裙带菜减数分裂相关基因UpMND1的克隆、鉴定与功能分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本研究在实验室内进行裙带菜配子体的发育诱导,筛选得到了配子体短时间内由营养生长向生殖生长阶段转换的适宜条件,结果显示在光强60~70μmol/m2·s,光周期14:10h(L:D),温度18±1℃培养条件下的配子体,发育诱导10d左右时间精子和卵即可大量释放。DAPI染色法是裙带菜配子体细胞核染色的一种有效方法,染色后细胞核清晰,背景干扰小,是配子体细胞分裂过程研究的有效技术。
     采用抑制消减杂交(SSH)技术构建了裙带菜配子体发育诱导后上调表达基因的消减cDNA文库,并对文库中的相关基因信息进行初步分析。测序结果共得到可利用的EST片段110条,占总测序样品的91.67%。去除冗余部分后得到共106条非冗余序列(NRS),非冗余序列中全部为独立EST片段(Singleton)。结合软件分析与比对结果可知,片段长度集中在100-2000bp之间,平均长度612bp。与其他物种相关的已知功能基因的氨基酸序列相似度均大于20%,主要集中在20-60%之间,部分序列无对比结果。参与比对的EST片段按其功能注释可分为以下几大类:细胞生长与发育相关18条,占16.70%;代谢相关11条,占10.00%;光合作用与光诱导相关4条,占3.60%;信号转导相关5条,占4.50%;其他功能2条,占1.80%;未知功能70条,占63.40%。密码子偏好性计算结果显示裙带菜密码子第三位碱基G和C的使用偏好无显著差别,GC使用总频率为53.05%。所分析的序列中裙带菜终止密码子的使用偏好TGA。对比显示,红藻第三位碱基对GC的使用频率较大,而褐藻和绿藻较低。
     通过对文库中相关EST片段的信息分析,利用基因工程手段,分离得到与减数分裂相关的裙带菜UpMND1基因。该基因全长868bp,其中编码区开放阅读框(ORF)序列长度609bp,编码202个氨基酸,序列分析表明该基因具有Mnd1蛋白的保守结构域。UpMND1基因在编码区具有4个内含子,将其分离成5个外显子部分。对该基因编码的氨基酸序列分子量、理论等电点、信号肽序列、跨膜结构、磷酸化位点、激酶磷酸化位点、亚细胞定位和二级结构的预测,以及系统进化分析的结果都进一步证实所获得的序列为裙带菜UpMND1基因。该基因编码的氨基酸序列与褐藻同源基因氨基酸序列的相似度较高,特别是与水云的序列一致性最高达到72%,进化关系最近。该序列提交到Genebank后获得登录号JF357961。
     利用实时荧光定量PCR技术分析显示,UpMND1基因在配子体发育诱导的不同时期以及组织表达特异性上存在差异。在裙带菜假根、茎、叶片、孢子叶等各组织器官中表达较为广泛,但在生殖器官孢子叶中相对表达量最高。配子体发育诱导初期(发育诱导2d)和精子、卵形成时期(发育诱导8d)相对表达量也会显著提高。
     运用农杆菌介导的基因转化法和PEG介导法分别获得了整合UpMND1基因的野生型拟南芥过表达植株、突变体拟南芥互补表达植株和酵母突变体互补表达菌株,并对拟南芥花粉母细胞减数分裂过程中染色体进行了DAPI染色。结果显示,在拟南芥植株体内过表达UpMND1基因后,染色体联会和重组过程不能够顺利完成,染色体行为紊乱,形成的小孢子中染色体分配失去应有的规律,最终导致花粉育性下降,转化植株的表型与Atmnd1突变体植株表型相似。在Atmnd1突变体植株体内表达UpMND1基因后,染色体联会和重组过程能够顺利完成,染色体行为恢复到正常减数分裂模式,形成的小孢子中染色体分配均匀,最终形成的花粉可育,植株的表型与野生型拟南芥植株相似。证实该基因功能与减数分裂过程中染色体联会和重组相关。转UpMND1基因酵母的生长曲线与Scmnd1突变体和转化空质粒的酵母生长曲线没有显著的区别,没有影响酵母有丝分裂过程。UpMND1基因并不参与到普通营养生长的配子体细胞有丝分裂调控,但在裙带菜配子体生殖细胞(精子和卵)形成过程和减数分裂过程中会产生影响。MND1基因的功能具有进化的保守性,在高等植物拟南芥(显花植物)和在低等的海藻裙带菜(隐花植物)中功能都是相似的。
     利用高效热不对称交错PCR(hiTAIL-PCR)方法分离得到了UpMND1基因上游638bp启动子序列。利用在线分析程序预测,该启动子区域包含CAAT-Box和TATA-Box等普通真核生物启动子共有的核心元件,并具有3个光敏感型顺式作用元件GATA-motif、GA-motif和G-Box,2个激素敏感型顺式作用元件TGA-element和ABRE,1个分生组织特异性激活元件CCGTCC-Box。用5’缺失后的UpMND1启动子序列调控报告基因在拟南芥原生质体细胞中瞬时表达,根据检测的报告基因表达活性,检验不同的启动子顺式作用元件对下游基因表达的影响。结果表明,启动子的-296--166bp区域顺式作用元件对下游基因的表达有促进作用,而-621~-296bp区域启动子序列顺式作用元件对下游基因的表达起到抑制作用。
The suitable culture conditions for the conversion from vegetative growth to reproductive growth of the gametophytes in short time were screened in this investigation. The results showed that a large number of sperms and eggs can be released from the gametophytes about 10 days under the conditions that the light intensity was 60~70μmol/m2·s, the photoperiod was 14:10 h (L:D) and temperature was 18±1℃. Furthermore, DAPI staining was employed for gametophytes nuclei observation in the experiment and the clear chromosomes and weak background could be obtained under microscope using this method.
