金黄色葡萄球菌富丝氨酸重复蛋白SraP配体结合区以及肺炎链球菌L,D-羧肽酶DacB的结构与功能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
(I)金黄色葡萄球菌富丝氨酸重复蛋白SraP配体结合区(ligand-binding region, BR)的结构与功能研究
     金黄色葡萄球菌(Staphylococcus aureus)是一种革兰氏阳性菌,它可以导致多种疾病,比如感染性心内膜炎、骨髓炎、脓毒性关节炎以及败血症等。金葡菌表面的SraP是一种富含丝氨酸高度糖基化的蛋白(serine-rich repeat glycoproteins, SRRPs)。SraP可以通过其配体结合区域(ligand-binding region, BR)粘附血小板进而导致感染性心内膜炎。为了阐释SraP与宿主之间的相互作用机制,我们通过X-射线晶体学的方法解析了配体结合区域SraPBR的结构,其分辨率为2.05A。SraPBR的整体结构呈伸展的杆状,由四个分开的模块组成,它们的结构分别与豆科凝集素(Legume lectin)、免疫球蛋白结合蛋白β-grasp折叠以及钙粘素(Cadherin)相似。基于结构分析,结合生物化学、微生物学和细胞实验,可以发现L-lectin模块能特异性地与N-乙酰神经氨酸(Neu5Ac)结合,进而介导SraPBR黏附到A549细胞表面来侵染宿主细胞。而β-grasp折叠模块不具备免疫球蛋白结合蛋白结合活性。另外,C端的两个串联的钙粘素模块与真核生物的钙粘素相似,但是它们的钙离子结合方式不同。小角X射线衍射和分子模拟实验证明SraPBR C端的三个模块通过钙离子维持整体结构的相对刚性,从而将L-lectin模块支出细菌细胞外发挥粘附功能。另外,通过突变实验以及最近鉴定SraP的底物三糖,我们认为SraPBR通过特异性识别唾液酸化的受体来介导金黄色葡萄球菌粘附以及侵染到宿主表皮细胞中。该研究将为开发针对金黄色葡萄球菌的新型疫苗或者抗生素提供理论指导。
     (Ⅱ) DacB的结构与酶学研究
     肺炎链球菌中的细胞壁肽聚糖L,D羧肽酶DacB是特异水解肽聚糖肽段L-赖氨酸和D-丙氨酸之间的肽键的酶。敲除DacB基因后会导致肺炎链球菌细胞形态以及隔板分裂的缺陷,暗示DacB在肽聚糖的重塑中发挥重要的作用。因此,DacB有可能作为潜在的抗生素靶标。通过X-射线晶体学的方法解析了DacB的结构,分辨率为2.1A。这是第一个革兰氏阳性菌中的L,D-羧肽酶的三维结构。DacB整体呈球状,由一些个α螺旋及其围绕的核心β-sheet组成。结构分析显示DacB是M15B蛋白酶家族的成员。与M15B蛋白酶家族不同的是,DacB的活性位点有一个六配位的锌离子组成,锌离子与His-Asp-His-Glu四联体以及另外两个水分子配位。通过生化实验发现肽聚糖的四肽(L-Ala-D-iGln-L-Lys-D-Ala)是DacB的合适底物。通过分子对接以及突变实验,鉴定了结合四肽底物的关键残基。基于这些研究成果将为开发针对肺炎练球菌的新型疫苗或者抗生素提供理论基础。
(Ⅰ) Structure and function of ligand binding region of SraP
     Staphylococcus aureus, a Gram-positive bacterium causes a number of devastating human diseases, such as infective endocarditis, osteomyelitis, septic arthritis and sepsis. S. aureus SraP, a surface-exposed serine-rich repeat glycoprotein (SRRP), is required for the pathogenesis of human infective endocarditis via its ligand-binding region (BR) adhering to human platelet. It remains unclear how SraP interacts with human host. Here we report the2.05A crystal structure of the BR of SraP, revealing an extended rod-like architecture of four discrete modules. The N-terminal legume lectin-like module specifically binds to N-acetylneuraminic acid. The second module adopts a β-grasp fold similar to Ig-binding proteins, whereas the last two tandem repetitive modules resemble eukaryotic cadherins but differing in calcium coordination pattern. Small-angle X-ray scattering and molecular dynamic simulation indicated the three C-terminal modules function as a relatively rigid stem to extend the N-terminal lectin module outward. Structure-guided mutagenesis analyses, in addition to a recently identified trisaccharide ligand of SraP, enabled us to elucidate that SraP specifically binding to sialylated receptors promotes S. aureus adhesion to and invasion into host epithelial cells. Our findings have thus provided novel structural and functional insights into the SraP-mediated staphylococcal infection.
