods we utilized in this Ph.D.dissertation are also illustrated with com- ments.
     In Chapter Two we concerned with the asymptotic behaviour of global classical solutions of diagonalizable quasilinear hyperbolic systems with linearly degenerate characteristic fields.Based on the existence results of global classical solutions,we prove that when t tends to infinity,the solution approaches a combination of C~1 travelling wave solutions,provided that L~1∩L~∞norm of the initial data as well as its derivative are bounded.Application is given to equation of the time-like extremal surface in Minkowski space.
     In Chapter Three we investigate the mixed initial-boundary value problem for the equation of time-like extremal surface in Minkowski space R~(1+(1+n)) in the first quadrant. Under the assumptions that the initial data are bounded and the boundary data are small, we prove the global existence and uniqueness of the C~2 solutions of the Dirichlet problem and Neumann problem for this kind of equation.Based on the existence results on global classical solutions,we show that:as t tends to infinity,the first order derivatives of the solutions approach C~1 travelling wave solution,provided that L~1∩L~∞norm of the first and second order derivatives of the initial and boundary data are bounded.In which we can proved that geometrically this extremal surface is a generalized cylinder.Moreover, The travelling wave solutions are the exact solutions of system under consideration.This theory can also be used to study the equation of Born-Infeld type.e.g.the equation of relativistic strings moving.
     In Chapter Four we study the mixed initial-boundary value problem for the equation of time-like extremal surfaces in Minkowski space R~(1+(1+n)) on the strip R~+×[0,1].Under the assumptions that the boundary data are small and decaying,we get the global existence and uniqueness of classical solutions.
     In Chapter Five we show that the nonlinear wave equation corresponding to the high dimensional time-like extremal surface equation in Minkowski space have global smooth solutions for initial data sufficiently close to the arbitrary time-like plane a_0t+a_1x_1+...+ a_nx_n+b=0.
引文
[1]李大潜,秦铁虎,物理学与偏微分方程(上册)[M],北京:高等教育出版社,1997.
    [2]李大潜,秦铁虎,物理学与偏微分方程(下册)[M],北京:高等教育出版社,2000.
    [3]谷超豪,李大潜等,数学物理方程(第二版)[M],北京:高等教育出版社,2002.
    [4]周忆,非线性波动方程,讲义,2006.
    [5]P.Allen,L.Andersson and J.Isenberg,Timelike minimal submanifolds of general codimendion in Minkowski space time,J.Hyperbolic Differ.Equ.Vol 3,No.4,(2006),691-700.
    [6]S,Alinhac,The null condition for quasiliner wave equations in two space dimensions I,Invent.Math,145(2001),pp.597-618.
    [7]S,Alinhac,Blowup for nonlinear hyperbolic equations,Prog.Nonlinear Diff.Equations and Appl,Birkh(a|¨)user,Boston(1995).
    [8]S,Alinhac,Geometric analysis of hyperbolic equations an introduction,Summerschool meterial in Fudan university(2009).
    [9]A.Bressan,Contractive metrics for nonlinear hyperbolic system,Indiana University Mathamatics Journal,37(1988),pp,409-420.
    [10]J.C.Brunelli,Ashok.Das A lax representation for the Born-Infeld equation,Physics Letter B,426(1998),pp.57-63.
    [11]M.Born and L.Infeld,Foundation of the new field theory,Proc.R.Soc.London,Ser.A 144,425(1934).
    [12]S.Brendle,Hypersurfaces in Minkowski space with vanishing mean curvature,Comm.Pure Appl.Math,Vol.LV(2002),pp.1249-1279.
    [13]B.M.Barbashov,V.V.Nesterenko,A.M.Chervyakov,General solutions of nonlinear equations in the geometric theory of the relativistic string,Commun.Math.Phys,84(1982),pp.471-481.
    [14]B.M.Barbashov,V.V.Nesterenko,A.M.Chervyakov,Infinite relativistic string with a point-like mass,Lett.Math.Phys,2(1978),pp.291-295.
    [15]B.M.Barbashov,Integrals of periodic motion for the classical equations of a relativistic string with masses at its ends,Nuclear.Phys B,57(1997),pp.284-287.
    [16]Y.Brenier,Some geometric PDEs related to hydrodynamics and electrodynamics,Proceedings of ICM,3(2002),pp.761-772.
    [17]Y.Brenier,Lecture Notes,Summer School on Mass Transportation Problems in Kinetic Theory and Hydrodynamics,Ponta Delgada,Azores,4-9 September,(2000).
    [18]D.Chae and H.Huh,Global existence for small initial data in the Born Infeld equations[J].J.Math.Phys.44 2004,no.12,6132-6139.
    [19]D.Christodoulou,Global solutions of nonlinear hyperbolic equations for small initial data,Comm.Pure Appl.Math,39(1986),267-282.
