新型脂质体的可控制备及载药研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
脂质体(liposomes)是一种新型药物载体,具有生物相容性好、可生物降解、无毒和无免疫原性等优点。且作为药物载体,可以提高药物治疗指数,降低药物毒副作用、降低药物剂量。但脂质体不太稳定,储存过程中易发生药物泄漏、脂质体聚集和破裂等,难以满足临床用药的要求。本课题正是基于对这一问题的考虑设计了可能具有较高稳定性和较高包封率的脂质体—新型脂质体,即在脂质体内部引入树枝状的骨架结构(dendrimer),使树枝状分支的末端链段掺入磷脂双分子层而形成类似脂质体的囊泡。而树枝状聚合物(dendrimer)的出现为这一研究设想提供了现实的可行性。为将树枝状聚合物末端有效掺入脂质双层,首先需聚合物末端疏水化修饰。本课题选择G3.5代的PAMAM dendrimer,将其末端羧基用DCC和NHS活化后与硬脂胺进行活泼酯反应,得到PAMAM dendrimer G3.5脂质小球。然后,采用薄膜超声法,以氢化豆磷脂、胆固醇以及PAMAM dendrimer G3.5脂质小球成功制备了新型脂质体。采用正交设计方法对最佳制备工艺进行实验,以氢化磷脂与胆固醇比例,氢化磷脂与PAMAM dendrimer G3.5脂质小球的比例,旋转蒸发温度,水化温度为4个因素,粒径为考察指标,筛选出新型脂质体最佳制备工艺。以鬼臼毒素为模型药物制备了载药新型脂质体,以透射电镜(TEM)观察形态,动态光散射(DLS)考察粒径分布,用葡聚糖凝胶柱分离法测定包封率,采用正交设计方法对最佳制备工艺进行实验,以氢化磷脂与胆固醇比例,氢化磷脂与PAMAM dendrimer G3.5脂质小球的比例,氢化磷脂与鬼臼毒素的比例,旋转蒸发温度为4个因素,包封率为考察指标,筛选出鬼臼毒素新型脂质体最佳制备工艺。并考察其对温度、乙醇、酸碱的耐受性,和体外经皮通透性的研究。还进行了鬼臼毒素新型脂质体的质量标准的考察。结果发现,优选出新型脂质体的制备工艺为氢化磷脂:胆固醇=20:3.26,氢化磷脂:PAMAM dendrimer G3.5脂质小球=20:0.5,氢旋转蒸发温度为55℃,水化温度为45℃,新型脂质体粒径均匀,平均粒径61.1nm;优选出鬼臼毒素新型脂质体的制备工艺为氢化磷脂:胆固醇=20:3.67,氢化磷脂:PAMAM dendrimerG3.5脂质小球=20:0.5,氢化磷脂:鬼臼毒素=20:1.5,旋转蒸发温度为45℃,测得该脂质体包封率为91.45%。稳定性试验证明鬼臼毒素新型脂质体能够耐受热压灭菌(115℃,67 kPa,30 min)、最终浓度为50%的乙醇、最终浓度为1 M的盐酸和最终浓度为0.1 M的盐酸;在体外经皮通透性研究中,达到了对药物释放的缓释作用;制备的鬼臼毒素新型脂质体在鬼臼毒素含量及分布的均一性方面均较为理想。综上所述,我们得知,和传统脂质体相比,新型脂质体提高了脂质体的包封率,稳定性,可以使装载的药物更好地发挥作用。
Liposomes are novel drug carriers, as they have good biocompatibility, biodegradability, innocuity, non-immunogenicity. As a drug carrier, they can elevate the therapeutic exponent, reduce their untoward effects, and decrease the dosage of the medicine. But liposomes are less stable. During its storage, the drug may be detrayed and liposomes may be aggregated, ruptured, and so on. These may lead to not meet the demand of clinical medication. Based on these problems, a novel drug carrier-liposomes-like with good stability and higher entrapment efficiency was designed by our studying team. Namely a dendritic framework structure was introduced into liposomes, which can make terminal chain segment of dendritic branch incorporate phospholipid bilayers and perform a vesicle similar to liposomes. The appearance of dendrimer provides realistic feasibility for the design. In order to introduce the dendritic framework structure into liposomes effectively, the terminal chain segment of dendrimer should be modified hydrophobically. PAMAM Dendrimer G3.5 was choosed, the carboxyls on terminal chain segment were activated with DCC and NHS, then the coupling reactionwere with stearylamine was formed via active ester. Finally the lipid globule of PAMAM dendrimer G3.5 were prepared successfully. We prepared the liposomes-like using hydrogenated soybean lecithin, cholesterol and the lipid globule of PAMAM dendrimer G3.5 by film dispersed method (TFDM) successfully. The optimization of the new type podophyllotoxin liposome preparation