     The suppression subtractive hybridization cDNA library of up-regulated genes from U.pinnatifida gametophytes under the development induction was constructed.110 ESTs were obtained after sequencing the positive clones, and accounted for 91.67% of the total sequencing samples. Among these ESTs,106 fragments were non-redundant sequences. PCR analysis indicated that the length of the ESTs were ranged from 100 to 2000bp and the average length was 612bp. Based on the functional similarity with amino acids coded by homologous genes in algae and higher plants, the ESTs could be divided into several functional groups:cell growth and development (accounting for 16.70%), metabolism (accounting for 10.00%), photosynthesis and photo-induction (accounting for 3.60%), signal transduction (accounting for 4.50%) and other functions (accounting for 1.80%).70 sequences with unknown function or no comparative result accounted for 63.40% of the total ESTs. The similarity values distributed between 20% to 60% and the deduced amino acid sequences of the ESTs have higher similarity with the sequences of algae and higher plants. It was shown that the G and C usage in the third position of the codons have no significant difference in U. pinnatifida and the GC frequency of codon usage was 53.05%. The stop codon usage preferred to TGA for U. pinnatifida. The GC usage frequency in the third codon position of red algae was higher than that in brown and green algae.
     A homologous sequence of meiosis-related gene in U. pinnatifida was cloned with the full length cDNA of 868bp from the library by using of RACE method. The length of open reading frame is 609bp, encoding 202 amino acids that with conserved Mndl protein domain. 4 introns and 5 exons were found in the coding region of this gene. The results of the prediction for molecular weight, theoretical isoelectric point, signal peptide, transmembrane structure, phosphorylation sites, kinase phosphorylation sites, subcellular localization and secondary structure, as well as phylogenetic analysis indicated that the isolated sequence was MND1 gene of U. pinnati/ida (UpMND1). The amino acid sequence of UpMND1 gene has a high similarity to the genes of other brown algae, especially to Ectocarpus siliculosus with the similarity up to 72%. The UpMND1 gene sequence has been submitted to the Genebank with the accession number JF357961.
     The real-time quantitative PCR results demonstrated that the relative expression abundance of UpMNDl gene were different in all developmental stages and different tissues. It was expressed ubiquitously in many organs, such as rhizoid, stem, leave and sporophyll. However, the highest expression was detected in the sporophyll, which was a reproductive organ. The relative expression level increased significantly during the early period of gametophyte development and also in the period of sperms and eggs formation.
     In order to investigate biological functions of UpMND1 gene, the expression vectors of this gene were constructed and transformed into wild and mnd1 mutant plants of A. thaliana and mndl mutant of Saccharomyces cerevisiae by the method of Agrobacterium-mediated and PEG-mediated transformation, respectively. Here the phenotypes and chromosomes stained by DAPI during meiosis of wild type, overexpression type, complement expression type and mutant type of A. thaliana were observed to analyze the role of the UpMNDl gene. The growth curve of transgenic yeast was plotted and compared with the mutant. The data revealed that the overexpression of UpMNDl gene in A. thaliana in vivo resulted in the synapsis and recombination of chromosomes cannot be successfully completed and the chromosome behavior disordered in the process. As well as the pollen fertility decreased in this state. The chromosome behavior in male gametes of A. thaliana that the UpMND1 gene overexpressed was similar to the mutant plant. Similar to the wild plants, the synapsis and recombination of the chromosomes in Atmndl mutants that the UpMNDl gene complementary expressed could be successfully completed and the chromosome behavior returned to normal level. The pollen fertility also returned to normal level in these plants. It was indicated that the fuction of the UpMND1 gene has correlation with synapsis and recombination in the meiosis of U. pinnatifida. The growth curve of transgenic yeast mutant was not significantly different from the controls, showing that the UpMNDl gene was not concerned with the regulation of normal mitosis. However, this gene played regulatory function during meiosis and the formation of reproductive cells of U. pinnatifida. The evolution of MND1 gene function was relatively conservative both in the higher plants A.thaliana (flowering plants) and the algae U. pinnatifida (cryptogamic plants).
