有机样品中激光诱导等离子体时空分辨特性以及无机元素的定量分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文主要阐述针对有机样品的激光诱导等离子体的机理,以及激光诱导击穿光谱(laser-induced breakdown spectroscopy-LIBS)对有机样品的定量分析。本文主要目的在于增加对一些基本物理机制的理解。这些物理机制主要包括激光与物质相互作用、等离子体的产生、演变和向环境气体的膨胀;本文还致力于如何提高激光诱导击穿光谱对有机样品的分析能力。激光在有机样品表面产生的等离子体与金属表面产生的等离子体有着明显的差别,特别是激光烧蚀样品的机制远比金属表面要复杂。正是由于有机样品的独特性,LIBS在此类样品的应用目前属于国际LIBS研究的热点。提高LIBS分析有机样品的能力在于怎么实现激光在有机样品表面产生的等离子体的时空分布稳定性和重现性。
     针对LIBS对有机样品的应用,本文将按以下组织结构进行阐述:
     首先,前言部分主要介绍当今LIBS的科学技术背景。第一章主要回顾一些理论知识,包括必要的激光诱导等离子体的产生和等离子体在背景气体中的膨胀过程,其中特别强调在有机样品中的应用。第二章着重于一种典型农业产品,马铃薯皮样品中等离子体的产生和演变。本文工作开始时,在软质并且潮湿的有机样品,如新鲜土豆中的等离子诱导的特点还是当时科研界的未知领域。这些特性的研究为在有机品中的痕量和超痕量金属元素定量分析提供了必要的理论基础。在阐述该样品中的等离子体特性后,本章节讨论了土豆皮中LIBS光谱特性,并且提取出半定量的分析结果。在第二章的研究基础上,本文第三章继续讨论LIBS对有机样品的定量分析。本章主要研究LIBS技术和电感耦合等离子体原子发射光谱(Inductively Coupled Plasma Atomic Emission Spectroscopy:ICP-AES)在对奶粉样品的定量分析结果的比较。该结果一方面是对LIBS技术对有机样品定量分析能力的评估,另一方面也验证了本文采用的无校准LIBS (Calibration Free-LIBS:CF-LIBS)技术手段和结果。不同于第二、三两章侧重于有机样品中的微量金属元素的测量,第四章研究的主要内容在于有机样品固有的有机结构,也就是被公认的四大有机元素C、H、O和N。由于激光烧蚀有机样品会有机结构的分解,在等离子体中这些元素可能以分子链的形式直接从样品中喷射出来;同时它们也可能通过碰撞重组,以新的分子形式存在。本章我们主要讨论这些分子的形成与激光烧蚀参数之间的联系,其中主要研究不同激光波长对样品烧蚀的影响。本文最后总结了上述工作并提出在此基础上的展望。
This PhD work was devoted to the understanding of the laser-induced plasma on organic materials and the application of laser-induced breakdown spectroscopy (LIBS) to quantitative analysis of these materials. It contributes to deepen our knowledge on the physical mechanisms involved in laser-matter interaction, plasma generation, evolution and expansion of the plasma into the ambient gas, with emphasis on plasmas induced on organic targets. It also intends to improve the performance of LIBS for the analysis of organic materials. The specificity for organic targets fits the current focus of the international community working on LIBS, to improve the control of the plasma induced on this kind of material which has a distinguished optical prosperity with respect to that of metals, better known for laser ablation. It addresses also the growing need to apply the LIBS technique to organic materials for different applications in the environmental, food, or biomedical domains.
     The works in this thesis were therefore presented in this thesis document according to the following organization.
     After the General Introduction which introduces the scientific and technological contexts, Chapter Ⅰ recalls the basic theoretical elements necessary to understand the phenomenon of plasma generation by laser ablation, and its evolution in the background gas. Ablation of organic material is emphasized. Procedures and techniques of diagnostics of laser-induced plasma were then presented with a focus on the transient and inhomogeneous nature of the expanding plasma. Chapter Ⅱ focuses on the generation and the evolution of the plasma induced on the skin of a potato, a typical sample of agricultural product. The characteristics of plasma induced on a soft and wet organic target, such as a fresh potato, was something unknown when the thesis work started. These characteristics provide the necessary basis for the quantitative analysis of the trace and ultra-trace metallic elements in these samples. Following this characterization, semi-quantitative analytical results were extracted from LIBS spectra corresponding to potato skin. Chapter Ⅲ is presented in the continuity of Chapter Ⅱ for the application of LIBS to the quantitative analysis of organic materials. A comparative study on the analytical results with LIBS and ICP-AES for milk powders allows an assessment of the performances of quantitative analysis by LIBS for organic materials, and a validation of the CF-LIBS procedure that we have developed. Different from Chapters Ⅱ and Ⅲ where attention was paid to trace metal elements, Chapter Ⅳ studies the behavior of the major elements that make up the matrix of organic material, which are4known organic elements:H, C, O, N. During the decomposition of organic material by laser ablation, these elements can be found in the form of molecular fragments, or recombined into molecular species. We then study in this Chapter the evolution of these species as a function of the laser ablation parameters, the laser wavelength in particular. The thesis document ends with a general conclusion and outlooks.
