产番茄红素菌株的选育及代谢调控的初步研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
番茄红素是由11个共轭双键和2个非共轭双键组成的直链型碳氢化合物,因此具有极强的淬灭单线态氧和清除自由基的能力,它的抗氧化能力是β-胡萝卜素的2倍,是维生素E的100倍,近年来备受世人关注。
     本研究通过诱变三孢布拉霉负菌菌株,提高番茄红素产量,优化培养条件,并通过代谢调控,提高代谢途径中关键酶的活性,加大类胡萝卜素代谢流,提高番茄红素的产量。
     以三孢布拉霉负菌(-)08-09为出发菌株,经过紫外线诱变得到一株番茄红素产量高于原始菌株22.54%的突变株UV-312;经过亚硝酸诱变得到一株番茄红素产量高于原始菌株31.52%的突变株NA-62;经过紫外和亚硝酸复合诱变得到一株番茄红素产量高于原始菌株59.72%的突变株UN-10。
     通过正交实验得到三孢布拉霉液体发酵最佳培养基组成为:玉米粉3.0%,棉籽饼粉4.0%,KH2PO4 0.5%,棉籽油9.0%,接种量15%(V/V)。最佳液体摇瓶培养条件为:培养温度27℃,装液量20 mL/250 mL,初始pH 7.5,正负菌接种比例1:20,接种量15%(V/V),转速180 r/min,培养时间5 d。在此培养条件下三孢布拉霉菌体分散较好,其菌体最大生物量、番茄红素产量分别为73.46 g/L、1.36 g/L。
     正负菌平板上形成的色带宽度大小反映异宗配合的强弱,这与番茄红素的产量有密切的关系。色带宽的正负菌配对接合能力较强,番茄红素产量也较高。大豆卵磷脂的添加有利于色带的形成,当大豆卵磷脂的添加量为0.3%时,番茄红素产量为1.61 g/L,提高了21.97%。乙酸钠和乳酸钠的浓度分别为0.15 g/L和0.20 g/L时,色素带较宽;添加乙酸钠0.10 g/L或添加乳酸钠0.15 g/L时,较有利于产物的合成,番茄红素产量分别为1.56 g/L、1.45 g/L。
     考察了代谢促进剂和阻断剂对番茄红素合成的代谢调控。在各种代谢促进剂中选取了乙醇、氨苄青霉素和H2O2进行代谢调控,发酵36 h添加0.10%的乙醇时,番茄红素产量达1.64 g/L,比对照提高了22.38%;24 h添加0.075 g/L的氨苄青霉素时,番茄红素产量达1.65 g/L,比对照提高了24.06%;36 h添加0.10%的H2O2时,番茄红素产量达1.63 g/L,比对照提高了23.48%;在各种代谢阻断剂中,添加咪唑对β-胡萝卜素合成途径的阻断效果较佳,当40 h添加1.0 g/L的咪唑时,番茄红素产量达1.62 g/L,且一次添加要比分批添加效果好。24 h添加0.075 g/L的氨苄青霉素,36 h分别添加0.3%的大豆卵磷脂和1.0 g/L的亚油酸,40 h添加1.0 g/L的咪唑进行复合调控,番茄红素产量达1.72 g/L。
Lycopene is a straight-chain hydrocarbon which has 11 conjugated double bonds and two non-conjugated double bonds. As a result, it is capable of quenching singlet oxygen and removing free radicals. The antioxidant capacity of it is as much as two times that ofβ-carotene and 100 times that of vitamin E. That is why people pay more attention to lycopene.
     This paper focused on the breeding of high-production strain Blakeslea trispora(-) as well as the speciality of the strain. The fermentation condition and the effect of activator of key enzymes on lycopene production of Blakeslea trispora strain(-) were also studied.
     Higher production strains was selected by mutation breeding. A strain UV-312 with high production of lycopene was selected which was treated with UV. The lycopene production was 22.54% higher than that of the original strain. NA-62 was mutant strain treated with nitrous acid whose production was 31.52% higher than that of the original strain. UN-10 was mutant strain treated by ultraviolet and nitrous acid combination mutation whose production was 59.72% higher than the original strain.