     A 638bp promoter sequence on upstream of UpMNDl gene was cloned by high thermal asymmetric interlaced PCR (hiTAIL-PCR) method. The results that analyzed using online programs showed that the promoter contained CAAT-Box, TATA-Box and other cis-acting elements, for example, three light-sensitive cis-acting elements GATA-motif, GA-motif and the G-Box, two auxin-sensitive cis-acting elements TGA-element and ABRE and a meristem specific activation component CCGTCC-Box. The expression levels of reporter gene in transient expression system of A.thaliana protoplast cells controlled by the promoter with different length of 5 'deletion sequences were different. The results suggested that the distinguishing cis-acting elements could enhance or suppress gene expression in the regulation. The cis-acting elements in -296~-166bp region of the promoter showed a promoting effect on the downstream gene expression, and the cis-acting elements in -621~-296bp region could inhibit the expression of downstream gene.
引文
谷雷.植物内含子进化模式研究[D].福建农林大学硕士学位论文.2007.
    李小庆,景志忠.抑制性消减杂交技术的应用[J].生物技术通报.2009(05):46-50.
    李常健,林清华,张楚富.高等植物谷氨酰胺合成酶研究进展[J].生物学杂志,2001,18(4):1-3.
    李世国,佟少明,侯和胜.裙带菜配子体RNA提取的比较研究[J].海洋科学.2011,35(4):21-25.
    李世国,扬帆,吴倩倩,等.孔石莼在干出胁迫下上调表达基因消减文库的构建及分析[J].海洋渔业.2011,33(2):172-181.
    刘春霞,何群燕,金危危.植物减数分裂中的染色体配对,联会和重组研究进展[J].遗传,2010,32(12):1223-1231.
    刘建新.光对裙带菜排卵的干扰及单克隆扩增,育苗条件优化[D].中国科学院海洋研究所硕士学位论文.2001.
    韩娜,葛荣朝,赵宝存,等.植物谷氨酰胺合成酶研究进展[J].河北师范大学学报,2004,28(4):407-410.
    侯和胜.裙带菜配子形成期特异mRNA的分离鉴定及其相关基因的cDNA克隆[D].中国科学院海洋研究所博十学位论文.1998.
    胡适宜.被子植物生殖生物学[M].北京.高等教育出版社.2005:29-131.
    黄百渠,曾宪录细胞生物学[M].北京.高等教育出版社.2010:192-196.
    陆广琴,欧阳珑玲,周志刚.海带雄配子体抑制消减cDNA文厍的生物信息学分析[J].中国水产科学,2009,16(02):221-229.
    潘卫东,吕玉民,张贵兴,等.莱茵衣藻叶绿体atpA启动子在杜氏盐藻中转录活性的检测[J].郑州大学学报(医学版),2004,39(1):35-38.
    逢少军.日光照时数对裙带菜配子体发育的影响[J].海洋与湖沼.1996,27(3):302-307.
    钱树本,刘东艳,孔军.海藻学[M].青岛.中国海洋大学出版社.2005:444-446.
    秦松,张健,李文斌,等.用基因枪将GUS基因导入褐藻细胞中表达[J].海洋与湖沼,1994,25(4):353-356
    乔坤,李世国,李洪艳,侯和胜.大连海域养殖裙带菜遗传多样性的ISSR分析[J1.海洋渔业.2010,32(2):113-119.
    尚书海带配子体克隆的扩增培养及多样性分析[D].中国海洋大学硕士学位论文,2008.
    史西志,毕燕会,周志刚.海带雄性配子体差异表达基因片段的克隆及筛选[J].水产学报,2005,29(05):84-87.
    宋雅男.葡萄VvERF3b基因和VvPDF1.2基因的启动子功能分析[D].辽宁师范大学硕十学位论文2010.
    唐建新,陈卓,胡晗华.利用抑制差减杂交技术分离三角褐指藻在缺氮条件下上调表达的基因[J].遗传.2009,31(08):865-870.
    王海庆,杨毅,刘国琴.衣藻肌动蛋白-绿色荧光蛋白融合基因在酵母细胞中的表达[J].农业生物技术学报,2003,11(4):347-350.
    王丽.条斑紫菜性别差异基因的筛选和初步分析[D].苏州:苏州大学,2008,
    王丽,沈颂东,李艳燕,等.坛紫菜孢子体和配子体世代之间的SSH分析[J].海洋学报(中文版),2008,30(5) 171-176.
    王丽梅,李世国,柴雨,高杉,宋广军.鼠尾藻幼苗的室内培养及有性生殖同步化[J].水产学报,2011,35(3):389-398.
    王芳平,李宏.密码对的使用与基因组进化[J].生物物理学报,2007,23(03):176-184.
    王台,丁兆军.减数分裂及其基因研究进展[J].科学通报.2002,47(4):241-248.
    闫龙凤,杨青川,韩建国,等.植物半胱氨酸蛋白酶研究进展[J].草业学报,2005,14(5):11-19.
    杨弘远.植物生殖[M].北京.科学出版社.2010:27-29.