引文
1. Brech F, Cross L. Opticalmicroemission stimulated by a ruby maser. Appl. Spectrosc.1962; 16:59
    2. Debras-Guedon J, Liodec N. De 1'utilisation du faisceau issu d'un amplificateur a ondes lumineuses par emission induite de rayonnement (laser a rubis), comme source energetique pour l'excitation des spectres d'emission des elements. C.R. Acad. Sci.1963;257:3336-3339
    3. Runge ER, Minck RW, Bryan FR. Spectrochemical analysis using a pulsed laser source. Spectrochim. Acta.1964;20:733
    4. Moenke H, Moenke-Blankenburg L. Laser micro-spectrochemicalanalysis. New York:Crane, Russak & Co; 1973.
    5. Ready JF. Effects of high-power laser radiation. New York:Academic Press; 1971.
    6. Radziemski LJ. From laser to libs, the path of technology development. Spectrochim. Acta Part B.2002;57:1109-1113
    7. Radziemski LJ, Loree TR. Laser-induced breakdown spectroscopy: Time-resolved applications. J. Plasma Chem. Plasma Proc.1981; 1:281-293
    8. Cremers DA, Radziemski LJ. Detection of chlorine and fluorine in air by laser-induced breakdown spectrometry. Anal. Chem.1983;55:1252-1256
    9. Radziemski LJ, Cremers DA, Loree TR. Detection of beryllium by laser-induced breakdown spectroscopy. Spectrochim. Acta Part B.1983;38:349-355
    10. Cremers DA, Radziemski LJ. Direct detection of beryllium on filters using the laser spark. Appl. Spectrosc.1985;39:57-63
    11. Radziemski LJ, Loree TR, Cremers DA, Hoffman NM. Time-resolved laser-induced breakdown spectrometry of aerosols. Anal. Chem. 1983;55:1246-1252
    12. Wisbrun R, Schechter I, Niessner R, Schroeder H, Kompa KL. Detector for trace elemental analysis of solid environmental samples by laser plasma spectroscopy. Anal. Chem.1994;66:2964-2975
    13. Ciucci A, Palleschi V, Rastelli S, Barbini R, Colao F, Fantoni R, Palucci A, Ribezzo S, van der Steen HJL. Trace pollutions analysis in a soil by a time-resolved laser-induced breakdown spectroscopy technique. Appl. Phys. B. 1996;63:185-190
    14. Gornushikin IB, Kim JI, Smith BW, Baker SA, Winefordner JD. Determination of cobalt in soil, steel, and graphite using excited-state laser fluorescence induced in a laser spark. Appl. Spectrosc.1997;51:1055-1059
    15. Hilbk-Kortenbruck F, Noll R, Wintjens P, Falk H, Becker C. Analysis of heavy metals in soils using laser-induced breakdown spectrometry combined with laser-induced fluorescence. Spectrochim Acta B.2001;56:933-945
    16. Aragon C, Aguilera JA, Campos J. Determination of carbon content in molten steel using laser-induced breakdown spectroscopy.1993;47:606-608
    17. Aguilera JA, Aragon C, Campos J. Determination of carbon content in steel using laser-induced breakdown spectroscopy. Appl. Spectrosc. 1992;46:1382-1387
    18. Sabsabi M, Cielo P. Quantitative analysis of aluminum alloys by laser-induced breakdown spectroscopy and plasma characterization. Appl. Spectrosc. 1995;49:499-507
    19. Sattmann R, Monch 1, Krause H, Noll R, Couris S, Hatziapostolou A, Mavromanolakis A, Fotakis C, Larrauri E, Miguel R. Laser-induced breakdown spectroscopy for polymer identification. Appl Spectrosc.1998;52:456-461
    20. Monch I, Noll R, Buchholz R, Worringer J. Laser identifies steel grades:A new approach to the automatic inspection of pipe fittings.2000; 12:25-29
    21. Fink H, Panne U, Niessner R. Analysis of recycled thermoplasts from consumer electronics by laser-induced plasma spectroscopy. Anal Chim Acta. 2001;440:17-25
    22. Garcia-Ayuso LE, Amador-Hernandez J, Fernandez-Romero JM, de Castro MDL. Characterization of jewellery products by laser-induced breakdown spectroscopy. Anal Chim Acta.2002;457:247-256
    23. De Giacomo A, Dell'Aglio M, De Pascale O, Gaudiuso R, Teghil R, Santagata A, Parisi GP. Ns- and fs-libs of copper-based-alloys:A different approach. Appl Surf Sci.2007;253:7677-7681
    24. Elhassan A, Giakoumaki A, AngloS D, Ingo GM, Robbiola L, Harith MA. Nanosecond and femtosecond laser induced breakdown spectroscopic analysis of bronze alloys. Spectrochim Acta B.2008;63:504-511
    25. Burgio L, Melessanaki K, Doulgeridis M, Clark RJH, Anglos D. Pigment identification in paintings employing laser induced breakdown spectroscopy and raman microscopy. Spectrochim Acta B.2001;56:905-913
    26. Bicchieri M, Nardone M, Russo PA, Sodo A, Corsi M, Cristoforetti G, Palleschi V, Salvetti A, Tognoni E. Characterization of azurite and lazurite based pigments by laser induced breakdown spectroscopy and micro-raman spectroscopy. Spectrochim Acta B.2001;56:915-922
    27. Colao F, Fantoni R, Lazic V, Spizzichino V. Laser-induced breakdown spectroscopy for semi-quantitative and quantitative analyses of artworks application on multi-layered ceramics and copper based alloys. Spectrochim Acta B.2002;57:1219-1234