     (Ⅱ) Structure and function of L,D-carboxypeptidase DacB
     Streptococcus pneumoniae DacB is an L,D-carboxypeptidase hydrolyzing the peptide bond between L-Lys and D-Ala in pneumococcal peptidoglycan (PG). Deletion of the dacB gene has been shown to result in defects in cell shape and septation implying its important role in peptidoglycan remodeling. Therefore, DacB represents a promising target for the development of new types of antibiotics. However, the structure fold and catalytic mechanism of this enzyme remians unknown. Here, we determined the high-resolution structure of DacB in complex with acetate, representing the first Gram-positive bacterial L,D-carboxypeptidase structure. DacB adopts a globular fold, with several a-helices surrounding a central β-sheet. Structure analysis of DacB reveals a new member of the M15B peptidase family. The active site contains an unexpected six-coordinate zinc ion with a His-Asp-His-Glu tetrad and two metal-bound water molecules. We also identified that the tetrapeptide (Ala-iGln-L-Lys-D-Ala) can be used as a favorite substrate by the enzyme. Molecular docking and digestion assays with the tetrapeptide allowed us to identify key residues in ligand binding and catalysis. Based on these findings,we could assign DacB and other L,D-carboxypeptidases in Gram-positive bacteria as metalloenzymes and proposed the identification of specific inhibitors of this important class of enzymes according to a putative catalytic mechanism.
引文
Adams PD, Afonine PV, Bunkoczi G, Chen VB, Davis IW, Echols N, Headd JJ, Hung LW, Kapral GJ, Grosse-Kunstleve RW, McCoy AJ, Moriarty NW, Oeffner R, Read RJ, Richardson DC, Richardson JS, Terwilliger TC, Zwart PH (2010) PHENIX:a comprehensive Python-based system for macromolecular structure solution. Acta Crystallogr D Biol Crystallogr 66:213-221
    Bailey S (1994) The Ccp4 Suite-Programs for Protein Crystallography. Acta Crystallogr D Biol Crystallogr 50:760-763
    Beckingham JA, Bottomley SP, Hinton R, Sutton BJ, Gore MG (1999) Interactions between a single immunoglobulin-binding domain of protein L from Peptostreptococcus magnus and a human κ light chain. Biochem J 340:193-199
    Bensing BA, Gibson BW, Sullam PM (2004a) The Streptococcus gordonii platelet binding protein GspB undergoes glycosylation independently of export. J Bacteriol 186:638-645
    Bensing BA, Lopez JA, Sullam PA (2004b) The Streptococcus gordonii surface proteins GspB and Hsa mediate binding to sialylated carbohydrate epitopes on the platelet membrane glycoprotein Iba. Infect Immun 72:6528-6537
    Bischoff M, Dunman P, Kormanec J, Macapagal D, Murphy E, Mounts W, Berger-Bachi B, Projan S (2004) Microarray-based analysis of the Staphylococcus aureus sigmaB regulon. J Bacteriol 186:4085-4099
    Bjorck L (1988) Protein L. A novel bacterial cell wall protein with affinity for Ig L Chains. J Immunol 140:1194-1197
    Boggon TJ, Murray J, Chappuis-Flament S, Wong E, Gumbiner BM, Shapiro L (2002) C-cadherin ectodomain structure and implications for cell adhesion mechanisms. Science 296:1308-1313
    Brasch J, Harrison OJ, Honig B, Shapiro L (2012) Thinking outside the cell:how cadherins drive adhesion. Trends Cell Biol 22:299-310
    Brodersen DE, de la Fortelle E, Vonrhein C, Bricogne G, Nyborg J, Kjeldgaard M (2000) Applications of single-wavelength anomalous dispersion at high and atomic resolution. Acta Crystallogr D Biol Crystallogr 56:431-441
