纳米结构磷酸铁锂正极材料的制备及其掺杂和表面改性
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
作为下一代锂离子电池正极材料,磷酸铁锂具有许多优点,如廉价,环境相容性好、理论容量高、使用寿命长、热稳定性好、安全性好等。但是,其自身低的电子电导率和室温下低的锂离子扩散速率严重影响了它的电化学性能,并极大限制了该电极材料在动力电池领域的大规模应用。本论文针对纳米磷酸铁锂正极材料的溶胶-凝胶法制备、掺杂和表面改性进行了较为系统的研究
     改良现有溶胶-凝胶法的不足,首次以廉价、无毒的无机化合物FeCl_2·4H_2O、H_3PO_4和Li_2CO_3为原料合成了具有纳米尺度的、良好电化学性能的LiFePO_4/C复合正极材料,并研究了煅烧温度、保温时间及残碳量对其电化学性能的影响。研究表明,650℃下保温15 h,残碳量为4.5 wt.%的样品具有最佳的电化学性能,10 C时的放电比容量仍能保持在108 mAh/g左右。
     首次引入高价Sn4+离子,系统地研究了不同掺杂量(0-7 mol.%)对纳米晶LiFePO_4/C复合正极材料物理化学和电化学性能的影响,研究了高价Sn~(4+)掺杂的电荷补偿机制,并得出Sn的掺杂属于混合价态掺杂。基于粒径大小和掺杂浓度的不同,各样品表现出了不同程度的赝电容效应。研究表明,当掺杂量为3 mol.%时,材料具有最佳的电化学性能,10 C时的放电比容量为128 mAh/g。
     系统研究了钒的添加量(0-13 mol.%)对LiFePO_4/C复合正极材料物理化学和电化学性能的影响,建立了相的组成和钒添加量的二元相图,并研究了高价V~(4+)掺杂的电荷补偿机制。根据添加量的不同,钒将以不同的形态(V4+的掺杂、VO_2(B)的包覆和Li_3V_2(PO_4)_3的复合)存在于样品中。研究表明,钒的掺杂有利于细化晶粒、提高电导率和锂离子扩散系数,因此电化学性能,特别是倍率性能得到了有效的改善;纳米VO_2(B)的包覆改善了纳米颗粒的界面性能,并基于赝电容效应材料显示了最高的能量密度和功率密度;Li_3V_2(PO_4)_3的存在不利于主相锂离子扩散速率的提高,但是有利于磷酸铁锂基正极材料的电导率和倍率性能的改善。
     初步研究了掺锑纳米氧化锡、氧化锌包覆对磷酸铁锂正极材料电化学性能的影响。研究表明,纳米氧化锡、氧化锌的表面改性有利于磷酸铁锂电导率的提高和电化学性能的改善。
As a promising cathode material for next-generation lithium ion battery, lithium iron phosphate exhibits many appealing features, such as low cost, environmental benign, suitable potential plateau, high theoretical capacity, long cycle life, ideal thermal stability, etc. However, its intrinsic electrical conductivity and lithium-ion diffusion velocity are rather poor, which seriously undermines the kinetics of LiFePO4 and thus greatly limits the large-scale application in the field of power battery. In this work, the sol-gel synthesis, doping and surface modifications of LiFePO4 were investigated systematically. The main research work and conclusions are given as follows:
     An innovative inorganic-based sol-gel route to synthesize nanostructured LiFePO_4/C cathode material with excellent electrochemical performance was introduced. The cheap, environmental friendly inorganic compounds (FeCl_2·4H_2O, H_3PO_4 and Li_2CO_3) were used as raw materials. The influences of the sintering temperature, holding time and residual carbon content on the electrochemical performance of LiFePO_4/C were investigated. The optimized sintering temperature and holding time were 650℃and 15 h, respectively. And the sample with 4.5 wt.% residual carbon exhibited excellent electrochemical performance, at 10 C, its discharge specific capacity was about 108 mAh/g.
     The supervalent Sn~(4+) was firstly introduced as a dopant. The effects of doping amount on the physicochemical and electrochemical performances of nanocrystalline LiFePO4/C were systemically investigated. The charge compensation mechanism of Sn~(4+) was studied. It was found that the doping of Sn was a mixed-valence doping. On the basis of the nanosized effect and doping concentration, samples showed pseudocapacitive behavior. When the doping amount was about 3 mol.%, the sample showed excellent electrochemical performance. At 10 C, the discharge specific capacity was about 128 mAh/g.