    28. De Giacomo A, Dell'Aglio M, De Pascale O, Gaudiuso R, Santagata A, Teghil R. Laser induced breakdown spectroscopy methodology for the analysis of copper-based-alloys used in ancient artworks. Spectrochim Acta B. 2008;63:585-590
    29. Barbini R, Colao F, Lazic V, Fantoni R, Palucci A, Angelone M. On board libs analysis of marine sediments collected during the xvi italian campaign in antarctica. Spectrochim Acta B.2002;57:1203-1218
    30. De Giacomo A, Dell' Aglio M, De Pascale O, Longo S, Capitelli M. Laser induced breakdown spectroscopy on meteorites. Spectrochimica Acta Part B: Atomic Spectroscopy.2007;62:1606-1611
    31. Senesi GS, Dell'Aglio M, Gaudiuso R, De Giacomo A, Zaccone C, De Pascale O, Miano TM, Capitelli M. Heavy metal concentrations in soils as determined by laser-induced breakdown spectroscopy (libs), with special emphasis on chromium. Environ Res.2009; 109:413-420
    32. Juve V, Portelli R, Boueri M, Baudelet M, Yu J. Space-resolved analysis of trace elements in fresh vegetables using ultraviolet nanosecond laser-induced breakdown spectroscopy. Spectrochimica Acta Part B:Atomic Spectroscopy. 2008;63:1047-1053
    33. Lei WQ, Motto-Ros V, Boueri M, Ma QL, Zhang DC, Zheng LJ, Zeng HP, Yu J. Time-resolved characterization of laser-induced plasma from fresh potatoes. Spectrochim Acta B.2009;64:891-898
    34. Ferreira EC, Menezes EA, Matos WO, Milori DMBP, Nogueira ARA, Martin-Neto L. Determination of ca in breakfast cereals by laser induced breakdown spectroscopy. Food Control.2010;21:1327-1330
    35. Miziolek AW, Palleschi V, Schechter I. Laser-induced breakdown spectroscopy: Fundamentals and applications.2006
    36. Cremers DA, Radziemski LJ. Handbook of laser-induced breakdown spectroscopy. Chichester:John Wiley & Sons; 2006.
    37. Hahn DW, Omenetto N. Laser-induced breakdown spectroscopy (libs), part ⅰ: Review of basic diagnostics and plasma-particle interactions:Still-challenging issues within the analytical plasma community. Appl. Spectrosc. 2010;64:335A-366A
    38. Noda M, Deguchi Y. Iwasaki S, Yoshikawa N. Detection of carbon content in a high-temperature and high-pressure environment using laser-induced breakdown spectroscopy. Spectrochim Acta B.2002;57:701-709
    39. Michel APM, Lawrence-Snyder M, Angel SM, Chave AD. Laser-induced breakdown spectroscopy of bulk aqueous solutions at oceanic pressures: Evaluation of key measurement parameters. Appl Optics.2007;46:2507-2515
    40. Samek O, Margetic V, Hergenroder R. Sampling of material using femtosecond pulses. Analytical and Bio analytical Chemistry.2005;381:54-56
    41. Margetic V, Bolshov M, Stockhaus A, Niemax K, Hergenroder R. Depth profiling of multi-layer samples using femtosecond laser ablation. Journal of Analytical Atomic Spectrometry.2001; 16:616-621
    42. Assion A, Wollenhaupt M, Haag L, Mayorov F, Sarpe-Tudoran C, Winter M, Kutschera U, Baumert T. Femtosecond laser-induced-breakdown spectrometry for ca2+ analysis of biological samples with high spatial resolution. Appl Phys B-Lasers O.2003;77:391-397
    43. Zorba V, Mao X, Russo R. Optical far- and near-field femtosecond laser ablation of si for nanoscale chemical analysis. Analytical and Bioanalytical Chemistry. 2010;396:173-180
    44. Samek O, Kurowski A, Kittel S, Kukhlevsky S, Hergenroder R. Ultra-short laser pulse ablation using shear-force feedback:Femtosecond laser induced breakdown spectroscopy feasibility study. Spectrochim Acta B. 2005;60:1225-1229
    45. Stelmaszczyk K, Rohwetter P, Mejean G, Yu J, Salmon E, Kasparian J, Ackermann R, Wolf J-P, Woste L. Long-distance remote laser-induced breakdown spectroscopy using filamentation in air. Applied Physics Letters. 2004;85:3977-3979
    46. Tzortzakis S, Anglos D, Gray D. Ultraviolet laser filaments for remote laser-induced breakdown spectroscopy (libs) analysis:Applications in cultural heritage monitoring. Opt. Lett.2006;31:1139-1141
    47. Rohwetter P, Yu J, Mejean G, Stelmaszczyk K, Salmon E, Kasparian J, Wolf JP, Woste L. Remote libs with ultrashort pulses:Characteristics in picosecond and femtosecond regimes. Journal of Analytical Atomic Spectrometry. 2004; 19:437-444
    48. Rohwetter P, Stelmaszczyk K, Woste L, Ackermann R, Mejean G, Salmon E, Kasparian J, Yu J, Wolf JP. Filament-induced remote surface ablation for long range laser-induced breakdown spectroscopy operation. Spectrochimica Acta Part B:Atomic Spectroscopy.2005;60:1025-1033
    49. Goujon J, Giakoumaki A, Pinon V, Musset O, Anglos D, Georgiou E, Boquillon JP. A compact and portable laser-induced breakdown spectroscopy instrument for single and double pulse applications. Spectrochim Acta B. 2008;63:1091-1096
