超微秸秆光合生物产氢体系多相流数值模拟与流变特性实验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本论文是在国家自然科学基金项目“超微秸秆类生物质光合连续产氢过程及代谢热研究”(项目编号:50976029)的资助下完成的。
     利用资源量大、廉价的农作物秸秆为原料生产纤维素氢气,研究能够达到工业化生产规模的秸秆类生物质制氢技术,对于补充能源不足,保障国家能源战略安全,减少对化石能源的依赖,降低环境污染以及生物质资源的再生利用等方面具有重要的意义。秸秆类生物质光合产氢料液是由固、液两相构成的多相体系,反应器内流体的流变特性会造成容器内各点温度、流速等的分布不均,影响反应器内光合色素形成、采光面沉积程度及光合细菌与秸秆类物质的接触程度。秸秆生物质制氢的多相反应使固体颗粒对液体原有的流动特性和生化反应历程产生影响,进而影响生物反应器的整体混合行为,速度场、浓度场、温度场的分布规律及各种传质和传热程度,最终影响光合细菌的产氢能力。另外,秸秆类生物质光合产氢反应的多相流动使一些区域形成停滞区,一些区域受冲击较大,造成反应器的磨损,可能减少其使用寿命。
     本文主要依据光合细菌制氢的特点和多相反应原理,利用课题组筛选的光合细菌,研究了秸秆类生物质光合产氢体系液相流变特性和体系浊度变化规律,以及粘度、浊度和产氢之间的相关关系,分析探讨了折流式秸秆类生物质光合连续产氢反应器内料液速度场、浓度场的分布,初步建立了超微秸秆类生物质光合连续产氢体系多相流流场数学模型,并完成了超微秸秆类生物质光合连续产氢体系多相流数值计算及其实验研究。结果表明:
     (1)秸秆类生物质超微处理后的粒度和产氢反应工艺条件是影响产氢体系相对粘度的主要因素,在颗粒总质量不变的情况下,颗粒粒径变小,增强了颗粒间的相互作用强度,降低了体系的流动性,使得超微秸秆产氢体系的相对粘度增加最快;通过对温度、接种量、光照度、底物浓度等四因素的正交实验得到各因素对产氢体系粘度的影响次序为:底物浓度>温度>接种量>光照强度。并且料液为非牛顿型流体,其流变学性质随着产氢反应的进行变得较为复杂。
     (2)超微秸秆产氢料液的固相颗粒浓度、颗粒度、处理方式是影响产氢体系浊度大小的主要因素,固相颗粒浓度越大其体系浊度越大,不同颗粒度,超微处理高粱秸秆产氢体系的浊度一直比较大,各处理方式下其体系浊度总的变化规律不变,都呈现先稍微增大后不断减小的趋势,乙酸、盐酸和碱处理的体系浊度相差不大。
     (3)比较分析产氢体系粘度、浊度和产氢量的变化规律可知,随菌种浓度增大,颗粒度减小,对秸秆的降解能力增强,生成的胞外多糖增加了体系的相对粘度,造成沉降阻力增大,同时由于光合细菌生长使得体系浊度增加,导致体系浊度整体增加的量在开始阶段大于秸秆沉淀使体系浊度降低的量。菌种进入稳定期和衰亡期,胞外多糖被分解为氢气、挥发性脂肪酸和醇类,液相的相对粘度显著降低,体系粘度降低使得固相的沉降速度增大,加之细菌衰亡,体系浊度进一步降低,产氢量不断增加。
     (4)折流式秸秆类生物质光合连续产氢反应器内相对粘度差别不大,但由于进水的影响,体系浊度增加,固液接触面积增大,起到一定的搅拌作用。同一隔室,同一对应位置点下流室内的速度大于上流室内的速度,底物浓度较大的体系,流动能力较差,速度相对较小。Matlab软件编程计算得出折流式超微秸秆产氢的最优组合为温度33℃,光照强度3500 Lx ,接种量25%,底物浓度55 g/L。
     (5)采用CFD技术对超微秸秆光合产氢反应器内的流场进行了数值模拟和分析,基于混合模型得出超微秸秆光合产氢体系速度由较集中的主流区向周围不断发展,逐步达到速度的均匀分布,下流室内的速度大于上流室内的速度,并且反应器底部存在明显的推流运动,使得沉淀的固体颗粒向前运动,大部分集聚在上流室,上流室内固相分布高度和浓度都明显大于下流室;反应器内很大一部分区域都存在涡流,底部区域的涡流强度最大,这保障了光合细菌和超微秸秆颗粒的充分混合、接触,强化了传质,起到很好的自动搅拌作用。利用模型计算的节点理论值与节点实测数据比较接近,建立的模型比较切合实际。
ABSTRACT: This paper is supported by the National Natural Science Foundation (No. 50976029).