     The effects of adding amount of vanadium on the physicochemical and electrochemical properties were investigated in details. The concentration-composition phase diagram was constructed. The increasing adding of vanadium induces 1, the V~(4+) substituted for Fe (0 < x≤0.07) within the solid solubility; 2, beyond the solid-solution limit, the excess vanadium formed VO_2(B) coated on the surface of the V-doped LiFePO_4; 3, the excess vanadium formed the secondary phase Li_3V_2(PO_4)_3 (x≥0.11) coexisting with the V-doped LiFePO4. The V~(4+) doping contributes to induce the lattice distortion, refine the particle size, increase the electrical conductivity and thus greatly improve the electrochemical performance, especially the rate capability. The surface modification of nano-sized VO_2(B) is helpful to increase the electrical conductivity greatly. Due to the nanosized effect, the sample shows a high energy and power density. The secondary phase Li_3V_2(PO_4) is favorable to increase the electrical conductivity. It plays a paramount role in improving the rate capability of the LiFePO_4-based cathode, although it is not good for the lithium ion transport within the main phase.
     The electrochemical performances of LiFePO_4 cathode material by nanosized Sb-doped SnO_2 and ZnO coatings were preliminary examined. It was found that the coatings were beneficial to increase the electrical conductivity and enhance the electrochemical performance of LiFePO_4 cathode material.
引文
[1] Ellis B L, Lee K T, Nazar L F. Positive electrode materials for Li-ion and Li-batteries. Chem Mater, 2010, 22:691-714
    [2] Martin W, Ralph J B. What are batteries, fuel cells, and supercapacitors? Chem Rev, 2004, 104:4245- 4269
    [3]陈立泉.锂离子正极材料的研究发展.电池, 2002, 32:6-8
    [4] Whittingham M S. Electrical energy storage and intercalation chemistry. Science, 1976, 192:1126-1127
    [5] Whittingham M S. Chalcogenide battery. USA [P] No. 4009052, 1977
    [6] Murphy D W, Broodhead J, Steel B C. Material for advanced batteries. New York, Plenum Press, 1980:145-150
    [7] Mitzushima K, Johnes P C, Wiseman P J, Goodenough J B. LixCoO2 (0    [8] Thackeray M M, David W I F, Bruce P G, Goodenough J B. Lithium insertion into manganese spinels. Mater Res Bull, 1983, 18:461-472
    [9] Manthiram A, Goodenough J B. Lithium insertion into Fe2(SO4)3 frameworks. J Power Source, 1989, 26:403-408
    [10] Nagaura T, Tazawa K. Prog Batteries Sol Cell, 1990, 9:20-25
    [11] Padhi A K, Nanjundaswamy K S, Goodenough J B. Phospho-olivines as positive-electrode materials for rechargeable lithium batteries. Electrochem Soc, 1997, 144:1188-1194
    [12] Akimoto J J, Gotoh Y, Oosawo Y. J. Synthesis and structure refinement of LiCoO2 single crystals. Solid State Chemistry, 1998, 141:298-302
    [13] Koksbang R, Barker J, Shi H, et al. Cathode materials for lithium rocking chair batteries. Solid State Ionics, 1996, 84:1-21
    [14] Yazami R, Ozawa Y, Gabrisch H, Fulta B. Mechanism of electrochemical performance decay in LiCoO2 aged at high Voltage. Electrochimica Acta, 2004, 50:385-390
    [15] Zou M, Yoshio M, Gopukumar S, et al. Performance of LiM0.05Co0.95O2 Cathode Materials in Lithium Rechargeable Cells When Cycled up to 4.5 V. Chem Mater 2005, 17:1284-1286
    [16] Han C J, Eom W S, Lee S M, et al. Study of the electrochemical properties of Ga-doped LiNi0.8Co0.2O2 synthesized by a sol-gel method. J Power Sources, 2005, 144:214-219
    [17] Myung S T, Kumagai N, Komaba S, Chung H T. Effects of Al doping on the microstructure of LiCoO2 cathode materials. Solid State Ionics, 2001, 139:47-56
    [18] Tong D G, Luo Y Y, He Y, Ji X Y, et al. Effect of Ga doping on the structural, electrochemical and thermal properties of LiCo0.975Ga0.025O2 as cathode materials for lithium ion batteries. Mater Sci and Eng B, 2006, 128:220-228