    50. Bousquet B, Travaille G, Ismael A, Canioni L, Pierres KML, Brasseur E, Roy S, le Hecho I, Larregieu M, Tellier S, Potin-Gauder M, Boriachon T, Wazen P, Diard A, Belbeze S. Development of a mobile system based on laser-induced breakdown spectroscopy and dedicated to in situ analysis of polluted soils. Spectrochim Acta B.2008;63:1085-1090
    51. Salle B, Mauchien P, Maurice S. Laser-induced breakdown spectroscopy in open-path configuration for the analysis of distant objects. Spectrochim Acta B. 2007;62:739-768
    52. Boue-Bigne F. Laser-induced breakdown spectroscopy applications in the steel industry:Rapid analysis of segregation and decarburization. Spectrochim Acta B. 2008;63:1122-1129
    53. Knight AK, Scherbarth NL, Cremers DA, Ferris MJ. Characterization of laser-induced breakdown spectroscopy (libs) for application to space exploration. Appl Spectrosc.2000;54:331-340
    54. Colao F, Fantoni R, Lazic V, Paolini A, Fabbri F, Ori GG, Marinangeli L, Baliva A. Investigation of libs feasibility for in situ planetary exploration:An analysis on martian rock analogues. Planet Space Sci.2004;52:117-123
    55. Sirven JB, Salle B, Mauchien P, Lacour JL, Maurice S, Manhes G. Feasibility study of rock identification at the surface of mars by remote laser-induced breakdown spectroscopy and three chemometric methods. Journal of Analytical Atomic Spectrometry.2007;22:1471-1480
    56. Dreyer CB, Mungas GS, Thanh P, Radziszewski JG. Study of sub-mj-excited laser-induced plasma combined with raman spectroscopy under mars atmosphere-simulated conditions. Spectrochim Acta B.2007;62:1448-1459
    57. Cremers DA, Chinni RC. Laser-induced breakdown spectroscopy-capabilities and limitations. Appl Spectrosc Rev.2009;44:457-506
    58. Ciucci A, Corsi M, Palleschi V, Rastelli S, Salvetti A, Tognoni E. New procedure for quantitative elemental analysis by laser-induced plasma spectroscopy.Appl. Spectrosc.1999;53:960-964
    59. Tognoni E, Cristoforetti G, Legnaioli S, Palleschi V. Calibration-free laser-induced breakdown spectroscopy:State of the art. Spectrochim. Acta Part B.2010;65:1-14
    60. Hamzaoui S, Khleifia R, Jaidane N, Ben Lakhdar Z. Quantitative analysis of pathological nails using laser-induced breakdown spectroscopy (libs) technique. Lasers in Medical Science.2011;26:79-83
    61. Lucena P, Dona A, Tobaria LM, Laserna JJ. New challenges and insights in the detection and spectral identification of organic explosives by laser induced breakdown spectroscopy. Spectrochimica Acta Part B:Atomic Spectroscopy. 2011;66:12-20
    62. Duchene S, Detalle V, Bruder R, Sirven JB. Chemometrics and laser induced breakdown spectroscopy (libs) analyses for identification of wall paintings pigments. Current Analytical Chemistry.2010;6:60-65
    63. Anzano J, Lasheras RJ, Bonilla B, Casas J. Classification of polymers by determining of c-1:C-2:Cn:H:N:O ratios by laser-induced plasma spectroscopy (lips). Polym Test.2008;27:705-710
    64. Tran M, Sun S, Smith BW, Winefordner JD. Determination of c:H:O:N ratios in solid organic compounds by laser-induced plasma spectroscopy. Journal of Analytical Atomic Spectrometry.2001; 16:628-632
    65. Anzano JM, Gornushkin IB, Smith BW, Winefordner JD. Laser-induced plasma spectroscopy for plastic identification. Polym Eng Sci.2000;40:2423-2429
    66. Gondal MA, Siddiqui MN. Identification of different kinds of plastics using laser-induced breakdown spectroscopy for waste management. Journal of Environmental Science and Health, Part A.2007;42:1989-1997
    67. Baudelet M, Guyon L, Yu J, Wolf JP, Amodeo T, Frejafon E, Laloi P. Spectral signature of native cn bonds for bacterium detection and identification using femtosecond laser-induced breakdown spectroscopy. Applied Physics Letters. 2006;88:063901
    68. Baudelet M. Proprietes physico-chimique du plasma induit par laser en regime nanoseconde et femtoseconde:Application analytique aux bacteries et aux produits agroalimentaires. These Universite Lyon 1.2008
    69. Boueri M. Laser-induced plasma on polymeric materials and applications for discrimination and identification of plastics. These Universite Lyon 1.2010
    70. Baudelet M, Yu J, Bossu M, Jovelet J, Wolf J-P, Amodeo T, Frejafon E, Laloi P. Discrimination of microbiological samples using femtosecond laser-induced breakdown spectroscopy. Applied Physics Letters:2006;89:163903-163903
    71. Boueri M, Motto-Ros V, Lei W-Q, Qain L, Zheng L-J, Zeng H-P, JinYu. Identification of polymer materials using laser-induced breakdown spectroscopy combined with artificial neural networks. Appl. Spectrosc.2011;65:307-314
    72. Harilal SS, Bindhu CV, Tillack MS, Najmabadi F, Gaeris AC. Internal structure and expansion dynamics of laser ablation plumes into ambient gases. J Appl Phys.2003;93:2380-2388