     Energy shortage and environment pollution is the most serious problems in 21th century. So it is necessary to search cellulose hydrogen with low-cost crop straw as raw material and develop industrial-scale biomass hydrogen production technology to supply energy inadequate, protect national energy security strategy, reduce dependence on fossil fuel and improve biomass recycling. Biomass straw photosynthetic hydrogen production is multiphase flow system consisting of solid phase and liquid phase. The fluid rheological properties in the reactor can influence temperature and velocity evenly distribution, photosynthetic pigment synthesis, lighting suface sedimentary and contact between photosynthesis bacteria and biomass straw. The change on the original liquid characteristics and biochemical reaction process influence bioreactor overall hybrid behavior, mass and heat transfer, and ultimately affect the ability of photosynthetic bacteria produce hydrogen. In addition, multiphase flow make some area become stagnant area and some area have bigger wallop which would reduce biomass straw photosynthetic hydrogen production reactor service life. So studying flow field mathematical simulation and rheological properties of photosynthetic bacteria hydrogen production system with ultramicro straw is very important.
     It was mainly based on the principle of multiphase flow and the characteristics of photosynthetic bacteria hydrogen production to research rheological properties and system turbidity. Furthermore, it revealed the influence of rheological properties and turbidity on biomass straw hydrogen production, analyzed velocity field and concentration field distribution, completed flow field mathematical simulation, and established multiphase flow mathematical model. The results showed that:
     (1)Particle size and process parameters was main influence factors on relative viscosity of hydrogen production system. When the total mass of particles remained unchanged, the smaller particle size enhanced the interaction strength among each other, reduced the liquidity of the system. The relative viscosity of hydrogen production system with ultramicro biomass straw were higher than other granularity. The orthogonal experiment indicated that the infuence of hydrogen production process parameters on relative viscosity was substrate concentration> temperature > inoculation>illumination. The mixtuere of supemicro straw hydrogen production was non-newtonian fluid, and its rheological properties became more complex with hydrogen production process.
     (2) The turbidity of hydrogen production system mainly influenced by solid phase particle concentration, particle size and pretreatment. The turbidity was the highest for ultramicro sorghum hydrogen production system, and increased with the increase of the solid phase particle concentration, while total variation which slightly increased at first and then decreased during the hydrogen production process unchanged with different pretreatment. Ultramicro deal was conducive to hydrogen production, but the capacity of hydrogen production lagged behind turbidity and viscosity changes.
     (3) The increased degradation ability of photosynthetic bacteria on biomass straw caused liquid relative viscosity and settlement resistance increase when inoculation increased, and particle size minished. Meanwhile, photosynthetic bacteria growth made system turbidity increase. After photosynthetic bacteria going into stabilization and decay period, exocellular polysaccharide was broken into hydrogen, volatile fatty acids and alcohols which made liquid relative viscosity significantly decrease, solid phase settling velocity increase, system turbidity rapidly reduce and hydrogen production amount increase.
     (4) Relative viscosity was not very different in the photobioreactor. The wallop of inflow wate make solid particles float, system turbidity increase, and solid-liquid contact area increase. The velocity of upflow chamber were significantly higher than downflow chamber in the same positions. The influence of substrate concentration mainly was that flow ability bacome bad due to the impact of relative viscosity. According to matlab software, 33℃temperature, 3500 Lx illumination, 25% inoculation and 55 g/L substrate were appropriate for the biological hydrogen production of PSB with ultramicro straw.