    [20]E.Calabi,Examples of bernstein problems for some nonlinear equations,In:Global Analysis (Proc.Sympos.Pure Math,Vol.XIV,Brekeley,Calf,(1968)).Providence,RI:Amer.Math.Soc,(1970),pp.223-230.
    [21]G.Q.Chen,Propagation and cancellation of oscillations for hyperbolic systems of conservation laws,Comm.Pure Appl.Math 44(1991).pp.129-139.
    [22]S.Y.Cheng and S.T.Yau,Maximal space-like hypersurfaces in the Lorentz-Minkowski spaces,Ann.of Math,104(1976),pp.407-419.
    [23]W.R.Dai and D.X.Kong,Asymptotic behavior of global classical solutions of general qusilinear hyperbolic systems with weakly linearly degeneracy,Chinese Ann.Math.Ser.27B (2006),no.3,pp.263-286.
    [24]W.R.Dai and D.X.Kong,Global existence and asymptotic behavior of classical solutions of qusilinear hyperbolic systems with linearly degenerate characteristic fields,J.Differential Equations 235(2007),no.1,pp.127-165.
    [25]W.N.E AND R.V.KOHN,The initial-value problem for Measure-valued solutions of a canonical 2×2 system with linearly degenerate fields,Commnnications on Pure and Applied Mathematics.Vol.XLIV(1991),pp.981-1000.
    [26]G.W.Gibbons,Born-Infeld particles and Dirichlet P-branes,Nucl.Phys.B 514,XLIV (1998),pp.603-639.
    [27]C.H.Gu,Extremal surfaces of mixed type in Minkowski space R~(n+1),In:Variational methods (Paris,1988),Progr.Nonlinear Differential Equations Appl.4,Boston,MA:Birkhauser Boston,(1990),pp.283-293.
    [28]C.H.Gu,Complete extremal surfaces of mixed type in 3-dimensional Minkowski space,Chinese Ann.Math,15B(1994),pp.385-400.
    [29]C.H.Gu,A class of boundary problems for extremal surfaces of mixed type in Minkowski 3-space,J.Reine Angew.Math.385(1988),pp.195-202.
    [30]C.H.Gu,,A global study of extremal surfaces in 3-dimensional Minkowski space,Differential geometry and differential equations(Shanghai,1985),pp.26-33,Lecture Notes in Math.,1255,Springer,Berlin,(1987).
    [31]C.H.Gu,The extremal surfaces in the 3-dimensional Minkowski space,Acta Math.Sinica (N.S.) 1(1985),no.2,pp.173-180.
    [32]J.M.Greenberg and T.T.Li,The effect of boundary damping for the quasilinear wave equation,J.Diff.Equations,52(1984),pp.66-75.
    [33]J.Hoppe,Some classical solutions of relativistic membrane equations in 4-space-time dimensions,Phys.Lett.B 329,(1994),pp.10-14.
    [34]L,H(o|¨)mander,Lecture on nonlinear hyperbolic equations,Springer-verlag,Berlin 1997.
    [35]D.X.Kong,Cauchy problem for quasilinear hyperbolic systems[M].SMJ Memoirs,vol.6.Tokyo:The Mathematical Society of Japan.2000.
    [36]S.J.Huang and D.X.Kong,Equations for the motion of relativistic torus in the Minkowski space R~(1+n).J.Math.Phys,48 083510.(2007).
    [37]D.X.Kong and T.Yang,Asymptotic behavior of global classical solutions of qusilinear hyperbolic systems[J].Comm in Part Diff Eqs.Vol.28(2003),pp.1203-1220.
    [38]D.X.Kong,Q.Y.Sun and Y.Zhou,The equation for time-like extremal surfaces in Minkowski space R~(2+n),J.Math.phys.47,013503(2006).
    [39]D.X.Kong,Q.Y.Sun and Y.Zhou,Erratum:"The equation for time-like extremal surfaces in Minkowski space R~(2+n,,)[J.Math.Phys.47(2006),no.1,013503,16pp.;MR2201800],J.Math.Phys.47 no.6,069901(2006).
    [40]D.X.Kong and Q.Zhang,Solutions formula and time periodicity for the motion of relativistic strings moving in the Minkowski space R~(1+n),Preprint.
    [41]D.X.Kong,Q.Zhang and Q.Zhou,The dynamics of relativistic strings moving in the Minkowski space R~(1+n),Commun.Math.Phys.269(2007),no,1,pp.153-174.
    [42]S,Klainerman,The null condition and global existence to nonlinear wave equations,Lect.Appl.Math,23(1986),pp.293-326.
    [43]P.D.Lax,Hyperbolic systems of conservation laws Ⅱ,Communications on Pure and Applied Mathematics,10(1957),pp.537-566.
    [44]T.T.Li,Global classical solutions for qusilinear hyperbolic systems[M].copublished in the United States with John Wiley & Sons,1994.
    [45]T.T.Li and Y.J.Peng,The mixed initial-boundary value problem for reducible qusilinear hyperbolic systems with linearly degenerate characteristics,Nonl.Anal.52(2003),pp.573-583.
    [46]T.T.Li and Y.J.Peng,Gloabal C~1 solution to the initial-boundary value problem for diagonal hyperbolic systems with linearly degenerate characteristics,J.Partial Diff.Eqs.16(2003),pp.8-17.
    [47]T.T.Li and Y.J.Peng,Cauchy problem for weakly linearly degenerate hyperbolic systems in diagonal form,Nonlinear Anal.,55(2003),pp.937-949.
    [48] T.T. Li and L.B. Wang, Global classical solutions to a kind of mixed initial-boundary value problem for qusilinear hyperbolic systems, Discrete Contin. Dyn. Syst. 12 (2005), pp. 59-78.
    