was performed based on the orthogonal experimental design. In this study, the size of the new type podophyllotoxin liposome were taken as the index and the influence of factors such as the proportion of hydrogenated phospholipid and Cholesterol, the proportion of hydrogenated phospholipid and PAMAM dendrimer G3.5 lipid globule, the temperature of rotary evaporation and the temperature of hydration. We prepared drug-loaded liposomes-like with Podophyllotoxin as a model drug. The shape of liposomes were observed by transmission electron microscopy (TEM), and the particles size was evaluated by dynamic scattering (DLS). The entrapment efficiency was determined using dextran gel column separation. The optimization of the new type podophyllotoxin liposome preparation was performed based on the orthogonal experimental design. In this study, the entrapment efficiency of the new type podophyllotoxin liposome were taken as the index and the influence of factors such as the proportion of hydrogenated phospholipid and Cholesterol, the proportion of hydrogenated phospholipid and PAMAM dendrimer G3.5 lipid globule, the proportion of hydrogenated phospholipid and podophyllotoxin and the temperature of rotary evaporation. Tolerance to temparature, ethanol and acid-base were studied, too. And vitro percutaneous permeability was studied. We also studied the Quality Standards inspection of the new type podophyllotoxin liposome. The results showed that the best formulation of the new type podophyllotoxin liposome were the proportion of hydrogenated phospholipid and Cholesterol was 20:3.26, the proportion of hydrogenated phospholipid and PAMAM dendrimer G3.5 lipid globule was 20: 0.5, the temperature of rotary evaporation was 55℃and the temperature of hydration was 45℃. And liposomes-like were successfully prepared with an average diameter of 61.1 run. The best formulation of the new type podophyllotoxin liposome were the proportion of hydrogenated phospholipid and Cholesterol was 20:3.67, the proportion of hydrogenated phospholipid and PAMAM dendrimer G3.5 lipid globule was 20:0.5, the proportion of hydrogenated phospholipid and podophyllotoxin was 20:1.5 and the temperature of rotary evaporation was 45℃. And the encapsulation efficiency was 91.45%. Curcumin liposomes-like were tolerant of steam sterilization (115℃、67kPa、30min),50% ethanol (final concentration),1M Hydrochloride (final concentration) and 0.1M NaOH (final concentration). In vitro percutaneous permeability study, it achieved the sustained-release effect of the drug release. In the podophyllotoxin content and distribution are more ideal in terms of uniformity. Conclusion demonstrated that liposomes-like have higher entrapment efficiency and better stability than traditional liposomes, and make the loaded drug play its role better.