     (5)The CFD technology was applied to simulate and analyze the flow field in photosynthetic hydrogen production reactor. Based on mixture model, information about flow field was obtained in detail. The flow velocity of photosynthetic hydrogen production reactor evolved from the mainstream to the surrounding area, and gradually achieved uniform distribution. The bottom of reactor had obvious plug-flow movement which made sedimentation solid particles move forward and assemble in the upflow chamber. The height and the concentrations of solid-phase distribution of upflow chamber were significantly higher than downflow chamber. Most areas of the reactor were eddy current, and the maximum eddy current was at the bottom of the reactor, which was conducive to mix photosynthetic bacteria and straw particles and enhance mass transfer. In addition, the calculated results showed that the simulation results of flow field and notes were in accordance with the experimental results.
引文
[1]马赛.解决能源问题需要全球共同努力[N].光明日报, 2007. 11. 7.
    [2]王强,高为.海默科技(300084)新股定价报告—多项流量计细分行业的高科技专门性由服企业[R].湘财证券, 2010.04.03.
    [3]鄂勇,伞成立.能源与环境效应[M].北京:化学工业出版社, 2006.
    [4]Momirlan M, Veziroglu T N. The properties of hydrogen as fuel tomorrow in sustainable energy system for a cleaner planet[J]. Int J Hydrogen Energy, 2005, 30(7): 795-802.
    [5]RA Hefner. The age of energy gases. The 10th Repsol-Harvard seminar on energy policy,in Madrid, Spain, 1999[R]. The Industrial Physicist, 2000, 2:16-19.
    [6]刘江华.氢能源-未来的绿色能源[J].新疆石油科技, 2007, 17(1): 72-77.
    [7]毛宗强.氢能-21世纪的绿色能源[M].北京:化学工业出版社, 2005.
    [8]王继华,赵爱萍.生物制氢技术的研究进展与应用前景[J].环境科学研究, 2005, 18(4):170-177.
    [9]路锦程,黄峥.中国能源发展面临的挑战及应对措施探讨[J].建筑节能, 2007, 35(5): 1-4.
    [10]刘娅,徐峰.世界氢能与氢经济的发展概况及不同认识[J].世界科技研究与发展,2006, 28(2):101-106.
    [11]IPHE. A vision of the hydrogen economy[QL]. http://www.iphe.net/.
    [12]United States Department of Energy. A National Vision Of America's Transition To A Hydrogen Economy-To 2030 And Beyond. Washington DC. 2002. 2 [EB]. http://www1.eere.energy.gov/hydrogenandfuelcells/pdfs/vision_doc.pdf.
    [13]United States Department of Energy. Nation Hydrogen Energy Roadmap. Washington DC. 2002.11.http://www1.eere.energy.gov/hydrogenandfuelcells/pdfs/national_ h2_roadmap.pdf.
    [14]United States Department of Energy. Hydrogen Posture Plan– An Integrated Research, Development, and Demonstration Plan. Washington DC. 2006. 12 http://www.hydrogen.energy.gov/pdfs/hydrogen posture plan dec06.pdf.
    [15]顾钢.国外氢能技术路线图及对我国的启示[J].国际技术经济研究, 2004, 7(4):34-37.
    [16]http://china.toocle.com/cbna/item/2009-04-27/4541934.html
    [17]http://www.aist.go.jp/www_e/guide/gyoumu/nss/index.htmL.
    [18]科技部.科技部2005—2006年能源工作要点落实情况总结[OL].2006.2. http://www.most.gov.cn/zfwj/zfwj2006/zf06wj/zf06bgtfh/200604/t20060414_30729.htm.
    [19]科技部.863计划先进能源技术领域2007年度专题课题申请指南[EB/OL].2007.3. http://www.most.gov.cn/tztg/200703/t20070326_42348.htm.