    曾呈奎.经济海藻种质种苗生物学[M].济南.山东科学技术出版社.1999:26-31.
    曾呈奎.中国黄渤海海藻[M].北京.科学出版社.2009:357-358.
    翟中和,王喜忠,丁明孝.细胞生物学[M].北京.高等教育出版社.2000:385-394.
    张栩,李大鹏,谭天伟.光质对裙带菜配子体发育的影响[J].海洋科学.2006,30(10):44-47.
    张学成,郭楠,宋晓金.藻类基因启动子结构与功能研究进展[J].中国海洋大学学报,2008,38(3):404-412.
    赵耀,刘汉梅,顾勇,等.玉米WAXY基因密码子偏好性分析[J].玉米科学,2008,16(02):16-21.
    Armstrong S J, Caryl A P, Jones G H, et al. Asyl, a protein required for meiotic chromosome synapsis, localizes to axis-associated chromatin in Arabidopsis and Brassica[J]. J Cell Sci,2002,115:3645-3655.
    Alexander M P. Differential staining of aborted and nonaborted pollen[J]. Stain Technol,1969,41:117-122.
    Alvarez-Buylla E R, Benitez M, Corvera-Poire A, et al. Flower development[M]. The Arabidopsis Book.2010.p28.
    Azumi Y, Liu D, Zhao D, Li, et al. Homolog interaction during meiotic prophase I in Arabidopsis requires the SOLO DANCERS gene encoding a novel cyclinlike protein[J]. EMBO J,2002,21:3081-3095.
    Bai X, Peirson B N, Dong F, et al. Isolation and characterization of SYN1, a RAD21-like gene essential for meiosis in Arabidopsis [J]. Plant CeII,1999,11:417-430.
    Bailis J M, Roeder G S. Synaptonemal complex morphogenesis and sister-chromatid cohesion require Mekl-dependent phosphorylation of a meiotic chromosomal protein[J].Genes Dev,1998, 12:3551-3563.
    Bhatt A M, Lister C, Page T, et al. The DIF1 gene of Arabidopsis is required for meiotic chromosome segregation and belongs to the REC8/RAD21 cohesin gene family[J]. Plant J,1999,19:463-472.
    Bhatt A M, Canales C and Dickinson H G. Plant meiosis:the means to 1N[J]. Trends Plant Sci,2001,6 (3):114-121.
    Boden S A, Langridge P, Spangenberg G, et al. TaASYl promotes homologous chromosome interactions and is affected by deletion of Ph1[J]. Plant J,2009,57:487-497.
    Buchanan B B, Gruissem W and Jones R L. Biochemistry and molecular biology of plants[M]. Am Soc Physiol,2000:988-1043.
    Cai X, Dong F, Edelmann R E, et al. The Arabidopsis SYN1 cohesin protein is required for sister chromatid arm cohesion and homologous chromosome pairing[J]. J Cell Sci,2003,116:2999-3007.
    Chang F, Wang Y X, Wang S S, et al. Molecular control of microsporogenesis in Arabidopsis[J]. Curr Opin Plant Biol,2010,14:1-8.
    Chang Y, Gong L, Yuan W, et al. Replication proteinA (RPAla) is required for meiotic and somatic DNA repair but is dispensable for DNA replication and homologous recombination in rice[J]. Plant Physiol, 2009,151:2162-2173.
    Chen C, Zhang W, Timofejeva L, et al. The Arabidopsis ROCK-N-ROLLERS gene encodes a homolog of the yeast ATP-dependent DNA helicase MER3 and is required for normal meiotic crossover formation[J]. Plant J,2005,43:321-334.
    Chen Y K, Leng C H, Olivares H, et al. Heterodimeric complexes of Hop2 and Mnd1 function with Dmcl to promote meiotic homolog juxtaposition and strand assimilation[J].Proc Natl Acad Sci,2004, 101:10572-10577.
    Chelysheva L, Diallo S, Vezon D, et al. AtREC8 and AtSCC3 are essential to the monopolar orientation of the kinetochores during meiosis[J]. J Cell Sci,2005,118:4621-4632.
    Chelysheva L, Gendrot G, Vezon D, et al. Zip4/Spo22 is required for class I CO formation but not for synapsis completion in Arabidopsis thaliana[J].PLoS Genet,2007,3(5):0802-0813.
    Chi P, Filippo J S, Sehorn M, et al. Bipartite stimulatory action of the Hop2-Mndl complex on the Rad51 recombinase[J]. Gene Dev,2007,21:1747-1757.
    Conesa A, Gotz S, Garcia-Gomez J M, et al. Blast2GO:a universal tool for annotation, visualization and analysis in functional genomics research[J]. Bioinformatics,2005,21(18):3674-3676.
    Cone E C and Meyerowitz E M.The war of the whorls:genetic interactions controlling flower development[J].Nature,1991,353:31-37.
    Corredor E, Lukaszewski A J, Pacho'n P, et al.Terminal regions of wheat chromosomes select their pairing partners in meiosis[J].Genetics,2007,177:699-706.