     The optimum fermentation medium was as follows: corn mea 3.0%, cottonseed meal 4.0%, cottonseed oil 9.0%, KH2PO4 0.3%. The optimum fermentation conditions were as follows: pH 7.5, inoculation size 15%(V/V), medium load amount 20 mL/250 mL shaking flask, temperature 27℃, best proportion of (+),(-) 1:20, culture time 5 days, rotary speeds of shaking flask 180 r/min. Under the optimum conditions, the mycelium of Blakeslea trispora dispersed well, and the yields of mycelium dry weight and lycopene were repectively 73.46 g/L, 1.36 g/L.
     The width of pigments band formed could predicted the heterothallic, which was closely related to lycopene production. The wider pigments band was, the higher lycopene produced. The addition of soybean lecithin stimulated the formation of pigment. When 0.3% soybean lecithin was added, lycopene yields reached 1.61 g/L which was 21.97% higher than the control. The addition concentrations of sodium acetate and sodium lactate were 0.10 g/L, 0.15 g/L respectively which were the most favorable to the lycopene yields, and the lycopene yields reached 1.56 g/L, 1.45 g/L respectively.
     Metabolic regulations of lycopene synthesis with metabolic enhancers and blockers were investigated. Alcohol, ampicillin and H2O2 were selected as the metabolic enhancers. When 0.10% alcohol was added at 36 h, the lycopene yields reached 1.64 g/L which was 22.38% higher than the control; When 0.075 g/L ampicillin was added at 24 h, the lycopene yields reached 1.65 g/L which was 24.06% higher than the control. When 0.10% H2O2 was added at 36 h, the lycopene yields reached 1.63 g/L which was 23.48% higher than the control. Imidazole was the best metabolic blocker to theβ-carotene synthesis. When 1.0 g/L imidazole was added at 40 h, the lycopene yields reached 1.62 g/L. When 0.075 g/L ampicillin was added at 24 h, 0.3% soy lecithin and 1.0 g/L linoleic acid were added at 36 h, and 1.0 g/L imidazole was added at 40 h, the lycopene yields reached 1.72 g/L.
引文
1. Bianchi ML.Lycopene[P].Great Britain:GB 1128440,1968-9-25
    2.孙庆杰,丁霄霖.番茄红素的研究进展[J].中国食品添加剂,1998(2):1-6
    3.徐伟,等.国外医学卫生学分册[M].1998,25(2):81-84
    4. Nguyenm I,Schwartz S J.Lycopene: chemical and biological properties[J].Food Technology,1999,53(2):38-45
    5.赵文恩,乔宪生,俞宏.番茄红素的生物学性质[J].生物学杂志,2000,17 (4):4-6
    6. Boileau TW,Boileau AC Erdman JW Jr.Bioavailability of all-trans and cis-isomers of lycopene[J].Exp Biol Med(Maywood),2002,227(10):914-919
    7. John S,Le Maguer M,Mike B,et.Kinetics of lycopene degradation in tomato puree by heat and light irradiation[J].Food Process Engineering,2003,25(6):485-489
    8.尚德军,王军.番茄红素研究现状与展望[J].检验检疫科学,2004,14(2):59-61
    9. L. De Franceschi,M. C. Arista, A. Callopoli,M.D.Flow Cytometric Study of Lymphocyte Subsets in Patients at Different Stages of Colorectal Carcinoma[J].Dis Colon Rectum,1994,37(Suppl):S30-S34
    10.张艳春,万丽葵,潘洪志.番茄红素对小鼠移植性肿瘤的抑制作用研究[J].齐齐哈尔医学院学报,2006(3):265-266