    73. Bauerle D. Laser processing and chemistry. Berlin, Heidelberg:Springer-Verlag; 2011.
    74. Bogaerts A, Chen ZY, Gijbels R, Vertes A. Laser ablation for analytical sampling:What can we learn from modeling? Spectrochim Acta B. 2003;58:1867-1893
    75. Fantoni R, Caneve L, Colao F, Fornarini L, Lazic V, Spizzichino V. Methodologies for laboratory laser induced breakdown spectroscopy semi-quantitative and quantitative analysis—a review. Spectrochimica Acta Part B:Atomic Spectroscopy.2008;63:1097-1108
    76. Balazs L, Gijbels R, Vertes A. Expansion of laser-generated plumes near the plasma ignition threshold. Anal Chem.1991;63:314-320
    77. Chen ZY, Bogaerts A. Laser ablation of cu and plume expansion into 1 atm ambient gas. J Appl Phys.2005;97:063305
    78. Mao SS, Mao X, Greif R, Russo RE. Initiation of an early-stage plasma during picosecond laser ablation of solids. Applied Physics Letters.2000;77:2464-2466
    79. Vertes A, De Wolf M, Juhasz P, Gijbels R. Threshold conditions of plasma ignition in laser ionization mass spectrometry of solids. Anal Chem. 1989;61:1029-1035
    80. Bityurin N, Luk'yanchuk BS, Hong MH, Chong TC. Models for laser ablation of polymers. Chem Rev.2003; 103:519-552
    81. Fox M. Optical properties of solids. Oxford University Press; 2010.
    82. Kawamura Y, Toyoda K, Namba S. Effective deep ultraviolet photoetching of polymethyl methacrylate by an excimer laser. Applied Physics Letters. 1982;40:374-375
    83. Srinivasan R, Maynebanton V. Self-developing photoetching of poly(ethylene-terephthalate) films by far ultraviolet excimer laser-radiatior. Applied Physics Letters.1982;41:576-578
    84. Vogel A, Venugopalan V. Mechanisms of pulsed laser ablation of biological tissues. Chem Rev.2003; 103:577-644
    85. Sutcliffe E, Srinivasan R. Dynamics of uv laser ablation of organic polymer surfaces. J Appl Phys.1986;60:3315-3322
    86. Luk'yanchuk B, Bityurin N, Arnold N, Bauerle D. The role of excited species in ultraviolet-laser materials ablation iii. Non-stationary ablation of organic polymers. Applied Physics A:Materials Science & Processing.1996;62:397-401
    87. Harilal SS, Issac RC, Bindhu CV, Nampoori VPN, Vallabhan CPG. Temporal and spatial evolution of c[sub 2] in laser induced plasma from graphite target. J Appl Phys.1996;80:3561-3565
    88. Iida Y, Yeung ES. Optical monitoring of laser-induced plasma derived from graphite and characterization of the deposited carbon film. Appl. Spectrosc. 1994;48:945-950
    89. Ma Q, Dagdigian P. Kinetic model of atomic and molecular emissions in laser-induced breakdown spectroscopy of organic compounds. Analytical and Bioanalytical Chemistry.2011:1-13
    90. St-Onge L, Sing R, Bechard S, Sabsabi M. Carbon emissions following 1.064 μm laser ablation of graphite and organic samples in ambient air. Applied Physics A:Materials Science & Processing.1999;69:S913-S916
    91. Vivien C, Hermann J, Perrone A, Boulmer-Leborgne C, Luches A. A study of molecule formation during laser ablation of graphite in low-pressure nitrogen. Journal of Physics D:Applied Physics.1998;31:1263
    92. Huang J-S, Ke C-B, Huang L-S, Lin K-C. The correlation between ion production and emission intensity in the Jaser-induced breakdown spectroscopy of liquid droplets. Spectrochimica Acta Part B:Atomic Spectroscopy. 2002;57:35-48
    93. Gomba JM, D'Angelo C, Bertuccelli D, Bertuccelli G. Spectroscopic characterization of laser induced breakdown in aluminium-lithium alloy samples for quantitative determination of traces. Spectrochimica Acta Part B:Atomic Spectroscopy.2001;56:695-705
    94. Carranza JE, Gibb E, Smith BW, Hahn DW, Winefordner JD. Comparison of nonintensified and intensified ccd detectors for laser-induced breakdown spectroscopy. Appl Optics.2003;42:6016-6021
    95. Corsi M, Cristoforetti G, Giuffrida M, Hidalgo M, Legnaioli S, Palleschi V, Salvetti A, Tognoni E, Vallebona C. Three-dimensional analysis of laser induced plasmas in single and double pulse configuration. Spectrochim Acta B. 2004;59:723-735
    96. Neogi A, Thareja RK. Dynamics of laser produced carbon plasma expanding in a nonuniform magnetic field. J Appl Phys.1999;85:1131-1136
    97. Aragon C, Aguilera JA. Two-dimensional spatial distribution of the time-integrated emission from laser-produced plasmas in air at atmospheric pressure.Appl. Spectrosc.1997;51:1632-1638
    98. Chaleard C, Mauchien P, Andre N, Uebbing J, Lacour JL, Geertsen C. Correction of matrix effects in quantitative elemental analysis with laser ablation optical emission spectrometry. Journal of Analytical Atomic Spectrometry. 1997;12:183-188
    99. Harilal SS, Bindhu CV, Issac RC, Nampoori VPN, Vallabhan CPG. Electron density and temperature measurements in a laser produced carbon plasma. J Appl Phys.1997;82:2140-2146