    Chayen NE, Saridakis E (2008) Protein crystallization:from purified protein to diffraction-quality crystal. Nat Methods 5:147-153
    Cowtan K (2006) The Buccaneer software for automated model building.1. Tracing protein chains. Acta Crystallogr D Biol Crystallogr 62:1002-1011
    Davis IW, Leaver-Fay A, Chen VB, Block JN, Kapral GJ, Wang X, Murray LW, Arendall WB,3rd, Snoeyink J, Richardson JS, Richardson DC (2007) MolProbity: all-atom contacts and structure validation for proteins and nucleic acids. Nucleic Acids Res 35:W375-383
    DeLeo FR, Otto M, Kreiswirth BN, Chambers HF (2010) Community-associated meticillin-resistant Staphylococcus aureus. Lancet 375:1557-1568
    Duan Y, Wu C, Chowdhury S, Lee MC, Xiong GM, Zhang W, Yang R, Cieplak P, Luo R, Lee T, Caldwell J, Wang JM, Kollman P (2003) A point-charge force field for molecular mechanics simulations of proteins based on condensed-phase quantum mechanical calculations.J Comput Chem 24:1999-2012
    Duverger E, Frison N, Roche AC, Monsigny M (2003) Carbohydrate-lectin interactions assessed by surface plasmon resonance. Biochimie 85:167-179
    Emsley P, Cowtan K (2004) Coot:model-building tools for molecular graphics. Acta Crystallogr D Biol Crystallogr 60:2126-2132
    Essmann U, Perera L, Berkowitz ML, Darden T, Lee H, Pedersen LG (1995) A smooth particle mesh Ewald method. J Chem Phys 103:8577-8593
    Evans P (2006) Scaling and assessment of data quality. Acta Crystallogr D Biol Crystallogr 62:72-82
    Foster TJ, Geoghegan JA, Ganesh VK, Hook M (2014) Adhesion, invasion and evasion:the many functions of the surface proteins of Staphylococcus aureus. Nat Rev Microbiol 12:49-62
    Glaser P, Rusniok C, Buchrieser C, Chevalier F, Frangeul L, Msadek T, Zouine M, Couve E, Lalioui L, Poyart C, Trieu-Cuot P, Kunst F (2002) Genome sequence of Streptococcus agalactiae, a pathogen causing invasive neonatal disease. Mol Microbiol 45:1499-1513
    Graille M, Stura EA, Housden NG, Beckingham JA, Bottomley SP, Beale D, Taussig MJ, Sutton BJ, Gore MG, Charbonnier JB (2001) Complex between Peptostreptococcus magnus protein L and a human antibody reveals structural convergence in the interaction modes of Fab binding proteins. Structure 9:679-687
    Gruszka DT, Wojdyla JA, Bingham RJ, Turkenburg JP, Manfield IW, Steward A, Leech AP, Geoghegan JA, Foster TJ, Clarke J, Potts JR (2012) Staphylococcal bio film-forming protein has a contiguous rod-like structure. Proc Natl Acad Sci USA 109:E1011-E1018
    Gu LH, Coulombe PA (2007) Keratin function in skin epithelia:a broadening palette with surprising shades. Curr Opin Cell Biol 19:13-23
    Hammer ND, Skaar EP (2011) Molecular mechanisms of Staphylococcus aureus iron acquisition. Annu Rev Microbiol 65:129-147
    Handley PS, Correia FF, Russell K, Rosan B, DiRienzo JM (2005) Association of a novel high molecular weight, serine-rich protein (SrpA) with fibril-mediated adhesion of the oral biofilm bacterium Streptococcus cristatus. Oral Microbiol Immunol 20: 131-140
    Hao Q, Gu YX, Zheng CD, Fan HF (2000) OASIS:a computer program for breaking phase ambiguity in one-wavelength anomalous scattering or single isomorphous substitution (replacement) data. JAppl Crystallogr 33:980-981
    Hess B (2008) P-LINCS:A parallel linear constraint solver for molecular simulation. J Chem Theory Comput 4:116-122
    Holm L, Rosenstrom P (2010) Dali server:conservation mapping in 3D. Nucleic Acids Res 38:W545-549