引文
[1]Torchilin VP. Multifunctional nanocarriers. Adv Drug Deliv Rev.2006,58(14):1532~55
    [2]Torchilin VP. Recent advances with liposomes as pharmaceutical carriers. Nat Rev Drug Discov. 2005 Feb;4(2):145~60
    [3]Minko T, Pakunlu RI, Wang Y, Khandare JJ, Saad M. New generation of liposomal drugs for cancer. Anticancer Agents Med Chem,2006; 6(6):537~52
    [4]Kshirsagar NA, Pandya SK, Kirodian GB, Sanath S. Liposomal drug delivery system from laboratory to clinic. J Postgrad Med.2005; 51 Suppl 1:S5~15
    [5]Allen and Stuart,1999 T.M. Allen and D.D. Stuart In:A.S. Janoff, Editor, Liposomes Pharmacokinetics in 'Liposomes Rational Design', Marcel Dekker Inc., N. York, Basel (1999), pp.63~87
    [6]Drummond et al.,1999 D.C. Drummond, O. Meyer, K. Hong, D.B. Kirpotin and D. Papahadjopoulos, Optimizing liposomes for delivery of chemotherapeutic agents to solid tumors, Pharmacol. Rev.51 (1999), pp.691~743
    [7]Singh, P., Moll, F., III, Lin, S. H., Ferzli, C., Yu, K. S., Koski, R. K., Saul, R. G., and Cronin, P. Starburst dendrimers:enhanced performance and flexibility for immunoassays. Clinical Chemistry (Washington, DC, United States) 1994; 40:1845~9
    [8]Tomalia et al.,1990 D.A. Tomalia, A.M. Naylor and W.A. Goddard III, Starburst dendrimers: molecular-level control of size, shape, surface chemistry, topology, and flexibility from atoms to macroscopic matter, Angew. Chem. Int. Ed.29 (1990), pp.138~175
    [9]Jevprasesphant et al.,2004 R. Jevprasesphant, J. Penny, D. Attwood and A. D Emanuele, Transport of dendrimer Nanocarriers through epithelial cells via the transcellular route, J. Controlled Release 97 (2004), pp.259~267
    [10]www.dnanotech.com
    [11]Zheng, F.; Zimmerman, S. C. Dendrimers in supramolecular chemistry:from molecular recognition to self-assembly. Chem.ReV.1997,97,1681~1712
    [12]Basu, S.; Sandanaraj, B. S.; Thayumanavan, S. Molecular recognition in dendrimers. In Encyclopedia of Polymer Science andTechnology,4th ed.; Mark, H. F., Ed.; John Wiley & Sons: New York,2004
    [13]Zhuo et al.,1999 R.X. Zhuo, B. Du and Z.R. Lu, In vitro release of 5-fluorouracil with cyclic core dendritic polymer, J. Controlled Release 57 (1999), pp.249~257
    [14]Kojima et al.,2000 C. Kojima, K. Kono, K. Maruyama and T. Takagishi, Synthesis of polyamid-oamine dendrimers having poly(ethylene glycol) grafts and their ability to encapsulate anticancer drugs, Bioconjug. Chem.11 (2000), pp.910~917
    [15]Padilla De Jesus Omayra, L., Ihre Henrik, R., Gagne, L., Frechet Jean, M. J., and Szoka Francis, C., Jr. Polyester dendritic systems for drug delivery applications:in vitro and in vivo evaluation. Bioconjugate chemistry,2002;13:453~61
    [16]Kannan, S., Kolhe, P., Raykova, V., Glibatec, M., Kannan Rangaramanujam, M., Lieh-Lai, M., and Bassett, D. Dynamics of cellular entry and drug delivery by dendritic polymers into human lung epithelial carcinoma cells. Journal of biomaterials science. Polymer edition 2004,15: 311~30