    [19] Madhavi S, Subba R G V, Chowdari B V R, et al. Effect of Cr dopant on the cathodic behavior of LiCoO2. Electrochimica Acta, 2002, 48:219-226
    [20] Liu L, Chen L, Huang X, et al. Electrochemical and In Situ Synchrotron XRD Studies on Al2O3-Coated LiCoO2 Cathode Material. J Electrochem Soc, 2004, 151:A1344-A1351
    [21] Omanda H, Brousse T, Schleich D M. Improvement of the Thermal Stability of LiNi0.8Co0.2O2 Cathode by a SiOx Protective Coating. J Electrochem Soc, 2004, 151:A922-A929
    [22] Kim J, Noh M, Cho J, et al. Controlled Nanoparticle Metal Phosphates (Metal=Al, Fe, Ce, and Sr) Coatings on LiCoO2 Cathode Materials. J Electrochem Soc, 2005, 152:A1142-A1148
    [23] Li C, Zhang H P, Fu L J, et al. Cathode materials modified by surface coating for lithium ion batteries. Electrochimica Acta, 2006, 19:3872-3883
    [24] Cao H, Xia B J, Zhang Y, et al. LiAlO2-coated LiCoO2 as cathode materials for lithium ion batteries. Solid State Ionics, 2005, 176:911-914
    [25] Ohzuku T, Ueda A, Nagayama M. Electrochemistry and structural chemistry of LiNiO2 (R3m) for 4 volt secondary lithium cells. J Electrochem Soc, 1993, 140:1862-1869
    [26] Endo E, Yasuda T, Yamaura K, et al. LiNiO2 electrode modified plasma by chemical vapor deposition for high voltage performance. J Power Sources, 2001, 93:87-92
    [27] Molenda J, Wilk P, Marzec J. Structural electrical and electrochemical properties of LiNiO2. Solid State Ionics, 2002, 146:73-79
    [28] Kim B H, Kim J H, Kwon I H, et al. Electrochemical properties of LiNiO2 cathode material synthesized by the emulsion method. Ceramics International, 2007, 33:837-841
    [29] Arai H, Okada S, Sakurai Y, Yamaki J. Reversibility of LiNiO2 cathode. Solid State Ionics, 1997, 95:275-282
    [30] Schoonman J, Tuner H L, Kelder E M. Defect chemical aspects of lithium-ion battery cathodes. J Power Sources, 1999, 81-81:44-48
    [31] Lin S P, Fung K Z, Hon Y M, et al. Effect of Al addition on formation of layer-structured LiNiO2. J Solid State Chemistry, 2002, 167:97-106
    [32]李凯慧,张少文. LiNiO2的制备及其在充放电过程中的结构变化.郑州轻工业学院学报, 2006, 21:26-28
    [33] Kumta P N, Chang C C, Sriram M A. Cathode materials for lithium-ion secondary cells: USA, 6017654[P]. 2000-01-25
    [34]钟辉,许惠.锂离子电池正极材料LiCo0.3Ni0.7-xSrxO2的合成及其电化学性能.中国有色金属学报, 2004, 14:157-161
    [35]翟秀静,孙晓萍,田彦文,等.添加磷、硼、硅和铝的锂离子电池材料LiNiO2研究.分子科学学报, 2002, 18:68-74
    [36]叶乃青,刘长久,沈上越.正极材料LiNi1-xAlxO2的合成及表征.电池, 2004, 34:238-240
    [37] Subba G V R, Chowdari B V R, Linder H J. Yttrium-doped Li(Ni,Co)O2: an improved cathode for Li-ion batteries. J Power Sources, 2001,97-98:313-315
    [38] Liu L, Su G Y, Xiao Q Z, et al. Structural, electrochemical and thermal properties of LiNi0.8-xCo0.2CexO2 as cathode materials for lithium ion batteries. Mater Chem Phys, 2006, 100:236-240
    [39]豆志河,张延安,侯闯.锂离子电池正极材料LiNi0.8Co0.2O2和LiNi0.95Ce0.05O2制备工艺优化.中国稀土学报, 2004, 5:651-655
    [40]顾健,顾大明,史鹏飞. LiNi0.77Al0.03Co0.2O2正极材料研究.电池, 2004, 34:171-172
    [41] Zhang Z R, Liu H S, Gong Z L, et al., Electrochemical performance and spectroscopic characterization TiO2-coated LiNi0.8Co0.2O2 cathode materials. J Power Sources, 2004, 129:101-106
    [42] Luo J Y, Li X L, Xia Y Y. Synthesis of highly crystalline spine LiMn2O4 by a soft chemical route and its electrochemical performance. Electrochimica Acta, 2007, 52:4525-4531
    [43] Li X, Xu Y, Wang C. Suppression of Jahn-Teller distortion of spinel LiMn2O4 cathode. J. Alloys and Compounds, 2009, 479:310-313
    [44] Lu W,Belharouak I, Park S H, et al. Isothermal calorimetry investigation of Li1+xMn2-yAlzO4 spine. Electrochim Acta, 2007, 52:5837-5842
    [45] Amatucci G G, Pereira N, Zheng T, et al. Failure mechanism and improvement of the elevated temperature cycling of LiMn2O4 compounds through the use of LiAlxMn2-xO4-xFx solid slution. J Electrochem Soc, 2001, 148:A171-182