    Coyer J A, Robertson D L, et al. Genetic variability within a population and between diploid/haploid tissue of Macrocystis pyrifera (Phaeophyceae) [J]. J Phycol,1994,30:545-552.
    Culligan K M, Hays J B. DNA mismatch repair in plants an Arabidopsis thaliana gene that predicts a protein belonging to the MSII2 subfamily of eukaryotic MutS homologs[J]. Plant Physiol,1997,115: 833-839.
    Culligan K M, Hays J B. Arabidopsis MutS homolog, AtMSH2, AtMSH3, AtMSH6 and a novel AtMSH7, form three distinct protein heterodimers with different specicities for mismatched DNA[J]. Plant Cell,2000,12:991-1002.
    DeMuyt A, Vezon D, Gendrot G, et al. AtPRD1 is required for meiotic double strand break formation in Arabidopsis thaliana[J]. EMBO J,2007,26:4126-4137.
    DeMuyt A, Pereira L, Vezon, et al. A high throughput genetic screen identifies new early meiotic recombination functions in Arabidopsis thaliana[J].PloS Genet,2009,5(9):e1000654. doi:10.1371/journal.pgen.1000654.
    Diatchenko L, Lau Y F, Campbell A P, et al. Suppression subtractive hybridization:a method for generating differentially regulated or tissue-specific cDNA probes and libraries[J]. Proc National Acad Sci,1996, 93(12):6025-6030.
    Enomoto R, Kinebuchi T, Sato M, et al. Stimulation of DNA strand exchange by the human TBPIP/Hop2-Mndl complex[J]. J Biol Chem,2006,281:5575-5581.
    Falciatore A, Casotti R and Leblanc C. Transformation of nonselectable reporter genes in marine diatoms[J]. Mar Biotechnol,1999,1 (3):239-251.
    Fei X W, Eriksson M, Yang J H, et al. An Fe deficiency responsive element with a core sequence of TGGCA regulates the expression of FEA1 in Chlamydomonas reinharditii[J].J Biochem,2009,146 (2):157.
    Ferris P J, Goodenough U W. The mating-type locus of Chlamydomonas reinhardtii contains highly rearranged DNA sequences[J].Cell,1994,76:1135-1145.
    Gallego M E, Jeanneau M, Granier F, et al. Disruption of the Arabidopsis RAD50 gene leads to plant sterility and MMS sensitivity [J]. Plant J,2001,25:31-41.
    Garcia-Espana A, Mares R, Sun T T, et al. Intron evolution:testing hypotheses of intron evolution using the phylogenomics of tetraspanins[J]. PLoS One,2009,4(3):1-12.
    Gerton J L and DeRisi J L. Mndlp:an evolutionarily conserved protein required for meiotic recombination[J]. Proc Natl Acad Sci,2002,99:6895-6900.
    Gittenberger A, Rensing, M, Stegenga H, et al. Native and non-native species of hard substrata in the Dutch Wadden Sea[J]. Nederlandse faunistische Mededelingen,2010,33:21-75.
    Grelon M, Vezon D, Gendrot G, et al. AtSPO11-1 is necessary for efficient meiotic recombination in plants[J]. EMBO J,2001,20:589-600.
    Hamant O, Ma H and Cande W Z. Genetics of meiotic prophasel in plants[J]. Annu Rev Plant Biol,2006, 57:267-302.
    Hardy F G and Guiry M D. A Check-list and Atlas of the Seaweeds of Britain and Ireland[M]. London: British Phycological Society,2003, pp435.
    Harrison C J, Alvey E and Henderson I R. Meiosis in flowering plants and other green organisms[J]. J Exp Bot,2010,61(11):2863-2875.
    Hartung F and Puchta H. Isolation of the complete cDNA of the Mrel1 homologue of Arabidopsis (Accession No. AJ243822) indicates conservation of DNA recombination mechanisms between plants and other eukaryotes[J]. Plant Physiol,1999,121:312.
    Hartung F and Puchta H. MolecuLar characterization of homologues of both subunits A (SPO11) and B of the archaebacterial topoisomerase 6 in plants[J]. Gene,2001,271:81-86.
    Hartung F, and Puchta H. Molecular characterization of two paralogous SPO11 homologues in Arabidopsis thaliana[J]. Nuc Acids Res,2000,28:1548-1554.
    Hartung F, Wurz-Wildersinn R, Fuchs J, et al. The catalytically active tyrosine residues of both SPO11-1 and SPO11-2 are required for meiotic double-strand break induction in Arabidopsis[J]. Plant Cell,2007,19:3090-3099.
    Heemst D and Heyting C. Sister chromatid cohesion and recombination in meiosis[J]. Chromosoma,2000, 109:10-26.
    Henry J M, Camahort R, Rice D A, et al. Mndl/Hop2 facilitates Dmc1-dependent interhomolog crossover formation in meiosis of budding yeast[J].Mol Cel Biol,2006,26(8):2913-2923.