    [20]Ramachandran R., Menon R.K. An overview of industrial uses of hydrogen [J]. International Journal of Hydrogen Energy, 1998, 23(7): 593- 598.
    [21]Rosen M A.,Scott D S. International Journal of Hydrogen Energy, Comparative efficiency assessments for a range of hydrogen production processes[J]. International Journal of Hydrogen Energy, 1998,23(7):653- 659.
    [22]Das D.,Veziroglu T. N. Hydrogen production by biological processes: Asurvey of literature [J]. International Journal of Hydrogen Energy,2001,26(1):13- 28.
    [23]高清慧.制氢技术的研究与发展趋势[J].中国高新技术企业,2008,15:57-58.
    [24]李艳,刘艳伟,杨滨.氢源廉价制备技术综述[J].郑州轻工业学院学报(自然科学版),2008,23(1):79-82.
    [25]Looscher S.,Burgdorf T.,Zebger I., et al.Bias from H2 cleavage to production and coordination changes at the Ni-Fe active site in the NAD+ reducing hydrogenase from Ralstonia eutropha [J]. Journal of applied microbiology, 2006, 45(38): 11658-11665.
    [26]Waligorska M.,Seifert K.,Szymanska K.,et al.Optimization of activation conditions of Rhodobacter sphaeroides in hydrogen generation process[J]. Journal of applied microbiology,2006,101(4):775-784.
    [27]任南琪,王爱杰.厌氧生物技术原理与应用[M].北京:化学工业出版社,2004.
    [28]樊耀亭,李晨林,侯红卫.天然厌氧微生物氢发酵生产生物氢气的研究[J].中国环境科学,2002, 22(4):370-374.
    [29]Radhey S. Gupta. Evolutionary relationships among photosynthetic bacteria[J]. Discoveries in Photosynthesis, 2005, 20:1087-1097.
    [30]Terrance E. Meyer, Michael A.Cusanovich. Discovery and characterization of electron transfer proteins in the photosynthetic bacteria[J]. Advances in Photosynthesis and Respiration, 2005, 20:455-470.
    [31]Chun-Yen Chen, Wei-bin Lu, et al. Enhancing phototrophic hydrogen production of Rhodopseudomonas palustris via statistical experimental design[J]. International Jouranl Hydrogen Energy, 2007, 32(8):940-949.
    [32]李刚.太阳能光合细菌连续制氢试验系统研究[D].郑州:河南农业大学博士学位论文,2008.
    [33]赵律,李志光,李辉勇.木质纤维素预处理技术研究进展[J].化学与生物工程,2007,24(5): 5-8.
    [34]宋佳秀,任南琪,刑德峰.木质纤维素生物转化氢气技术及前景[J].太阳能学报,2007,28(1):97-102.
    [35] http://wenku.baidu.com/view/4dc4a58884868762caaed5bb.html.
    [36] Sun Ye, Cheng Jiayang. Hydrolysis of lignocellulosic materials for ethanol production:A riew[J]. Bioresource Technology, 2002, 83(1):1-11.
    [37]Nathan Mosier, Charles Wyman, Bruce Dale. Features of promising technologies for pretreatmentof lignocellulosic biomass[J]. Bioresource Technology, 2005, 96(6): 673-686.
    [38]李达,姜媛媛,牛春华.木质纤维素类原料预处理工艺的研究[J].农产品加工, 2008, 4:51-54.
    [39]王许涛.生物纤维原料汽爆预处理技术与应用研究[D].郑州:河南农业大学博士学位论文, 2008.
    [40]Carlos Mart, Anne Belinda Thomsen. Wet oxidation pretreatment of lignocellulosic residues of sugarcane, rice, cassava and peanuts for ethanol production[J]. Journal of Chemical Technology and Biotechnology, 2007, 82(2): 174-181.
    [41] Kim Sung Bae, Lee Y Y. Diffusion of sulfuric acid within lignoccellulosic biomass particles and its impact on diluteacid pretreatment [J]. Bioresource Technology, 2002, 83(2): 165-171.