    [46]彭忠东,胡国荣,周向阳,等.稀土掺杂对LiMn2O4电化学性能的影响.电池, 2002, 32:191-193
    [47] Chen M, Li S, Yang C. Structure and electrochemical properties of La, F dual-doped LiLa0.01Mn1.99O3.99F0.01 cathode materials. Journal of university of science and technology Beijing, 2008, 15:468-473
    [48] Yang Z, Yang W, Evans D, et al. The effect of a Co-Al mixed metal oxide coating on the elevated temperature performance of a LiMn2O4 cathode material. J Power Sources, 2009, 189:1147-1153
    [49] Dong B J, Kogo Y, Tari I. Influence of Surface treatments of LiMn2O4 powder with Ag on charge-discharge characterisitics I. Ag coating. Electrochemistry, 1999, 67:359-363
    [50] Amatucci G G, Blyr A, Sigma C, et al. Surface treatment of Li1+xMn2-xO4 spinels for improved elevated temperature performance. Solid State Ionics, 1997, 104:13-25
    [51] Padhi A K, Nanjundaswamy K S and Goodenough J B. Phospho-olivines as positive-electrode materials for rechargeable lithium batteries. J. Electrochem. Soc., 1997,144(4):1188-1194
    [52] Yamada A, Chung S C, Hinokuma K. Optimized LiFePO4 for lithium battery cathodes. J Electrochem Soc, 2001, 148:A224-A229
    [53] Andersson A S, Kalska B, Haggstrom L, et al. Lithium extraction/insertion in LiFePO4: an X-ray diffraction and Mossbauer spectroscopy study. J Solid State Ionics, 2000, 130:41-52
    [54] Deb A, Bergmann U, Cairns E J, et al. Structure investigations of LiFePO4 electrodes by Fe X-ray absorption spectroscopy. J Physical Chemistry B, 2004, 108:7046-7049
    [55] Kim H S, Cho B W and Cho W I. Cycling performance of LiFePO4 cathode material for lithium secondary batteries. J Power Sources, 2004, 132(1-2):235-239
    [56] Doeff M M, Hu Y Q, McLarnon F, et al. Effect of surface carbon structure on the electrochemical performance of LiFePO4. Electrochemical and Solid State Lett, 2003, 6(10):A207-A209
    [57] Arnold G,Garche J, Hemmer R, et al. Fine-particle lithium iron phosphate LiFePO4 synthesized by a new low-cost aqueous precipitation technique. J. Power Sources, 2003, 119-121:247-251
    [58] Prosini P P, Zane D and Pasquali M. Improved electrochemical performance of a LiFePO4-based composite cathode. Electrochimica Acta, 2001, 46(23):3517-3523
    [59] Takahashi M, Tobishima S, Takei K, et al. Characterization of LiFePO4 as the cathode materials for rechargeable lithium batteries. J Power Sources, 2001, 97-8:508-511
    [60] Padhi A K, Nanjundaswamy K S, Masquelier C, et al. Effect of structure on the Fe3+/Fe2+ redox couple in iron phosphate. J Electrochem Soc, 1997, 144:1609-1613
    [61] Franger S, Le Cras F, Bourbon C and Rouault H. Comparison between different LiFePO4 synthesis routes and their influence on its physicochemical properties. J Power Sources, 2003, 119–121:252-257
    [62] Yamada A., Chung S C and Hinokuma K. Optimized LiFePO4 for lithium battery cathode. J Electrochem Soc, 2001, 148:A224-A229
    [63] Wang D Y, Wu X D, Wang Z X. and Chen LQ. Cracking causing cyclic instability of LiFePO4 cathode materials. J Power Sources, 2005, 140(1):125-128
    [64] Koltypin M, Aurbach D, Nazar L and Ellis B. More on the performance of LiFePO4 electrodes-the effect of synthesis route, solution composition, aging, and temperature. J Power Sources, 2007, 174(2):1241-1250
    [65] Yun N J, Ha H W, Jeong K H, et al. Synthesis and electrochemical properties of olivine-type LiFePO4/C composite cathode material prepared from a poly(vinyl alcohol)-containing precursor. J Power Sources, 2006, 160(2):1361-1368
    [66] Takahashi M, Tobishima S, Takei K and Sakurai Y. Characterization of LiFePO4 as the cathode material for rechargeable lithium batteries. J Power Sources, 2001, 97-98:508-511