    [17]Khandare, J., Kolhe, P., Pillai, O., Kannan, S., Lieh-Lai, M., and Kannan Rangaramanujam, M. Synthesis, cellular transport, and activity of polyamidoamine dendrimer-methylprednisolone conjugates. Bioconjugate chemistry 2005,16:330~7
    [18]Kolhe, P., Khandare, J., Pillai, O., Kannan, S., Lieh-Lai, M., and Kannan Rangaramanujam, M. Preparation, cellular transport, and activity of polyamidoamine-based dendritic nanodevices with a high drug payload. Biomaterials.2006;27:660~9
    [19]Kolhe, P., Misra, E., Kannan, R. M., Kannan, S., and Lieh-Lai, M. Drug complexation, in vitro release and cellular entry of dendrimers and hyperbranched polymers. International Journal of Pharmaceutics 2003;259:143~160
    [20]Patri Anil, K., Kukowska-Latallo Jolanta, F., and Baker James, R., Jr. Targeted drug delivery with dendrimers:Comparison of the release kinetics of covalently conjugated drug and non-covalent drug inclusion complex. Advanced drug delivery reviews.2005; 57:2203~14
    [21]Tajarobi, F., El-Sayed, M., Rege, B.D., Polli, J.E., Ghandehari, H.,2001. Transport of poly amidoamine dendrimers across Madin-Darby canine kidney cells. Int. J. Pharm.215,263~267
    [22]Tomalia et al.,1985 D.A. Tomalia, H. Baker, J.R. Dewald, M. Hall, G. Kallos, S. Martin, J. Roeck, J. Ryder and P. Smith, A new class of polymers:starburst-dendritic macromolecules, Polym. J.17 (1985), pp.117~132
    [23]Ulrik Boas and Peter M. H. Heegaard. Dendrimers in drug research. Chem. Soc. Rev.,2004,33, 43~63
    [24]Ottaviani, M.F., Matteini, P., Brustolon, M., Turro, N.J., Jockusch, S., Tomalia, D.A.,1998. Characterization of starburst dendrimers and vesicle solutions and their interactions by CW-and pulsed-EPR, TEM and dynamic light scattering. J. Phys. Chem. B 102 (31),6029~6039
    [25]Ottaviani, M.F., Daddi, R., Brustolon, M., Turro, N.J., Tomalia,D.A.,1999. Structural modificati-ons of DMPC vesicles upon interaction with poly(amidoamine) dendrimers studied by Cwelectron paramagnetic resonances and electron spin-echo techniques. Langmuir 15 (6),1973-1980
    [26]Ottaviani, M.F., Favuzza, P., Sacchi, B., Turro, N.J., Jockusch, S., Tomalia, D.A.,2002. Interacti-ons between starburst dendrimers and mixed DMPC/DMPA-Na vesicles studied by the spin label and the spin probe techniques, supported by transmission electron microscopy. Langmuir 18 (6), 2347~2357
    [27]Zhang, Z.Y, Smith, B.D.,2000. High-generation polycationic dendrimers are unusually effective at disrupting anionic vesicles:membrane bending model. Bioconjugate Chem.11 (6),805~814
    [28]Karoonuthaisiri, N., Titiyevskiy, K., Thomas, J.L.,2003. Destabilization of fatty acid-containing liposomes by polyamidoamine dendrimers. Colloid Surf. B 27,365~375
    [29]Hong, S., Bielinska, A.U., Mecke, A.,Keszler, B., Beals, J.L., Shi, X., Balogh, L., Orr, B.G., Baker Jr., J.R., Banaszak Holl, M.M.,2004. Interaction of poly(amidoamine) dendrimers with supported lipid bilayers and cells:Hole formation and the relation to transport. Bioconjugate Chem.15 (4), 774~782.