    Holmskov U, Mollenhauer J, Madsen J, Vitved L, Gronlund J, Tornoe I, Kliem A, Reid KB, Poustka A, Skjodt K (1999) Cloning of gp-340, a putative opsonin receptor for lung surfactant protein D. Proc Natl Acad Sci U S A 96:10794-10799
    Humphrey W, Dalke A, Schulten K (1996) VMD:Visual molecular dynamics. J Mol Graph 14:33-38
    Hura GL, Menon AL, Hammel M, Rambo RP, Poole FL,2nd, Tsutakawa SE, Jenney FE, Jr., Classen S, Frankel KA, Hopkins RC, Yang SJ, Scott JW, Dillard BD, Adams MW, Tainer JA (2009) Robust, high-throughput solution structural analyses by small angle X-ray scattering (SAXS). Nat Methods 6:606-612
    Jin XS, Walker MA, Felsovalyi K, Vendome J, Bahna F, Mannepalli S, Cosmanescu F, Ahlsen G, Honig B, Shapiro L (2012) Crystal structures of Drosophila N-cadherin ectodomain regions reveal a widely used class of Ca2+-free interdomain linkers. Proc Natl Acad Sci USA 109:E127-E134
    Jorgensen WL, Chandrasekhar J, Madura JD, Impey RW, Klein ML (1983) Comparison of simple potential functions for simulating liquid water. J Chem Phys 79: 926-935
    Konarev PV, Volkov VV, Sokolova AV, Koch MHJ, Svergun DI (2003) PRIMUS:a Windows PC-based system for small-angle scattering data analysis. J Appl Crystallogr 36:1277-1282
    Kukita K, Kawada-Matsuo M, Oho T, Nagatomo M, Oogai Y, Hashimoto M, Suda Y, Tanaka T, Komatsuzawa H (2013) Staphylococcus aureus SasA is responsible for binding to the salivary agglutinin gp340, derived from human saliva. Infect Immun 81: 1870-1879
    Kuroda M, Tanaka Y, Aoki R, Shu D, Tsumoto K, Ohta T (2008) Staphylococcus aureus giant protein Ebh is involved in tolerance to transient hyperosmotic pressure. Biochem Biophys Res Commun 374:237-241
    Larson MR, Rajashankar KR, Patel MH, Robinette RA, Crowley PJ, Michalek S, Brady LJ, Deivanayagam C (2010) Elongated fibrillar structure of a Streptococcal adhesin assembled by the high-affinity association of a-and PPII-helices. Proc Natl Acad Sci USA 107:5983-5988
    Lauer P, Rinaudo CD, Soriani M, Margarit I, Maione D, Rosini R, Taddei AR, Mora M, Rappuoli R, Grandi G, Telford JL (2005) Genome analysis reveals pili in group B Streptococcus. Science 309:105-105
    Leube RE, Bader BL, Bosch FX, Zimbelmann R, Achtstaetter T, Franke WW (1988) Molecular characterization and expression of the stratification-related cytokeratins 4 and 15. J Cell Biol 106:1249-1261
    Lizcano A, Sanchez CJ, Orihuela CJ (2012) A role for glycosylated serine-rich repeat proteins in Gram-positive bacterial pathogenesis. Mol Oral Microbiol 27:257-269
    Loris R, Hamelryck T, Bouckaert J, Wyns L (1998) Legume lectin structure. Biochim Biophys Acta 1383:9-36
    Lowy FD (1998) Medical progress-Staphylococcus aureus infections. NEngl JMed 339:520-532
    MacKenzie DA, Tailford LE, Hemmings AM, Juge N (2009) Crystal structure of a mucus-binding protein repeat reveals an unexpected functional immunoglobulin binding activity. JBiol Chem 284:32444-32453
    Maurer P, Hohenester E, Engel J (1996) Extracellular calcium-binding proteins. Curr Opin Cell Biol 8:609-617
    McAleese FM, Walsh EJ, Sieprawska M, Potempa J, Foster TJ (2001) Loss of clumping factor B fibrinogen binding activity by Staphylococcus aureus involves cessation of transcription, shedding and cleavage by metalloprotease. J Biol Chem 276:29969-29978
    Mistou MY, Dramsi S, Brega S, Poyart C, Trieu-Cuot P (2009) Molecular dissection of the secA2 locus of group B Streptococcus reveals that glycosylation of the Srrl LPXTG protein is required for full virulence. J Bacteriol 191:4195-4206