    [67] Julien C M, Mauger A, Ait-Salah A, et al. Nanoscopic scale studies of LiFePO4 as cathode material in lithium-ion batteries for HEV application. Ionics, 2007, 13:395-411
    [68] Zaghib K, Ravet N, Gauthier M, et al. Optimized electrochemical performance of LiFePO4 at 60℃with purity controlled by SQUID magnetometry. J Power Sources, 2006, 163:560-566
    [69] Barker J, Saidi M Y, Swoyer J L. Lithium iron (Ⅱ) phospho-olivine prepared by a novel carbonthermal reduction method. Electrochem Solid State Lett, 2003, 3:A53-A55
    [70] Kim C W, Lee M H, Jeong W T, et al. Synthesis of olivine LiFePO4 cathode materials for mechanical alloying using iron (III) raw material. J Power Sources, 2005, 146(1-2):534-538
    [71] Ravet N, Gauthier M, Zaghib K, et al. Mechanism of the Fe3+ reduction at low temperature for LiFePO4 synthesis from a polymeric additive. Chem Mater, 2007, 19:2595-2602
    [72] Zhu B Q, Li X H, Wang Y X and Guo H J. Novel synthesis of LiFePO4 by aqueous precipitation and carbothermal reduction. Mater Chem Phys, 2006, 98:373-376
    [73] Mi C H, Cao G S and Zhao X B. Lost-cost, one-step process for synthesis of carbon-coated LiFePO4 cathode Mater Lett, 2005, 59:127-130
    [74] Franger S, Bourbon C, Rouault H. Comparsion between different LiFePO4 synthesis routes and their influence on its physico-chemical properties. J Power Sources, 2003, 119/120/121:252-257
    [75] Kosova N, Devyatkina E. On mechanochemical preparation of materials with enhanced characteristics for lithium batteries. Solid State Ion, 2004, 172 (1-4):181-184
    [76] Song M S, Kang Y M, Kim J H, et al. Simple and fast synthesis of LiFePO4-C composite for lithium rechargeable batteries by ball-milling and microwave heating. J Power sources, 2007, 166:260-265
    [77] Wang L, Huang Y, Jiang R, et al. Preparation and characterization of nano-sized LiFePO4 by low heating solid-state coordination method and microwave heating. Electrochim Acta, 2007, 52:6778-6783
    [78] Sabina B, Libero D, Marina M. MW-assisted synthesis of LiFePO4 for high power application. J Power sources, 2008, 180:875-879
    [79] Higuchi M, Katayama K, Azuma Y, et al. Synthesis of LiFePO4 cathode material by microwave processing. J Power Sources, 2003, 119-121:258-261
    [80]李发喜,仇伟华,胡环宇,等.微波合成锂离子电池正极复合材料LiFePO4/C电化学性能.北京科技大学学报, 2005, 27:86-89
    [81] Daiwon C, Prashant N K. Surfactant based sol-gel approach to nanostructured LiFePO4 for high rate Li-ion batteries. J Power sources, 2007, 163:1064-1069
    [82] Yang S F, Zavalij P Y and Whittinghua M S. Hydrothermal synthesis of lithium iron phosphate cathodes. Electrochemistry Commun, 2001, 3(9):505-508
    [83] Meligrana G, Gerbaldi C, Tuel A, et al. Hydrothermal synthesis of high surface LiFePO4 powders as cathode for Li-ion cells. J Power Sources, 2006, 160:516-522
    [84] Lee J and Teja A S. Characteristics of lithium iron phosphate (LiFePO4) particles synthesized in subcritical and supercritical water, J Supercrit Fluids, 2005, 35:83-90.
    [85] Bewlay S L, Konstantinov K, Wang G X, et al. Conductivity improvements to spray-produced LiFePO4 by addition of a carbon source. Materials Lett, 2004, 58 (11):1788-1791
    [86] Teng T H, Yang M R, Wu S H and Chiang Y P. Electrochemical properties of LiFe0.9Mg0.1PO4/carbon cathode materials prepared by ultrasonic spray pyrolysis. Solid State Commun, 2007, 142:389-392.
    [87] Arnold G, Garche J, Hemmer R, et al. Fine-particle lithium iron phosphate LiFePO4 synthesized by a new low-cost aqueous precipitation technology. J Power Sources, 2003, 119-121:247-251
    [88]王连亮,李世友,张琨,等. NH4FePO4·H2O半固相法制备LiFePO4/C.电池, 2008, 38(4):201-203
    [89] Konarova M and Taniguchi I. Preparation of LiFePO4/C composite powders by ultrasonic spray pyrolysis followed by heat treatment and their electrochemical properties. Mater Res Bull, 2008, 43:3305-3317.