    [30]Seungpyo Hong,Anna U. Bielinska, Almut Mecke, Balazs Keszler,James L. Beals, Xiangyang Shi, Lajos Balogh, Bradford GOrr, James R. Baker and Mark M. Banaszak Holl. Interaction of Poly(amidoamine) Dendrimers with Supported Lipid Bilayers and Cells:Hole Formation and the Relation to Transport. Bioconjugate Chem.2004,15,774~782
    [31]Roberts, J.C, Bhalgat, M.K, Zera, R.T.,1996. Preliminary biological evaluation of polyamidoami-ne (PAMAM) starburst dendrimers. J. Biomed. Mater. Res.30 (1),53~65
    [32]Han, H.S., Kim, H.,1994. Spontaneous fragmentation of dimyristoylphosphatidylcholine vesicles into a discoidal form at low pH. J. Biochem.115 (1),26~31
    [33]Gardikis K, Hatziantoniou S, Viras K, Wagner M, Demetzos C. A DSC and Raman spectroscopy study on the effect of PAMAM dendrimer on DPPC model lipid membranes. Int J Pharm.2006 Aug 2; 318(1-2):118~123
    [34]Mecke A, Uppuluri S, Sassanella TM, Lee DK, Ramamoorthy A, Baker JR Jr, Orr BG, Banaszak Holl MM. Direct observation of lipid bilayer disruption by poly(amidoamine) dendrimers. Chem Phys Lipids.2004 Nov; 132(1):3~14
    [35]Zhang and Smith,2000 Z.-Y. Zhang and B.D. Smith, High-generation polycationic dendrimers are unusually effective at disrupting anionic vesicles:membrane bending model, Bioconjug. Chem.11 (2000), pp.805~814
    [36]Konstantinos Gardikis, Sophia Hatziantoniou, Kyriakos Viras, Matthias Wagner and Costas Demetzos, A DSC and Raman spectroscopy study on the effect of PAMAM dendrimer on DPPC model lipid membranes. International Journal of Pharmaceutics 2006,318(1-2):118~123
    [37]Klajnert B, Janiszewska J, Urbanczyk-Lipkowska Z, Bryszewska M, Epand RM. DSC studies on interactions between low molecular mass peptide dendrimers and model lipid membranes. Int J Pharm.2006 Dec 11; 327(1-2):145~152
    [38]张倩瑶,李永吉,王向涛.树枝状聚合物在靶向给药系统中的应用[J].中国新药与临床杂志.2008,27(1),47~53
    [39]Esfand R, Tomalia DA. Poly(amidoamine) (PAMAM) dendrimers:from biomimicry to drug delivery and biomedical applications [J]. Drug Discov Today,2001,6(8):427~436
    [40]Shi X, Bi X, Ganser TR, et al. HPLC analysis of functionalized poly(amidoamine) dendrimers and the interaction between a folate-dendrimer conjugate and folate binding protein[J]. Analyst, 2006,131(7):842~848
    [41]Sharma A, Mohantt DK, Desai A, et al. A simple polyacrylamide gel electrophoresis procedure for seperation of polyamidoamine dendrimers [J]. Electrophoresis,2003,24(16):2733~2739
    [42]Stevelmans S, Van Hest JCM, Jansen JFGA. et al. Synthesis, characterization, and guest-host properties of inverted unimolecular dendritic micelles [J]. JAm Chem Soc,1996,118(31):7398~ 7399
    [43]Demanuele A, Attwood D. Dendrimer-drug interactions [J]. Adv Drug Deliv Rev 2005,57(15): 2147~162
    [44]Liu M, Kono K, Frechet JM. Water-soluble dendritic unimolecular micelles:their potential as drug delivery agents [J]. J Control Release,2000,65(1-2):121~131
    [45]Zhang JT, Huang SW, Zhou RX. Temperature-sensitive polyamidoamine dendrimer/poly(N- isopropylacrylamide) hydrogels with improved responsive properties [J]. Macromol Biosci,2004, 4(6):575~578
    [46]Roberts J, Adams YE, Tomalla D, et al. Using Starburst dendrimers as linker molecules to radiolabel antibodies [J]. Bioconjug Chem,1990,1(5):305~308