    100. Griem HR. Spectral line broadening by plasmas. New York:Academic Press; 1974.
    101. Griem HR. Plasma spectroscopy. New York:McGraw-Hill; 1964.
    102. Bekefi G. Principles of laser plasmas.1976
    103. Aragon C, Aguilera JA. Characterization of laser induced plasmas by optical emission spectroscopy:A review of experiments and methods. Spectrochim Acta B.2008;63:893-916
    104. Cristoforetti G, Legnaioli S, Palleschi V, Salvetti A, Tognoni E. Influence of ambient gas pressure on laser-induced breakdown spectroscopy technique in the parallel double-pulse configuration. Spectrochim Acta B.2004;59:1907-1917
    105. lida Y. Effects of atmosphere on laser vaporization and excitation processes of solid samples. Spectrochim Acta B.1990;45:1353-1367
    106. Yalcin S, Crosley DR, Smith GP, Faris GW. Influence of ambient conditions on the laser air spark. Appl Phys B-Lasers O.1999;68:121-130
    107. Aguilera JA, Aragon C. Multi-element saha-boltzmann and boltzmann plots in laser-induced plasmas. Spectrochim Acta B.2007;62:378-385
    108. Bastiaans GJ, Mangold RA. The calculation of electron-density and temperature in ar spectroscopic plasmas from continuum and line spectra. Spectrochim Acta B.1985;40:885-892
    109. Liu HC, Mao XL, Yoo JH, Russo RE. Early phase laser induced plasma diagnostics and mass removal during single-pulse laser ablation of silicon. Spectrochim Acta B.1999;54:1607-1624
    110. Acquaviva S. Simulation of emission molecular spectra by a semi-automatic programme package:The case of c-2 and cn diatomic molecules emitting during laser ablation of a graphite target in nitrogen environment. Spectrochim Acta A. 2004;60:2079-2086
    111. Tatum JB. The interpretation of intensities in diatomic molecular spectra. Astrophysical Journal Supplement.1967; 14:21-55
    112. Danylewych LL, Nicholls RW. Intensity measurements and transition probabilities for bands of the cn violet (b$(?){2}\sigma$-x$(?){2}\sigma)$ band system. Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences.1978;360:557-573
    113. Gaudiuso R, Dell'Aglio M, De Pascale O, Senesi GS, De Giacomo A. Laser induced breakdown spectroscopy for elemental analysis in environmental, cultural heritage and space applications:A review of methods and results. Sensors-Basel.2010; 10:7434-7468
    114. Vandermullen JAM. Excitation equilibria in plasmas-a classification. Phys Rep. 1990;191:109-220
    115. Cristoforetti G, De Giacomo A, Dell'Aglio M, Legnaioli S, Tognoni E, Palleschi V, Omenetto N. Local thermodynamic equilibrium in laser-induced breakdown spectroscopy:Beyond the mewhirter criterion. Spectrochim Acta B. 2010;65:86-95
    116. Mermet JM. Calibration in atomic spectrometry:A tutorial review dealing with quality criteria, weighting procedures and possible curvatures. Spectrochim Acta B.2010;65:509-523
    117. Tognoni E, Cristoforetti G, Legnaloli S, Palleschi V, Salvetti A, Mueller M, Panne U, Gomushkin I. A numerical study of expected accuracy and precision in calibration-free laser-induced breakdown spectroscopy in the assumption of ideal analytical plasma. Spectrochim Acta B.2007;62:1287-1302
    118. Herrera KK, Tognoni E, Gornushkin IB, Omenetto N, Smith BW, Winefordner JD. Comparative study of two standard-free approaches in laser-induced breakdown spectroscopy as applied to the quantitative analysis of aluminum alloy standards under vacuum conditions. Journal of Analytical Atomic Spectrometry.2009;24:426-438
    119. Lednev VN, Pershin SM. Plasma stoichiometry correction method in laser-induced breakdown spectroscopy. Laser Phys.2008; 18:850-854
    120. Bulajic D, Corsi M, Cristoforetti G, Legnaioli S, Palleschi V, Salvetti A, Tognoni E. A procedure for correcting self-absorption in calibration free-laser induced breakdown spectroscopy. Spectrochim Acta B.2002;57:339-353
    121. Herrera KK, Tognoni E, Omenetto N, Smith BW, Winefordner JD. Semi-quantitative analysis of metal alloys, brass and soil samples by calibration-free laser-induced breakdown spectroscopy:Recent results and considerations. Journal of Analytical Atomic Spectrometry.2009;24:413-425
    122. Sun LX, Yu HB. Correction of self-absorption effect in calibration-free laser-induced breakdown spectroscopy by an internal reference method. Talanta. 2009;79:388-395