    [90] V. Palomares, A. Goni, I. Gil de Muro, et al. New freeze-drying method for LiFePO4 synthesis. J Power Sources, 2007, 171:879-885
    [91] Ni J F, Zhou H H, Chen J T and Zhang X X. Molten salt synthesis and electrochemical properties of spherical LiFePO4 particle. Mater Lett, 2007, 61:1260–1264.
    [92] Kim D H and Kim J. Synthesis of LiFePO4 nanoparticles and their electrochemical properties. J Phys Chem Solids, 2007, 68:734-737
    [93] Needham S A, Calka A, Wang G X, et al. A new rapid synthesis technique for electrochemically active materials used in energy storage application, Electrochem Commun, 2006, 8:434-438
    [94] Ravet N, Goodenough J B, Besner S, et al. The electrochemical Society and the Electrochemical Society of Japan Meeting Abstracts. Honolulu, HI: international Society of Electrochemistry, 1999, vol. 99-2., Oct 17-22 (Abstracts No.127)
    [95] Shin H C, Cho W I, Jiang H. Electrochemical properties of the carbon-coated LiFePO4 as a cathode materials for lithium-ion secondary batteries. J Power Source, 2006, 159:1383-1388
    [96] Bewlay S L, Konstantinov K, Wang G X, et al. Conductivity improvements to spray-produced LiFePO4 by addition of a carbon source. Mater Lett, 2004, 58:1788-1791
    [97] Franger S, Cars F L, Bourbon C, et al. LiFePO4 synthesis routes for improved electrochemical performance. Electrochemical and Solid State Letters, 2002, 5(10):A231-A233
    [98] Franger S , Cars F L, Bourbon C, et al. Comparison between different LiFePO4 synthesis routes and their influence on its physicochemical properties. J Power Sources, 2003, 119-121:252-257
    [99] Chung S Y, Blokng J T, Chiang Y M. Electronically conductive phosphor-olivines as lithium storage electrodes. Nat Mater, 2002, 1:123-128
    [100] Chen Z H and Dahn J R. Reducing carbon in LiFePO4/C composite electrodes to maximize specific energy, volumetric energy, and tap density. J Electrochem Soc, 2002, 149(9):A1184-A1189
    [101] Liu H P, Wang Z X, Li X H, et al. Synthesis and electrochemical properties of olivine LiFePO4 prepared by a carbothermal reduction method. J Power Sources, 2008, 184:469-472
    [102] Luo S H, Tang Z L, Lu J B, et al. Electrochemical properties of carbon-mixed LiFePO4 cathode materials synthesis by the ceramic granulation method. Ceramics Imtermational, 2008, 34:1349-1351
    [103] Chen J M,Hsu C H, Lin Y R, et al. High-power LiFePO4 cathode materials with a continuous nanocarbon network for lithium batteries. J Power Sources, 2008, 184:498-502
    [104] Croce F, Epifanio A D, Hassoun J, et al. A novel concept for the synthesis of an improved LiFePO4 lithium batteries cathode. Electrochemical and Solid State Letters, 2002, 5(3):A47-A50
    [105] Eftekhari A. Electrochemical deposition and modification of LiFePO4 for the preparation of cathode with enhanced battery performance. J Electrochem Soc, 2004, 151:A1816-A1819
    [106]陈晗,韩绍昌,于文志,等. PPy/LiFePO4复合材料的制备与性能.湖南大学学报:自然科学版, 2007, 4(9):49-52
    [107] Chung S Y, Bloking J T and Chiang Y M. Electronically conductive phospho-olivines as lithium storage electrodes. Nature, 2002, 1:123-128
    [108] Delacourt C, Wurm C, Laffont L, et al. Electrochemical and electrical properties of Nb- and/or C-containing LiFePO4 olivine-type battery material. Solid State Ionics, 2006, 177:333-341
    [109] Yamada A, Kudo Y, Liu K Y. Phase diagram of Lix(MnxFe1-x)PO4 (0≤x,y≤1). J Electrochem Soc, 2001, 148:A1153-A1158
    [110] Penazzi N, Arrabito M, Piana M, et al. Mixed lithium phosphates as cathode materials for Li-ion cells. J Electrochem Soc, 2004, 24:1381-1384
    [111]张宝,李新海,罗文斌,等. LiFe1-xMgxPO4锂离子电池正极材料的电化学性能.中南大学学报:自然科学版, 2006, 37(6): 1094-1097