    Higgins J D, Sanchez-Moran E, Armstrong S J, et al. The Arabidopsis synaptonemal complex protein ZYP1 is required for chromosome synapsis and normal fidelity of crossing over[J].Genes Dev, 2005,19:2488-2500.
    Higgins J D, Vignard J, Mercier R, et al. AtMSH5 partners AtMSH4 in the classl meiotic crossover pathway in Arabidopsis thaliana, but is not required for synapsis[J]. Plant J,2008,55:28-39.
    Higgins J D, Buckling E F, Franklin F C H, et al. Expression and functional analysis of AtMUS81 in Arabidopsis meiosis reveals a role in the second pathway of crossing-over[J]. Plant J,2008,54(1): 152-162.
    Hochwagen A and Amon A. Checking your breaks, surveillance mechanisms of meiotic recombination[J].Cur biol,2006,16:217-228.
    Hong Y K, Sohn C H, Polne-Fuller M, et al. Differential display of tissue-specific messenger rnas in Porphyra perforata (rhodophyta) thallus[J]. J Phycol,1995,31(4):640-643.
    Ishiguro K and Watanabe Y. Chromosome cohesion in mitosis and meiosis[J]. J Cell Sci, 2007,120:367-369.
    Jackson N, Sanchez-Moran E, Buckling E, et al. Reduced meiotic crossover sand delayed prophase I progression in AtMLH3-deficient Arabidopsis[J]. EMBO J,2006,25:1315-1323.
    Jennifer T J and John E M. A salt- and dehydration-inducible pea gene, Cyp15a, encodes a cell-wall protein with sequence similarity to cysteine proteases[J]. Plant Mol Biol,1995,28 (6):1055-1065.
    Kain J M. A view of the genus Laminaria. Oceanogr[J]. Mar Biol Annu Rev,1979,17:101-161.
    Kakinuma M, Kaneko I, Coury D A, et al. Isolation and identification of gametogenesis-related genes in Porphyra yezoensis (rhodophyta) using subtracted cDNA libraries[J]. J Appl Phycol,2006,18(3-5): 489-496.
    Kironmai K M, Muniyappa K, Biredman D B, et al. DNA-binding activities of Hop 1 protein, asynptonemal component from Saccharomyces cerevisiae[J]. Mol Cell Biol,1998,18:1424_1435.
    Kerzendorfer C, Vignard J, Pedrosa-Harand A, et al. The Arabidopsis thaliana MND1 homologue plays a key role in meiotic homologous pairing,synapsis and recombination[J].J Cell Sci,2006,119:2486-2496.
    Klimyuk V I, Jones J D G. AtDMC1, the Arabidopsis homologue of the yeast DMC1 gene:characterization, transposon-induced allelic variation and meiosis-associated expression[J]. Plant J,1997,11:1-14.
    Lau S, Shao N, Bock R, et al. Auxin signaling in algal lineages:fact or myth? [J].Trends Plant Sci,2009,14(4):182-188.
    Lee J H, Lin H, Joo S, et al. Early sexual origins of homeoprotein heterodimerization and evolution of the plant KNOX/BELL family [J]. Cell,2008,133:829-840.
    Li F C, Qin, S, Jiang P. et al. The integrative expression of GUS gene driven by FCP promoter in the seaweed Laminariajaponica (Phaeophyta) [J]. J Appl Phycol,2009,21(3):287-293.
    Leu J Y, Chua P R, Roeder G S. The meiosis-specific Hop2 protein of S.cerevisiae ensures synapsis between homologous chromosomes[J].Cell,1998,94:375-86.
    Li W X, Chen B C, Markmann-Mulisch U, et al. The Arabidopsis AtRAD51 gene is dispensable for vegetative development but re-quired for meiosis[J].Proc Nat Acad Sci,2004,101(29):10596-10601.
    Li W X, Yang X H, Lin, Z G, et al.The AtRAD51C gene is required for normal meiotic chromosome synapsis and double-stranded break repair in Arabidopsis [J].Plant Physiol,2005,138:965-976.
    Liu Y G and Chen Y L. High-efficiency thermal asymmetric interlaced PCR for amplification of unknown flanking sequences[J].BioTechniques,2007,43(5):649-656.
    Livak K J and Schmittgen T D. Analysis of relative gene expression data using Real-Time Quantitative PCR and the 2-△△CT Method [J]. Methods,2001,25,402-408.
    Macaisne N, Novatchkova M, Peirera L, et al. SHOC1, an XPF endonuclease-related protein, is essential for the formation of class I meiotic crossovers[J]. Curr Biol,2008,18:1432-1437.
    Maier I, Muller D G. Sexual pheromones in algae[M]. Biol Bull,1986,170:145-175.
    Makoto K, Masaki I, Daniel A C. et al. Isolation and characterization of the rbcS genes from a sterile mutant of Ulva pertusa (Ulvales, Chlorophyta) and transient gene expression using the rbcS gene promoter[J]. Fisheries Sci,2009,75:1015-1028.