    [49] T.T. Li and W. C. Yu, Boundary value problems for quasilinear hyperbolic systems, Duke University Mathematics Series, V. Duke University, Mathematics Department, Durham, NC, 1985.
    
    [50] T.T. Li, Y. Zhou and D.X. Kong, Global classical solutions for general qusilinear hyperbolic systems with decay initial data[J]. Nonl.Anal. 28:8 (1997), pp. 1299-1322.
    
    [51] T.T. Li, Y. Zhou and D.X. Kong, Weak linear degeneracy and global classical solutions for general qusilinear hyperbolic systems[J]. Comm. Partial Differential Equations. 19 (1994), pp. 1263-1317.
    
    [52] H. Lindblad. A remark on global existence for small initial data of the minimal surface equation in Minkowskian space time[J]. Proc. Am. Math. Soc. 132 (2004), pp. 1095-1102.
    
    [53] J.L. Liu and Y. Zhou, Asymptotic behavior of global classical solutions of diagonalizable qusilinear hyperbolic systems, Math. Meth. Appl. Sci. 30 (2007),pp. 479-500.
    
    [54] J.L. Liu and Y. Zhou, Initial-boundary value problem for the equation of time-like extremal surfaces in Minkowski space, J. Math. Phys. 49 (2008), no. 4, 043507, doi: 10.1063/1.2890393.
    
    [55] J.L. Liu and Y. Zhou, The initial-boundary value problem on a strip for the equation of time-like extremal surfaces in Minkowski space, Discrete Contin. Dyn. Syst. 1-2 (2009), pp. 381-397.
    
    [56] Metin Arik, Fahrunisa Neyzi, Yavuz Nutku, P. J. Olver and John M. Verosky, Multi-Hamiltonian structure of the Born-Infeld equation, J. Math. Phys. 30 (1989), pp. 1338-1344.
    
    [57] T. Milnor, Entire timelike minimal surfaces in E3, Michigan Math, 1 (1990), pp. 163-177.
    
    [58] Y. Nutku, On a new class of completely integrable nonlinear wave equations. II. Multi-Hamiltonian structure, J. Math. Phys, 28 (1987), pp. 2579-2585.
    [59] P. J. Olver, Hamiltionian structures for systems of hyperbolic conservation laws, J. Math. Phys, 29 (1988), pp. 1610-1619.
    
    [60] T.H. Qin, Symmetrizing nonlinear elastodynamic system, J.Elasticity, 50 1998, pp. 245-252.
    
    [61] T.H. Qin, Global smooth solutions of dissipative boundary value problems for first order quasilinear hyperbolic systems, Chinese Ann. Math. 6B 1985, pp. 289-298.
    
    [62] D. Serre, Large oscillations in hyperbolic systems of conservation laws, Rend. Sem. Mat. Univ. Pol. Torino Fascicolo Speciale, (1988), pp. 185-201.
    
    [63] D. Serre, Systems of Conservation Laws 2:Geometric Structers, Oscillations,and Initial Boundary Value Pwblems[M]. Canmbridge University press,Cambridge, 2000.
    
    [64] P.X. Wu, Global classical solutions to the Cauchy problem for general first order inho-mogeneous quasi-linear hyperbolic system (in Chinese), Chin. Ann. Math., 27A(1), 2006, 93-108.
    
    [65] J.G. Zhang, Asymptotic behavior of global classical solutions to a kind of mixed initial-boundary value problem for quasilinear hyperbolic systems J. Partial Differential Equations 20 (2007), no.2, 114-130.
    
    [66] Y. Zhou, Global classical solutions to qusilinear hyperbolic systems with weak linear degeneracy. Chin. Ann. Math. 25B:1 2004, 37-56.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700