    [112] Yang M R, Ke W H, Wu S H. Improving electrochemical properties of lithium iron phosphate by addition of vanadium. J Power Sources, 2007, 165:646-650
    [113] Song S T , Ma P H, Li S Y, et al. Synthesis and electrochemical propertied of Li1-xVxCryFe1-yPO4/C as a cathode materials. Chinese Chemical Letters, 2008, 19:337-341
    [114] Delmas C, Maccario M, Croguennec L, et al. Lithium deintercalation in LiFePO4 nanoparticles via a domino-cascade model. Nat Mater, 2008, 7:665-671
    [115] Yamada A, Kudo Y, Liu K Y, et al. Reaction mechanism of the olivine-type Lix(Mn0.6Fe0.4)PO4 (0≤x≤1). J Electrochem Soc, 2001, 148(7):A747-A754
    [116] Yamada A, Koizumi H, Nishimura N, et al. Room-temperature miscibility gap in LixFePO4. Nat Mater, 2006, 5:357-360
    [117] Meethong N, Huang H Y S, Carter W C, et al. Size-dependent lithium miscibility gap in nanoscale Li1-xFePO4. Electrochem Solid-State Lett, 2007, 10:A134-A138
    [118] Wagemaker M, Borghols W J H and Mulder F M. Large impact of particle size on insertionreactions. A case for anatase LixTiO2. J Am Chem Soc, 2007, 129:4323-4327
    [119] Delacourt C, Poizot P, Tarascon J M, et al. The existence of a temperature-driven solid solution in LixFePO4 for 0≤x≤1. Nat Mater, 2005, 4:254-260
    [120] Gibot J L, Casas-Cabanas M, Laffont L, et al. Room-temperature single-phase Li insertion/extraction in nanoscale LixFePO4. Nat Mater, 2008, 7:741-747
    [121] Yu D Y W, Fietzek C, Weydanz W, et al. Study of LiFePO4 by cyclic voltammetry. J Electrochem Soc, 2007, 154:A253-257
    [122] Tang X C, Song X W, Shen P Z, Jia D Z. Capacity interminttent titration technique (CITT): A novel technique for determination of Li+ solid diffusion coefficient of LiMn2O4. Electrochimica Acta, 2005, 50:5581-5587
    [123] Eills B, Subramanya Herle P, Rho Y H, et al. Faraday Symposia of the Chemical Society, 2007, 34: 119-141
    [124] Giorgetti M and Berrettoni M. Characterization of sol-gel-synthesized LiFePO4 by multiple scatting XAFS. Inorg Chem, 2006, 45:2750-2757
    [125] Prosini P P, Lisi M, Zane D, et al. Determination of the chemical diffusion coefficient of lithium in LiFePO4. Solid State Ionics, 2002, 148:45-51
    [126] Wang G X, Yang Y, Chen J Z, et al. An investigation of polypyrrole-LiFePO4 composite cathode for lithium-ion materials for lithium-ion batteries. Electrochim Acta, 2005, 50:4649-4654
    [127] Park K S, Son J T, Chung H T, et al. Synthesis of LiFePO4 by co-precipitation and microwave heating. Electrochemistry Communications, 2003, 5 (10):839 -842
    [128] Cho T, Chung H. Synthesis of olivine-type LiFePO4 by emulsion-drying method. J Power Source, 2004, 133:272-276
    [129] Song S W, Reade R P, Kostecki R, et al. Electrochemical studies of the LiFePO4 thin films prepared with pulsed laser deposition. J Electrochem Soc, 2006, 153:A12-A19
    [130] Sides C R, Croce F, Young V Y, et al. A high-rate, nanocomposite LiFePO4 /carbon cathode. Electrochem Solid State Lett, 2005, 8:A484-A487
    [131] Sanchez M A E, Brito G E S, Fantini M C A, et al. Synthesis and characterization of LiFePO4 prepared by sol-gel technique. Solid State Ionics, 2006, 177:497-500
    [132] Kim J K, Choi J W, Chauhan G S, et al. Enhancement of electrochemical performance of lithium iron phosphate by controlled sol-gel synthesis. Electrochim Acta, 2008, 53:8258-8264
    [133] Sundarayya Y, Kumara Swamy K C, Sundana C S. Oxalate based non-aqueous sol–gel synthesis of phase pure sub-micron LiFePO4. Mater Res Bull, 2007, 42:1942-1948
    [134] Bhuvaneswari M S, Bramink N N, Ensling D, et al. Synthesis and characterization of Carbon Nano Fiber/LiFePO4 composites for Li-ion batteries. J Power Sources, 2008, 180:553-560