    11. Ito Y,Wakai K,Suzuki K,etc. Serum carotenoids and mortality from lung cancer:acase-control study nested in the Japa Collaborative Cohort (JACC) study[J].Cance Sci,2003,94(1):57-63
    12. Rissanen TH,Voutilainen S,Nyyssonen K,etc.Serum lycopene concentrations and carotid atherosclerosis:the Kuopio Ischaemic Heart Disease Risk Factor Study[J].Am J. Clin. Nutr.,2003,77(1):133-138
    13.李京,惠伯棣,裴凌鹏.番茄红素-被关注的功能因子[J].食品科学,2005,26(8):461-464
    14. Nguyen M,et.Lyeopene:clinical and biological properties[J].Food Technology,1999,53(2):38-45
    15. Colditz G A.Increased green and yellow vegetables intake,and lowered cancer death in an elderly population[J].Am. J. Clin. Nutr.,1985,(41):32-36
    16. Giovannucci E,Ascherio A,Rimm E B,etc.Intake of Carotenoids and Retinol in Relationship to Risk of Prostate Cancer[J].J Natl Cancer Inst,1995(87):1767-1776
    17.王业勤,李勤生.天然类胡萝卜素研究进展.生产.应用[M].北京:中国医药科技出版社,1997,159-162
    18. James Goodrich Chris Parker,Ruff Phelps.The Microscale Separation of Lycopene andβ-Carotene from Tomato paste[J].Journal of Chemical Education,1993,70(6):158-163
    19. Sari.H Hakala,Marina Heinonen.Chromatographic purification of Natural Lycopene[J].Agric Food Chem,1994(42):1314-1316
    20.孙庆杰,丁霄霖.超临界CO2萃取番茄红素的初步研究[J].食品与发酵业,1998,24(1):3-6
    21. Enzo Codoni M,Rita De Giogi.Supercritical CO2 extraction of lycopene andβ-Carotene from ripe tomatoes[J].Dye and Pigment,2000(44):27-32
    22.蔡俊,邱雁临,谈小兰.番茄红素提取工艺的研究[J].食品与发酵工业,2000,26(2):50-53
    23. Pfander H,Pastor IM,Boscobo IN IKD,etc.Lycopene in association with alpha-tocopherol inhibits at physiological concentrations proliferation of prostate carcinoma cells[J].Biochem Biophys Res Commun,1998,250(3):553-582.
    24. Mantzouridou F,Tsimidou M Z.Lycopene formationin Blakeslea trispora.chemical aspects of a bioprocess[J].Trends in Food Science and Technology,2008(19):363-371
    25 Estrella A,Lopez-Ortiz JF,Cabri W,etc.Natural lycopene from Blakeslea trispora:all-trians lycopene thermochmical and structural properties[J].thermochimica Acta,2004,(417):157-161
    26. Jones J D,Hohn T M,Leathers T D,et. Fusarium sporotrichioides strains for production of lycopene[P].US:6696282,2004-02-24
    27. Wang C W,Liao J C.Alteration of product specificity of Rhodobacter sphaeroides phytoenedesaturase by directed evolution[J].The Journal of Biological Chemistry,2001,276(44):4461-4464
    28.邢来君,李明春.普通真菌学[M].北京:高等教育出版社,1999,233-235
    29.陈涛,卫文仲等.三孢布拉氏霉的扫描电镜研究[J].电子显微学报.1998,17(2):109-113
    30. Schmidt Dannert C,Umeno D,and Arnold F H.Molecular breeding of carotenoid biosynthetic pathways[J].Nat. Biotechnol,2000,18(7):750-753
    31.徐娜,许激扬.环化酶抑制剂对三孢布拉霉产生番茄红素的影响[J].中国抗生素杂质.2006,31(6):372-375
    32. Braun S,Vecht-Lifshitz S E.Mycelial morphology and metabolite production[J].Trends Biotechnol,1991(9):63-68
    33. Shigeyuki Yamano,Toshiyuki Ishi,Masaya Nakagawa.Metabolic engineering for production ofβ-Carotene and lycopene in Saccharomyces cerevisiae[J].Biosci Biotech Biochem,1994,58(6):1112-1114