    Makoto K, Lzumi K, Danel C, et al. Isolation and Identification of Gametogenesis-Related Genes in Porphyra Yezoensis (Rhodophyta) Using Subtracted cDNA Libraries[J]. J Appl Phycol,2006,18: 489-496.
    Masahiro K, Kazuko Y, Hideo T, et al. Structure and expression of two genes that encode distinct drought inducible cysteine proteinases in Arabidopsis thalian[J].Gene,1993,129:175-182.
    Mattick J S. Introns:evolution and function[J]. Cur Opin Genet Dev,1994,4:823-831.
    MuLler D G. Sexuality and sex attraction in the biology of seaweeds,2ed[M]. Berkeley:Univ Calif Press, 1981, pp661-74.
    Nonomura K I, Nakano M, Fukuda K, et al. The novel gene homologous pairing aberrationin rice meiosis 1 of rice encodes a putative coiled-coil protein required for homologous chromosome pairing in meiosis[J].Plant Cell,2004,16:1008-1020.
    Nonomura K, Nakano M, Eiguchi M, et al. PAIR2 is essential for homologous chromosome synapsis in rice meiosis I[J]. J Cell Sci,2006,119:217-225.
    Oliver S A. Network approach to the systematic analysis of yeast gene function[J].Trends Genet, 1996,12:241-242.
    Osman K, Sanchez-Moran E, Mann S C, et al. Replication proteinA (AtRPA1a) is required for class Ⅰ crossover formation but is dispensable for meiotic DNA break repair[J]. EMBO J,2009,28:394-404.
    Panoli, A P, Ravi, M, Sebastian J, et al. AtMND1 is required for homologous pairing during meiosis in Arabidopsis[J]. BMC Mol Biol,2006,7:24.
    Pawlowski W P, Wang C J, Golubovskaya I N, et al. Maize AMEIOTIC1 is essential for multiple early meiotic processes and likely required for the initiation of meiosis[J].Proc Nat Acad Sci, 2009,106:3603-3608.
    Pearson G A, Hoaroau G, Lago-Leston A, et al. An expressed sequence tag analysis of the intertidal brown seaweeds Fucus serratus (L.) and F.vesiculosus (L.) (Heterokontophyta, Phaeophyceae) in response to abiotic stressors [J]. Mar Biotechnol,2009,12(2):195-213.
    Pedroche P F, Silva P C, Aguilar Rosas K M,et al. Catalogo de las algas benthonicas del Pacifico de Mexico Ⅱ. Phaeophycota,2008, pp 15-146.
    Pena V and Barbara I. Biological importance of an atlantic european maerl bed off benencia island (northwest Iberian Peninsula) [J]. Bot Mar,2008,51:493-505.
    Pezza R J, Petukhova G V, Ghirlando R, et al. Molecular activities of meiosis-specific proteins Hop2, Mndl, and the Hop2-Mndl complex[J], J Biol Chem,2006,281:18426-18434.
    Pezza R J, Voloshin O N, Vanevski F, et al. Hop2/Mnd1 acts on two critical steps in Dmc 1-promoted homologous pairing[J]. Genes Dev,2007.21:1758-1766.
    Priest H D, Filichkin S A and Mockler T C. Cis-regulatory elements in plant cell signaling[J].Cur Opin Plant Biol,2009,12(5):643-649.
    Rabitsch K P, Toth A, Galova M, et al. A screen for genes required for meiosis and spore formation based on whole-genome expression[J]. Curr Biol,2001,11:1001-1009.
    Ren X Y, Zhang X C, Sui Z H, et al. Identification of phase relative genes in tetrasporophytes and female gametophytes of Gracilaria/Gracilariopsis lemaneiformis (Gracilariales,Rhodophyta)[J]. J Biotechnol,2006,9(2):127-132.
    Ronceret A, Doutriaux A P, Golubovskaya I N, et al. PHS1 regulates meiotic recombination and homologous chromosome pairing by controlling the transport of RAD50 to the nucleus[J]. Proc Nat Acad Sci,2009,106(47):20121-20126.
    Roy S W and Gilbert W. The evolution of spliceosomal introns:patterns, puzzles and progress[J]. Nat Rev Genet,2006,7:211-221.
    Scotto-Lavino E, Du G W and Frohman M A.3'end cDNA amplification using classic RACE[J], Nature Protocols,2006,1 (6):2742-2745.
    Siaud N, Dray E, Gy I, et al. Brca2 is involved in meiosis in Arabidopsis thaliana as suggested by its interaction with Dmc1[J]. EMBO J,2004,23(6):1392-401.
    Siddiqi I, Ganesh G, Grossniklaus U and Subbiah V. The DYAD gene is required for progression through female meiosis in Arabidopsis[J]. Development,2000,127:197-207.
    Stacey N J, Kuromori T, AzuMi Y, et al. Arabidopsis SPO11-2 functions with SPO11-1 in meiotic recombination[J]. Plant J,2006,48:206-216.
    Stegenga H, Karremans M and Simons J. Zeewieren van de voormalige oesterputten bij Yerseke[J]. Gorteria,2007,32:125-143.