    [42] Sun Y,Cheng J J. Dilute acid pretreament of rye straw and bermudagrass for ethanol production[J]. Bioresource Technology, 2005, 96(14): 1599-1606.
    [43]Torget R, Werdene P, Himmel M, et al. Dilute acid pretreatment of short rotation woody and herbaceous crops[J]. Appl Biochem Biotechnol, 1990, 24(1):115-126.
    [44]张毅民,杨静,吕学斌,等.木质纤维素类生物质酸水解研究进展[J].世界科技研究与发展,2007,29(1):48-54.
    [45]Luo C, Brink D L, B lanch H W. Identification of potential fermentation inhibitors in conversion of hybrid poplar hydrolyzate to ethanol[J]. Biomass and Bioenergy,2002,22(2):125-138.
    [46]Mosier N S, Sarikaya A, Ladish C M, et al. Characterization of dicarboxylic acids for cellulose hydrolysis[J]. Biotechnol Prog, 2001, 17(3): 474-480.
    [47]William E Kaar, Mark T Holtzapple.Using lime pretreatment to facilicate the enzymic hydrolysis of com stover[J]. Biomass and Bioenergy, 2000, 18(3): 188-189.
    [48]陈翟微,刘长江.利用白腐真菌提高秸秆利用率[J].中国农业科技导报, 2001, 3(3):53-56.
    [49]付京花,甄二英,宋辛峰.生物技术在降解秸秆木质素中的应用[J].饲料工业,2001, 22(6): 38-39.
    [50]魏凤环,田景振,牛波.超微粉碎技术[J].山东中药杂志,1999,18(12): 559-560.
    [51]郭辰生.超微粉碎技术[J].食品工业,1998,(3):44.
    [52]M. Paakko, M.Ankerfors, H.Kosonen, et a1. Enzymatic hydrolysis combined with mechanical shearing and high-pressure homogenization for nanoscale cellulose fibrils and strong gels[J]. Biomacromolecules, 2007, 8(6): 321-334.
    [53]Ayse Alemdar, Mohini Sain.Isolation and characterization of nanofibers from agricultural residues-Wheat straw and soy hulls[J]. Bioresource Technology, 2008, 99(6):1664-1671.
    [54] Xu, Y., Q. Wu, Y. Lei, et al. Natural Fiber Reinforced Poly(vinyl chloride) Composites: Effect of Fiber Type and Impact Modifier[J]. Journal of Polymers and the Environment,2008,16(4): 250-257.
    [55]http://www.chem17.com/st146338/Article_52483.html
    [56]刘树立,王华.超微粉碎技术的优势及应用进展[J].干燥技术与设备,2007,5(7):35-38.
    [57]谢瑞红,王顺喜,谢建新,等.超微粉碎技术的应用现状及发展趋势[J].中国粉体技术,2009, 15(3): 64-67.
    [58]史冬霞,李奉勤,范成文.超微粉碎技术在中药生产中的研究概况[J].中国药业, 2005,15(11): 61-63.
    [59]陈宇红.高频振动磨超细粉碎黄芪试验研究[J].中国粉体技术, 2008, 14(1): 33-35.
    [60]张水寒,杨永华,蔡萍,等.微波提取对蒲黄超微粉中黄酮类成分影响的研究[J].中成药, 2004, 26(8): 613-617.
    [61]苏瑞强,何煜,王瑞成,等.超微粉碎技术提高六味地黄丸(水蜜丸)溶出度的研究[J].中国中药杂志, 2002, 27(7): 511-513.
    [62]张莉,于燕莉.超微粉碎技术及设备在国内中药领域应用概述[J].实用医药杂志, 2006, 23(6):752-753.
    [63]潘思轶,王可兴,刘强.不同粒度超微粉碎米粉理化特性研究[J].食品科学, 2004, 25(5): 58-62.
    [64]肖安红,邝艳梅,孙秀发.超微粉碎对大豆豆皮膳食纤维性质影响的研究[J].食品工业科技, 2008, 29(10): 99-103.
    [65]高云中,张晖,李伦,等.超微粉碎对花生蛋白提取及性质的影响[J].中国油脂, 2009, 34(4): 23-27.