    [47]Aoi K, Itoh K, Okada M. Globular carbohydrate macromolecule'sugar balls'. synthesis of novel sugar-persubstituted poly (amido amine) dendrimers [J]. Macromolecules,1995,28 (15):5391~ 5393
    [48]JevprasesphantR, Penny J, Jalal R, et al. The influence of surface modification on the cytotoxicity of PAMAM dendrimers [J]. Int J Pharm,2003,252 (1-2):263~266
    [49]Aulenta F, Hayes W, Rannard S.Dendrimers:a new class of nanoscopic containers and delivery devices[J]. Eur Polym J,2003,39(9):1741~1771
    [50]Zhuo RX, Du B, LUZR. In vitro release of 5-fluorouacil with cyclic core dendritic polymer [J]. J Control Release,1999,57(3):249~257
    [51]Najlah M, Freeman S, Attwood D, et al. Synthesis, characterization and stability of dendrimer prodrugs [J]. Int J Pharm 2006,308(1-2):175~182
    [52]Chandrasekar D, Sistla R, Ahamd FJ, et al. The development of folate-PAMAM dendrimer conjugates for targeted delivery of anti-arthritic drugs and their pharmacokinetics and biodistribution in arthritic rats [J]. Biomaterials,2007,28(3):504~512
    [53]Yang H, Lopina ST. Penicillin V-conjugated PEG-PAMAM star polymers[J]. J Biomater Sci Polym Ed,2003,14(10):1043~1056
    [54]Ihre HR, Padilla D, Jesus OL, Szoka FC, et al. Polyester dendritic systems for drug delivery applications:design, synthesis, and characterization [J]. Bioconjugate Chem,2002,13(3):453~ 461
    [55]牛小玲,冯震,苗延青.一种新型的药物纳米载体-树枝形聚合物.西安文理学院学报,2005,8(1):29~33
    [56]朱麟勇,童晓峰,李妙贞等.新型线状一树枝状两亲嵌段共聚物的合成[J].化学学报,2000,58:609~611
    [57]Haensler J, Szoka F C. Polyamidoamine cascade polymers mediate efficient transfection of cell sinculture[J]. Bioconjug Chem,1993,5(4):372~379
    [58]Delong R, Stephenson K, Loftus T, et al. Polyester dendritic systems for drug delivery applications:design, synthesis,and characterization[J]. J Pharm Sci,1997,86(6):762~764
    [59]Roessler BJ, Bielinska AU, Janczak K, el al. Substituted β-Cyclodextrins Interact with PAMAM Dendrimer-DNA Complexes and Modify Transfection Eficiency[J]. Biochem Biophys Res Cornnlun,2001,283:124~129
    [60]Chandmsekaran Ramaswamy, Thiagarajan Sakthivd, ndy F Wilderspin,et al. Dendriplexes and their characterization[J]. Int J of Pharm,2003,254:17~21
    [61]Luo D, Haverstick K, Belcheva N, et al. Poly(ethylene glycol)-Conjugated PAMAM Dendrimer for Biocornpatible, High-Efficiency DNA Delivery[J]. Maercxnolecules,2002,35:3456~3462
    [62]Attia S A, ShepherdV E, RosenblattM N, et al. Design and function of a dendtimer-based therapeutic nanodevice targeted to tumor cells through the folate receptor[J]. Antisense Nucleic Acid Drug Dev,1998,8(3):207~214.
    [63]肖娟,陆华中,邹萍.树枝状聚合物在生物医学领域的应用进展,中国生物工程杂志,2002,22(4):6~10
    [64]Wiener E C, et al. Inverstigative Radiology.1997,32:748~754
    [65]Liu M, Frechet J M J. Pharm Sci Tech Today,1999,2:393~401
    [66]Malik N, et al. J Control Release,2000,68(2):299~302
    [67]马金刚,李迎雁.脂质体研究进展.中华现代医学与临床,2005,3(7):41~43
    [68]Martin C Woodle, Danilo D. Lasic Stefically Stabilized Liposomes[J]. Biochimica Biophysica Acts,1992,1113:171~199
    [69]李瑞兰.脂质体及前体脂质体的研究进展.2006,12:24~27
    [70]中国医药工业杂志.2005,36(11):707~711

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700