    Stronghill P, Pathan N, Ha H, et al. Ahp2 (Hop2) function in Arabidopsis thaliana (Ler) is required for stabilization of close alignment and synaptonemal complex formation except for the two short arms that contain nucleolus organizer regions[J]. Chromosoma,2010,119:443-458.
    Sui Z H., Zhang X C., Ren X Y, et al.Cloning and characterization of the phycoerythrin operon upstream sequence of Gracilaria lemaneiformis(Rhodophyta) [J]. J Appl Phycol,2004,16:167-174.
    Tadamasa U, Shigemi S, Yuko O, et al. Circadian and senescence-enhanced expression of a tobacco cysteine protease gene[J]. Plant Mol Biol,2000,44(5):649-657.
    Tamura K, Dudley J, Nei M and Kumar S. MEGA4:Molecular evolutionary genetics analysis (MEGA) software version 4.0[J]. Mol Biol Evol,2007,24:1596-1599.
    Tang X, Zhang Z Y, Zhang W J, et al. Global gene profiling of laser-captured pollen mother cells indicates molecular pathways and gene subfamilies involved in rice meiosis[J]. Plant Physiol,2010,154:1855-1870.
    Tsubouchi H and Roeder G S. The importance of genetic recombination for fidelity of chromosome pairing in meiosis[J]. Dev Cell,2003,5:915-925.
    Tsubouchi H and Roeder G S. The Mndl protein forms a complex with hop2 to promote homologous chromosome pairing and meiotic double-strand break repair[J]. Mol Cell Biol,2002,22:3078-88.
    Uanschou C, Siwiec T, Pedrosa-Harand A, et al. A novel plant gene essential for meiosis isrelated to the human CtIP and the yeast COM1/SAE2 gene[J]. EMBO J,2007,26:5061-5070.
    Uwai S, Nelson W, Neill, K, et al. Genetic diversity in Undaria pinnatifida (Laminariales, Phaeophyceae) deduced from mitochondria genes-origins and succession of introduced populations[J]. Phycologia, 2006,45:687-695.
    Valentine J P and Johnson C R. Persistence of sea urchin (Heliocidaris erythrogramma) barrens on the east coast of Tasmania:inhibition of macroalgal recovery in the absence of high densities of sea urchins[J]. Botanica Marina,2005,48:106-115.
    Wach A. PCR-synthesis of marker cassettes with long flanking homology regions for gene disruptions in S. cerevisiae[J].Yeast,1996,12:259-265.
    Wang P, Sun Y, Li X, et al. Rapid isolation and functional analysis of promoter sequences of the nitrate reductase gene from Chlorella ellipsoidea [J]. J Appl Phycol,2004,16:11-16.
    Wang M, Wang K, Tang D,et al.The central element protein ZEP1 of the synaptonemal complex regulates the number of crossovers during meiosis in rice[J]. Plant Cell,2010,22:417-430.
    Walker T L, Becker D K and Collet C. Characterisation of the Dunaliella tertiolecta RbcS genes and their promoter activity in Chlamydomonas reinhardtii[J].Plant Cell Rep,2005,23:727-735.
    Wijeratne A J, Chen C, Zhang W, et al. The Arabidopsis thaliana PARTING DANCERS gene encoding a novel protein is required for normal meiotic homologous recombination[J].Mol Biol Cell,2006, 17:1331-1343.
    Yoo S D, Cho Y H. Sheen J. Arabidopsis mesophyll protoplasts:a versatile cell system for transient gene expression analysis[J]. Nat Protoc,2007,2(7):1565-1572.
    Yu H, Wang M, Tang D, et al. OsSPO11-1 is essential for both homologous chromosome pairing and crossover formation in rice[J]. Chromosoma,2010,119:625-636.
    Yuan W, Li X, Chang Y, et al. Mutation of the rice gene PAIR3 results in lack of bivalent formation in meiosis[J]. Plant J,2009,59:303-315.
    Yuzuru M, Makoto H, Hitoshi K, et al. Reporter gene introduction and transient expression in protoplasts of Porphyra yezoensis[J]. J Appl Phycol,2004,(01):23-29.
    Zhang L R, Tao J Y, Wang S X, et al. The rice OsRad21-4, an orthologue of yeast Rec8 protein, is required for efficient meiosis[J]. Plant Mol Biol,2006,60:533-554.
    Zhang X N, Qu Z C, Wan Y Z, et al. Application of suppression subtractive hybridization (SSH) to cloning differentially expressed cDNA in Dunalieua salina(chlorophyta) under hyperosmotic shock[J]. Plant Mol Biol Rep,2002,20(3):49-57.
    Zhao H, Lu M, Singh R, et al. Ectopic expression of a Chlamydomonas mt-specific homeodomain protein in mt-gametes initiates zygote development without gamete fusion[J]. Gene Dev,2001, 15:2767-2777.
    Zierhut C, Berlinger M, Rupp C, et al. Mndl is required for meiotic interhomolog repair[J].Curr Biol,2004,14:752-762.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700