    [135] Xie H, Zhou Z T. Physical and electrochemical properties of mix-doped lithium iron phosphate as cathode material for lithium ion battery. Electrochimica Acta, 2006, 51:2063-2067
    [136] Arumugam D, Paruthimal Kalaignan G, Manisankar P. Synthesis and electrochemical characterizations of nano-crystlline LiFePO4 and Mg-doped LiFePO4 cathode materials for rechargeable lithium-ion batteries. J Solid State Electrochem, 2009: 13: 01-307
    [137] Yang M R, Ke W H. The doping effect on the electrochemical properties of LiFe0.95M0.05PO4 (M=Mg2+, Ni2+, Al3+, or V3+) as cathode materials for lithium-ion cells. Electrochem Soc, 2008, 155:A729-A73
    [138]朱晏谊.锂离子电池正极材料LiFePO4的制备与性能研究: [硕士论文].台湾:国立清华大学, 2006
    [139] Jayaprakash N, Kalaiselvi N and Periasamy P. Synthesis and characterization of LiMxFe1-xPO4 (M= Cu, Sn, x= 0.02) cathode- A study on the effect of cation substitution on LiFePO4 material. Int J Electrochem Sci, 2008 3:476-488
    [140] Song J, Cai M Z, Dong Q F, et al. Structural and electrochemical characterization of SnOx thin films for Li-ion microbattery. Electrochim Acta, 2009, 54:2748-2753
    [141]潘金生,仝建民,田民波.材料科学基础.清华大学出版社, 2000
    [142] Kang B, Ceder G. Battery materials for ultrafast charging and discharging. Nature, 2009, 458:190-193
    [143] Wang J, Polleux J, Lim J and Dunn B. Pseudocapacitve contributions to electrochemical energy storage in TiO2 (anatase) nanoparticles. J Phys Chem C, 2007, 111:14925-11493
    [144] Zhang H, Li G R, An L P, et al. Electrochemical lithium storage of titanate and titania nanotubes and nanorods. J Phys Chem C, 2007, 111:6143-6148
    [145] Liu H, Li C, Cao Q, et al. Effects of heteroatoms on doped LiFePO4/C composite. J Solid State Electrochem, 2008, 12:1017-1020
    [146] Sun C S, Zhou Z, Wang D G, et al. Improved high-rate charge/discharge performances of LiFePO4/C via V-doping. J Power Source, 2009, 193:841-845
    [147] Islam M S, Driscoll D J, Fisher C A J and Slater P. Atomic-scale investigation of defects, dopants, and lithium transport in the LiFePO4 olivine-type battery material. Chem Mater, 2005, 17:5085-5092
    [148] Dedryvère R, Maccorio M, Croguennee L, et al. X-ray photoelectron spectroscopy investigations of carbon-coated LixFePO4 materials. Chem Mater, 2008, 20:7164-7170
    [149] Liu H, Wang G X, Wexler D, et al. Electrochemical performance of LiFePO4 cathode material coated with ZrO2 nanolayer. Electrochem Commun, 2008, 185, 10:165-169
    [150] Chang H H, Chang C C, Su C Y, et al. Effects of TiO2 coating on high-temperature cycle performance of LiFePO4-based lithium-ion batteries. J Power Source, 2008, 466-472
    [151] Nordlinder S, Augustsson A, Schmitt T, et al. Redox behavior of vanadium oxide nanotubes as studied by x-ray photoelectron spectroscopy and soft x-ray absorption spectroscopy. Chem Mater, 2003, 15:3227-3232
    [152] Mao L J, Liu C Y. Hydrothermal synthesis of VO2(B) nanoribbons by a mixed-oxidation state precursor route. Solid State Commun, 2008, 146:403-405
    [153] Chirayil T, Zavalij P Y, Whittingham M S. Hydrothermal synthesis of vanadium oxides, Chem Mater, 1998, 10:2629-2640
    [154] Chen Q Q, Wang J M, Tang Z, et al. Electrochemical performance of the carbon coated Li3V2(PO4)3 cathode material synthesized by a sol-gel method. Electrochimica Acta, 2007, 52:5251-5257
    [155] Park K S, Benayad A, Park M S, et al. Tailoring the electrochemical properties of composite electrodes by introducing surface redox-active oxide film: VOx-impregnated LiFePO4 electrode. Electrochem Commun, 2010, 46:2524-2574
    [156] Cui Y, Zhao X L and Guo R S. Enhanced electrochemical properties of LiFePO4 cathode material by CuO and carbon co-coating. J Alloys and Compounds, 2010, 490:236-240

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700