    123. Burakov VS, Kiris VV, Naumenkov PA, Raikov SN. Calibration-free laser spectral analysis of glasses and copper alloys. Journal of Applied Spectroscopy. 2004;71:740-746
    124. Aguilera JA, Aragon C, Cristoforetti G, Tognoni E. Application of calibration-free laser-induced breakdown spectroscopy to radially resolved spectra from a copper-based alloy laser-induced plasma. Spectrochim Acta B. 2009;64:685-689
    125. Praher B, Palleschi V, Viskup R, Heitz J, Pedarnig JD. Calibration free laser-induced breakdown spectroscopy of oxide materials. Spectrochim Acta B. 2010;65:671-679
    126. Pandhija S, Rai AK. In situ multielemental monitoring in coral skeleton by cf-libs. Appl Phys B-Lasers O.2009;94:545-552
    127. Rai N, Rai P, Pandhija S, Watal G, Rai A, Bicanic D. Application of libs in detection of antihyperglycemic trace elements in & lt;i> momordica charantia</i>. Food Biophysics.2009;4:167-171
    128. Wang L, Zhang C, Feng Y. Controlled calibration method for laser induced breakdown spectroscopy. Chin. Opt. Lett.2008;6:5-8
    129. Pandhija S, Rai N, Rai A, Thakur S. Contaminant concentration in environmental samples using libs and cf-libs. Applied Physics B:Lasers and Optics.2010;98:231-241
    130. Corsi M, Cristoforetti G, Hidalgo M, Legnaioli S, Palleschi V, Salvetti A, Tognoni E, Vallebona C. Application of laser-induced breakdown spectroscopy technique to hair tissue mineral analysis. Appl Optics.2003;42:6133-6137
    131. Gornushkin IB, Anzano JM, King LA, Smith BW, Omenetto N, Winefordner JD. Curve of growth methodology applied to laser-induced plasma emission spectroscopy. Spectrochim Acta B.1999;54:491-503
    132. Miquel G. Les effets des metaux lourds sur l'environnement et la sante, rapport d'information n°261 fait pour ;e senat au nom de l'office parlementaire d'evaluation des choix scientifique et technologique. deposited the April 5 2001
    133. Leblanc J-C. Etude de 1'alimentation totale francaise, mycotoxines, mineraux et elements traces. May 2004
    134. Delibacak S, Elmaci OL, Secer M, Bodur A. Trace element and heavy metal concentration in fruits and vegetables of the gediz river region. International Journal of Water.2002;2:196-211
    135. Voutsa D, Grimanis A, Samara C. Trace elements in vegetables grown in an industrial area in relation to soil and air particulate matter. Environ Pollut. 1996;94:325-335
    136. Sun Q, Tran M, Smith BW, Winefordner JD. Direct determination of p, al, ca, cu, mn, zn, mg, and fe in plant materials by laser-induced breakdown spectroscopy. Canadian J. Anal. Sci. and Spectrosc.1999;44:164-170
    137. Trevizan LC, Santos D, Samad RE, Vieira ND, Nunes LC, Rufini I A, Krug FJ. Evaluation of laser induced breakdown spectroscopy for the determination of micronutrients in plant materials. Spectrochim Acta B.2009;64:369-377
    138. Samek O, Lambert J, Hergenroder R, Liska M, Kaiser J, Novotny K, Kukhlevsky S. Femtosecond laser spectrochemical analysis of plant samples. Laser Phys Lett. 2006;3:21-25
    139. Bossu M, Hao ZQ, Baudelet M, Yu J, Zhang Z, Zhang J. Femtosecond laser-induced breakdown spectroscopy for detection of trace elements in sophora leaves. Chinese Phys Lett.2007;24:3466-3468
    140. Pouzar M, Cernohorsky T, Prusova M, Prokopcakova P, Krejcova A. Libs analysis of crop plants. Journal of Analytical Atomic Spectrometry. 2009;24:953-957
    141. Barthelemy O, Margot J, Laville S, Vidal F, Chaker M, Le Drogoff B, Johnston TW, Sabsabi M. Investigation of the state of local thermodynamic equilibrium of a laser-produced aluminum plasma. Appl Spectrosc.2005;59:529-536
    142. Galmed AH, Harith MA. Temporal follow up of the lte conditions in aluminum laser induced plasma at different laser energies. Appl Phys B-Lasers O. 2008;91:651-660
    143. Ashkenazy J, Kipper R, Caner M. Spectroscopic measurements of electron-density of capillary plasma based on stark-broadening of hydrogen lines. Phys Rev A.1991;43:5568-5574
    144. El Sherbini AM, Hegazy H, El Sherbini TM. Measurement of electron density utilizing the h alpha-line from laser produced plasma in air. Spectrochim Acta B. 2006;61:532-539