    [66]郑慧,王敏,于智峰,等.超微粉碎对苦荞麸功能特性的影响[J].农业工程学报, 2007, 23 (12): 258-262.
    [67]Farajzadeh M A, Monji A B. Adsorption characteristics of wheat bran towards heavy metal cations[J]. Separation and Purification Technology, 2004, 38(3):197-207.
    [68]Iqbal S, Bhanger M I, Anwar F. Antioxidant properties and components of some commercially available varieties of rice bran in Pakustan[J]. Food Chemistry, 2005, 93(2): 256-272.
    [69]Kahlo T S, Smith G E, Shao Q. In vitro binding of bile acids by kidney bean, black gram, Bengal gram and moth bean[J]. Food Chemistry, 2005, 90(1): 241-246.
    [70]MAAROUFIc, MELCIONJP, MONREDONF, eta1. Fractionation of peaflour with pilot scale sieving. I. Physical and chemical characterist of pea seed fractions[C]. Animal Feed Science and Technology, 2000, 85(5): 61-78.
    [71]郭旭东,刁其玉,王秀文,等.天然植物饲料添加剂对动物的促生长作用机制[J].生理代谢调控, 2007, (5): 27-28.
    [72]孔祥蜂,刘合军,尹富贵,等.中药超微粉对早期断奶仔猪白细胞分类和抗氧化功能的影响[J].天然产物研究与开发, 2007, (19): 44-47.
    [73]JIN S Y, CHEN H Z. Superfine grinding of steam exploded rice straw and its erzyrmatic hydrolysis[J]. Biochemical Engineering Journal, 2006, 30(3): 225-230.
    [74]赵晓燕,盖国胜,杨玉芬.超微粉碎技术在饲料行业中的应用[J].中国粉体技术, 2008, 14: 52-56.
    [75]张炳文.农林资源加工超微粉碎技术[J].高科技与产业化, 2006, (8): 109-110.
    [76]郝征红,张炳文,岳风丽.超微粉碎加工技术在农产资源开发中的应用[J].食品科学, 2006, (1): 24-27.
    [77]Kang JX, Liu J, Wang J, et al. The Extract of huang lian, a medicinal herb, induces cell growth arrest and apoptosis by upregulation of interferon-beta and TNF-alpha in human breast cancer cell[J]. Carinogenesis. 2005,16(11): 1934-1936.
    [78] http://www.chem17.com/st19462/Article_36312.html.
    [79]Christopher J S Petrie. The rheology of fibre suspensions [J]. J.Non-Newtonian Fluid Mech, 1999, (6): 1-37.
    [80]Y.Deubelbeiss, B.J.P.Kaus, J.A.D.Connolly. Direct numerical simulation of two phaseow: Effective rheology and flow patterns of particle suspensions[J]. Earth and Planetary Science Letters, 2010, 290: 1-12.
    [81] E.W.Llewellin, M.Manga. Bubble suspension rheology and implications for conduit flow[J]. Journal of Volcanology and Geothermal Research, 2005, 143: 205-217.
    [82]http://www.instrument.com.cn/download/shtml/119508.shtml
    [83] http://www.laborpraxis.vogel.com.cn/ShowArticle.asp?ArticleID=10991
    [84]Stefano Curcio, VincenzaCahbro, Gabriele lorio, et a1. Fruit juice concentration by membranes: efect of rheological properties polarization phenomena[J]. Journal of Food Engineering, 2001, 48(3): 235-241.
    [85]E Hemandez. Viscosity changes in orange juice after altrafiltration and evaporation[J]. Journal of Food Engineering, 1995, 25(3): 387-396.
    [86]D B Genovese, J E Lozano. The efect of hydrocolloids on the stability and viscosity of cloudy apple juices[J]. Food Hydroeolloids, 2001, 15(1): 1-7.
    [87]涂宗财,陈剑兵,刘成梅,等.带肉胡萝汁的流变特性研究[J].食品科学, 2006, 27(3): 52-54.