    34. Lopez-Nieto M J,Costa J,Peiro E,etc.Biotechnological lycopene production by mated fermentation of Blakeslea trispora[J].Appl Micorobiol Biotechnol,2004,66(2):153
    35. Tereshina V M,Feofilova E P, Memorskaia AS. Biochemical mechanisms of temperature adaptation in the (+) and (-) strains of Blakeslea trispora [J].Mikrobiologiya,2005,74(6):750-755
    36. Kalinina NV,Tereshina VM,Memorskaia AS,Feofilova EP.The correlation between the synthesis of beta-carotene and zygote formation by Blakeslea trispora heterothallic strains[J].Prikl Biokhim Mikrobiol,2007,43(1):77-81
    37. Bina J. Mehta, Irina N. Obraztsova, Enrique Cerda-Olmedo.Mutants and Intersexual Heterokaryons of Blakeslea trispora for Production ofβ-Carotene and Lycopene [J].Applied and encirnmental microbiology,2003,(7):4043-4048
    38. Ana Teresa Marcos Rodriguez,Antonio Estrella Decastro,Javier Costa Perez,etc.Method of producing lycopene through the fermentation of selected strains of Blakeslea trispora,formulations and uses of the lycopene thus obtaing[P].US:2005/0106657 A1,2005-05-19
    39.王见东等.吡啶类化合物对三孢布拉氏霉菌代谢途径的影响[J].现代化工,2003,(23):202-204
    40.马永强,韩春然.三孢布拉霉生产番茄红素发酵条件的研究[J].食品研究与开发,2007, 128(04):54-57
    41. Bernard M,Babior.Phagocytes and oxidative stress[J].The American Journal of Medicine,2000,109(1):33-44
    42.吉尔鲍特GG,谬辉南,陈石根等译.酶法分析手册[M].上海:上海科学出社,1982:82-84
    43. Bejarano E. R. Pana F. J.The product regulation of Carotenogenesis in Phycomyces[J].Arch. Microbiol,1993,(150):209-214
    44. Desai HG,Modi VV.Stimulation of carotenogenesis by penicillin in Blakeslea trispora[J].Phytochemistry,1977,16(9):1373-1376
    45. Wang GY,Keasling JD.Amplification of HMG-COA reductase production enhances carotenoid accumulation in Neurospora crassa[J].Metabol Eng,2002,4(3):193-201
    46. Ciegler A,M. Arnold,R. F. Anderson.Microbiological production of carotenoids:Effect of lipids and related substances on production ofβ-carotene[J].Appl.Microbiol,1959,67(7):98-101
    47. Tereshina,V.M,Feofilova E.P.Lipid composition of cells of heterothallic strains in the developmental cycle of Blakeslea trispora[J].Prikladnaia biokhimiia i mikrobiologiia,2005,41(4):449-53
    48.远山.大豆卵磷脂的应用[J].精细化工原料及中间体,2007,(09):23-24
    49.马辰,段宏瑾.大豆磷脂中磷脂类成分的含量测定[J].中国中药杂志,1999,(11):671-672
    50. V. M. Tereshina,A. S. Memorskaya,G.A. Kochkina,E.P. Feofilova.Dormant Cells in the Devepomental Cycle of Blakeslea trispora:Distinct Patterns of the Lipid and Carbohyrate Composition[J].Microbiology, 2002,71(6):684-689
    51. VeraKuzina,Enrique Cerda Olmedo.Modification of sexual development and carotene production by acetate and other small carboxylic acids in Blakeslea trispora and Phycomyces blakesleeanus[J].Appled and Environmental Microbiology,2006,(72):491-492
    52. Thibessard A, Fernandez A, Gintz B.Hydrogen peroxide effects on Streptococcus thermophlus CNRZ368 cell viability[J].Res.Microbiol,2001,(152):593-596
    53.左亚军.环境因素和培养条件对类胡萝卜素表达的影响[J].上海化工,2007,32(2):22-26

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700