    145. Http://physics.Nist.Gov/physrefdata/asd/lines form.Html.
    146. Database and spectral simulation for diatomic molecules by jorge luque: Http://www.Sri.Com/psd/lifbase/.
    147. Anderson KA, Magnuson BA, Tschirgi ML, Smith B. Determining the geographic origin of potatoes with trace metal analysis using statistical and neural network classifiers. Journal of Agricultural and Food Chemistry. 1999;47:1568-1575
    148. Bibak A, Sturup S, Haahr V, Gundersen P, Gundersen V. Concentrations of 50 major and trace elements in danish agricultural crops measured by inductively coupled plasma mass spectrometry.3. Potato (solanum tuberosum folva). Journal of Agricultural and Food Chemistry.1999;47:2678-2684
    149. Corsi M, Cristoforetti G, Palleschi V, Salvetti A, Tognoni E. A fast and accurate method for the determination of precious alloys caratage by laser induced plasma spectroscopy. Eur Phys J D.2001; 13:373-377
    150. Mohamed WTY. Improved libs limit of detection of be, mg, si, mn, fe and cu in aluminum alloy samples using a portable echelle spectrometer with iccd camera. Opt Laser Technol.2008;40:30-38
    151. Eppler AS, Cremers DA, Hickmott DD, Ferris MJ, Koskelo AC. Matrix effects in the detection of pb and ba in soils using laser-induced breakdown spectroscopy. Appl Spectrosc.1996;50:1175-1181
    152. Gornushkin SI, Gornushkin IB, Anzano JM, Smith BW, Winefordner JD. Effective normalization technique for correction of matrix effects in laser-induced breakdown spectroscopy detection of magnesium in powdered samples. Appl Spectrosc.2002;56:433-436
    153. Stankova A, Gilon N, Dutruch L, Kanicky V. Comparison of la-icp-ms and la-icp-oes for the analysis of some elements in fly ashes. Journal of Analytical Atomic Spectrometry.2011;26:443-449
    154. Stankova A, Gilon N, Dutruch L, Kanicky V. A simple libs method for fast quantitative analysis of fly ashes. Fuel.2010;89:3468-3474
    155. Santos D, Samad RE, Trevizan LC, de Freitas AZ, Vieira ND, Krug FJ. Evaluation of femtosecond laser-induced breakdown spectroscopy for analysis of animal tissues. Appl. Spectrosc.2008;62:1137-1143
    156. Singh V, Rai A. Potential of laser-induced breakdown spectroscopy for the rapid identification of carious teeth. Lasers in Medical Science.2011;26:307-315
    157. Kasem MA, Russo RE, Harith MA. Influence of biological degradation and environmental effects on the interpretation of archeological bone samples with laser-induced breakdown spectroscopy. Journal of Analytical Atomic Spectrometry.2011:26
    158. Lasheras R, Bello-Galvez C, Anzano J. Identification of polymers by libs using methods of correlation and normalized coordinates. Polym Test. 2010;29:1057-1064
    159. Gottfried JL, De Lucia FC, Munson CA, Miziolek AW. Laser-induced breakdown spectroscopy for detection of explosives residues:A review of recent advances, challenges, and future prospects. Analytical and Bioanalytical Chemistry.2009;395:283-300
    160. Harmon RS, DeLucia FC, LaPointe A, Winkel RJ, Miziolek AW. Libs for landmine detection and discrimination. Analytical and Bioanalytical Chemistry. 2006;385:1140-1148
    161. St-Onge L, Kwong E, Sabsabi M, Vadas E. Quantitative analysis of pharmaceutical products by laser-induced breakdown spectroscopy. Spectrochimica Acta Part B:Atomic Spectroscopy.2002;57:1131-1140
    162. Baudelet M, Boueri M, Yu J, Mao SS, Piseltelli V, Mao XL, Russo RE. Time-resolved ultraviolet laser-induced breakdown spectroscopy for organic material analysis. Spectrochim Acta B.2007;62:1329-1334
    163. Kushwaha A, Mohanta A, Thareja RK. C2 and cn dynamics and pulsed laser deposition of cnx films. J Appl Phys.2009; 105:044902-044905
    164. Thareja RK, Dwivedi RK, Ebihara K. Interaction of ambient nitrogen gas and laser ablated carbon plume:Formation of cn. Nucl Instrum Meth B. 2002;192:301-310
    165. Acquaviva S, De Giorgi ML. High-resolution investigations of c2 and cn optical emissions in laser-induced plasmas during graphite ablation. J Phys B-at Mol Opt.2002;35:795-806
    166. Kushwaha A, Thareja RK. Effect of ambient nitrogen pressure on the formation and spatio-temporal behaviour of c2 and en. Pramana-J Phys. 2010;75:1163-1167
    167. Trusso S, Barletta E, Barreca F, Neri F. Pulsed laser ablation of sic in a nitrogen atmosphere:Formation of cn. Appl Phys a-Mater.2004;79:1997-2005
    168. Urech L, Lippert T. Photoablation of polymer materials. Photochemistry and photophysics of polymer materials. John Wiley & Sons, Inc.; 2010:541-568.
    169. Kuper S, Brannon J, Brannon K. Threshold behavior in polyimide photoablation: Single-shot rate measurements and surface-temperature modeling. Applied Physics A:Materials Science & Processing.1993;56:43-50
    170. Http://www.Wiredchemist.Com/chemistry/data/bond-energies-lengths.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700