    [88]涂宗财,陈剑兵,刘成梅,等.带果肉芹菜汁的流变特性研究[J].食品工业科, 2006,27(2): 101-103.
    [89]涂宗财,任维,刘成梅,等.超高压均质技术对玉米淀粉流变特性的影响[J].食品与发酵工业, 2007, 33(8):7-9.
    [90]涂宗财,任维,阮榕生,等.超高压技术对大米淀粉物位影响初探[J].食品工业科技, 2006,(5): 103-105.
    [91]程佩芝,赵东,王德明,等.农作物秸秆碎料压缩流变特性试验系统的研制[J].木材加工机械, 2006,(4): 23-24, 31.
    [92]卢超然,张晓健,张悦,等. SBR工艺运行条件对好氧污泥颗粒化和除磷效果的影响[J].环境科学, 2001, 22(2): 87-90.
    [93]LIU Y,TAY J H.The essential role of hydrodynamic shear force in the formation of biofilm and granular sludge[J]. Water Res., 2002, 36(7): 1653-1665.
    [94]BEUN J J, VAN LOOSDRECHT M C M, HEIJNEN J J. Aerobic Granulation in a Sequencing Batch Airlift Reactor[J]. Water Res., 2002, 36(10): 702-712.
    [95]冯骞,薛朝霞,汪麴,等.水流剪切力对活性污泥特性影响的试验研究[J].河海大学学报, 2006, 34(4): 374-377.
    [96]Mishra S K, Senapatip K, Panda D. RheologicaI behavior of coal-water slurry[J]. Energy Sources, 2002, 24(2): 159-167.
    [97]Ahmet G, M etin A, Cetin D, et a1. An investigation on effects of various parameters on viscosities of coal water mixture prepared with Erzurum Askale lignite coal[J]. Fuel processing Technology, 2006, 87 (9): 821- 827.
    [98]陈良勇,段钰锋,刘猛,等.水煤浆真实流变特性的研究[J].动力工程, 2008, 28(5): 753-738.
    [99]宋亚婵,李涛,任保增,等.玉米秸秆厌氧发酵生物制氢流变学性质的研究[J],河北化工, 2008, 31(2): 32-34.
    [100]郭烈锦.两相与多项流动力学[M].西安:西安交通大学出版社, 2002.
    [101]车得福,李会雄.多相流及其应用[M].西安:西安交通大学出版社, 2007.
    [102]高明.城市排水管道内污水两相流临界流速研究[D].重庆:重庆大学硕士学位论文, 2006.
    [103]Kaftori D, Hetsroni G, Banedee S. Particle behavior in the turbulent boundary layer. II. Velocity and distribution profiles[J]. Phys Fluids, 1995, 7(5): 1107-1121.
    [104] M uste M, Patel VC. Velocity profiles for particles and liquid in open-channel flow with suspended sediment[J]. J Hydr Eng, 1997, 123(9): 742-751.
    [105] Ni Jinren, Wang Guangqian, Borthwick AGL. Kinetic theory for particles in dilute and dense solid-liquid flows[J]. J Hydr Eng, 2000, 126(12): 893-903.
    [106] Hyland KE, McKee S, Reeks MW. Derivation of a pdf kinetic equation for the frans port ofparticles in turbulent flows[J]. J Phys A: Math Gen, 1999, 32: 6169-6190.
    [107] Derevich IV. Statistical modeling of mass transfer in turbulent two-phase dispersed flows-l: Model development[J]. Int J Heat Mass Transfer, 2000, 43(19): 3709-3723.
    [108] Zaichik LI, Pershukov VA, Kozelev MV, et a1. Modeling of dynamics, heat trans fer, and combus tion in two-phase turbulent flows: 1.Isotherm al flows[J]. Experimental Thermal and Fkid Science, 1997, 15(4): 29l-3l0.
    [109]傅旭东,王光谦.低浓度固液两相流的颗粒相动理学模型[J].力学学报, 2003, 35(6): 650-659.
    [110]韩占忠. Fluent-流体工程仿真计算实例与分析[M].北京:北京理工大学出版社, 2009.
    [111]李进良,李承曦,胡仁喜,等. Fluent6.3流场分析[M].北京:化学工业出版社,2009.
    [112]王瑞金,张凯,王刚,等. Fluent技术基础与应用实例[M].北京:清华大学出版社, 2007.
    [113]孙会.搅拌罐内气液两相流场的数值研究[J].上海机电学院学报, 2008, 11(3): 090-091, 191, 291.
    [114]赵春波,杨德武,张昌林.管式离心机固液两相流场的数值模拟[J].过滤与分离, 2007, 17(1): 22-25.
    [115]杨锋苓,周慎杰,张翠勋.摆动式搅拌槽内宏观流场的数值模拟[J].山东大学学报, 2008, 38(5): 16-49.
    [116]刘诚,沈永明.三维模型k-ξ-Ap在固液两相流时均运动特性研究中的应用[J].水动力学研究与进展, 2007, 22(1): 106-112.
    [117]王毅.高压除鳞喷嘴流场三维数值模拟与试验研究[D].武汉:武汉科技大学硕士学位论文, 2008.
    [118]屈强,马鲁铭,王红武.折流式沉淀池流态模拟[J].中国给水排水, 2005, 21(4): 58-61.
    [119]张冰,任南琪,周雪飞.生物制氢反应器流场的数值模拟[J].太阳能学报, 2008, 29(12): 1558-1662.
    [120]A.Haque, R.K.Richardson, E.R.Morris. Effect of temperature on the rheology of set and stirred yogurt[J]. Food Hydrocolloids, 2001,15(4): 593-602.
    [121]National Research Council. The Hydrogen Economy: Opportunities, Costs, Barriers, and R&D Needs [M]. Washington: National Academy Press, 2004.
    [122]申翔伟.农作物秸秆光合细菌产氢原料的乙酸预处理技术实验研究[D].郑州:河南农业大学硕士学位论文, 2010.
    [123]张春华,严云良.医药数理统计[M].北京:科学出版社出版, 2001.
    [124]三宅淳著,王伟廉译.利用光合作用细菌制氢[J].新能源, 1991, 13(3):48- 52.
    [125] GB 13200-91,水质浊度的测定[S].
    [126]Asikala K, Ramana C H V, RaO P R. Regulation of Simultaneous hydrogenphotoproduction during growth by pH alld glutamate in Rhodobacter spharoides [J], In J Hydrogen Energy, 1995,(20):123-126.
    [127]ErogLu I, Aslan K, Gunduz U, et al. Substrate consumption rates for hydrogen production by Rhodobacter spharoides in a column photobioreactor[J]. Journal of Biotechnology, 1999, 70(1):103-113.
    [128]Kondo T, Arakawa M, Wakayama T, et al. Hydrogen production by combining two types of photosynthetic bacteria with different characteristics[J]. International Journal of Hydrogen Energy, 2002, 27(11): 1303-1308.
    [129]徐金兰.厌氧折流板反应器(ABR)系统的特性及调控研究[D].西安:西安建筑科技大学博士学位论文, 2003.
    [130]高明.城市排水管道内污水两相流临界流速研究[D],重庆:重庆大学硕士学位论文, 2006.
    [131]袁志发,周静芋.试验设计与分析[M].北京:高等教育出版社, 2000.
    [132]Fluent 6.1 User’s guid-general multiphase models. 2003: Fluent Inc.
    [133]Syamlal, M., Rogers, W., O’Brien, T. J.. MFLX documentation, Theory guid, Nationl Technical Information Service [R]. US Dept.Energy, 1993.12.01.
    [134]Gidaspow,D.,Bezburuah,R.,Ding,J. Hydrodynamics of circulating fluidized beds, kinetic theory appraoch[C]. Fluidization VII, proceedings of the 7th engineering foundation conference on fluidization, 1992,75-82.
    [135]宋文吉,肖睿,冯自平,等.潜热输送介质颗粒沉降速度的固-液两相流模型[J].工程热物理学报, 2010, (10): 1693-1696.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700