    Murshudov GN, Vagin AA, Dodson EJ (1997) Refinement of macromolecular structures by the maximum-likelihood method. Acta Crystallogr D Biol Crystallogr 53:240-255
    Murzin AG, Brenner SE, Hubbard T, Chothia C (1995) Scop-a structural classification of proteins database for the investigation of sequences and structures. J Mol Biol 247:536-540
    Nadeau OW, Carlson GM (2007) Protein interactions captured by chemical cross-linking:one-step cross-linking with formaldehyde. CSH Protoc 2007:pdb prot4634
    Nobbs AH, Lamont RJ, Jenkinson HF (2009) Streptococcus adherence and colonization. Microbiol Mol Biol Rev 73:407-450
    Otto M (2010) Basis of virulence in community-associated methicillin-resistant Staphylococcus aureus. Annu Rev Microbiol 64:143-162
    Otwinowski Z, Minor W (1997) Processing of X-ray diffraction data collected in oscillation mode. Method Enzymol 276:307-326
    Pletnev VZ, Ruzheinikov SN, Tsygannik IN, Mikhailova IY, Duax W, Ghosh D, Pangborn W (1997) The structure of pea lectin-D-glucopyranose complex at a 1.9 A resolution. RUSS. J.Bioorganic Chem 23:469-478
    Plummer C, Wu H, Kerrigan SW, Meade G, Cox D, Ian Douglas CW (2005) A serine-rich glycoprotein of Streptococcus sanguis mediates adhesion to platelets via GPIb. Br J Haematol 129:101-109
    Pyburn TM, Bensing BA, Xiong YQ, Melancon BJ, Tomasiak TM, Ward NJ, Yankovskaya V, Oliver KM, Cecchini G, Sulikowski GA, Tyska MJ, Sullam PM,
    Iverson TM (2011) A structural model for binding of the serine-rich repeat adhesin GspB to host carbohydrate receptors. PLoS Pathog 7:e1002112
    Rabijns A, Verboven C, Rouge P, Barre A, Van Damme EJM, Peumans WJ, De Ranter CJ (2001) Structure of a legume lectin from the bark of Robinia pseudoacacia and its complex with N-acetylgalactosamine. Proteins 44:470-478
    Ramboarina S, Garnett JA, Zhou M, Li Y, Peng Z, Taylor JD, Lee WC, Bodey A, Murray JW, Alguel Y, Bergeron J, Bardiaux B, Sawyer E, Isaacson R, Tagliaferri C, Cota E, Nilges M, Simpson P, Ruiz T, Wu H, Matthews S (2010) Structural insights into serine-rich fimbriae from Gram-positive bacteria. JBiol Chem 285:32446-32457
    Roche FM, Massey R, Peacock SJ, Day NP, Visai L, Speziale P, Lam A, Pallen M, Foster TJ (2003) Characterization of novel LPXTG-containing proteins of Staphylococcus aureus identified from genome sequences. Microbiology 149: 643-654
    Samen U, Eikmanns BJ, Reinscheid DJ, Borges F (2007a) The surface protein Srr-1 of Streptococcus agalactiae binds human keratin 4 and promotes adherence to epithelial HEp-2 cells. Infect Immun 75:5405-5414
    Sanchez CJ, Shivshankar P, Stol K, Trakhtenbroit S, Sullam PM, Sauer K, Hermans PW, Orihuela CJ (2010) The pneumococcal serine-rich repeat protein is an intra-species bacterial adhesin that promotes bacterial aggregation in vivo and in biofilms. PLoSPathog 6:e1001044
    Seifert KN, Adderson EE, Whiting AA, Bohnsack JF, Crowley PJ, Brady LJ (2006) A unique serine-rich repeat protein (Srr-2) and novel surface antigen (epsilon) associated with a virulent lineage of serotype III Streptococcus agalactiae. Microbiology 152:1029-1040
    Seo HS, Mu R, Kim BJ, Doran KS, Sullam PM (2012) Binding of glycoprotein Srrl of Streptococcus agalactiae to fibrinogen promotes attachment to brain endothelium and the development of meningitis. PLoS Pathog 8:e1002947
    Sharon N, Lis H (1990) Legume lectins--a large family of homologous proteins. FASEB J 4:3198-3208
    Sheldrick GM (2008) A short history of SHELX. Acta Crystallogr A 64:112-122
    Shivshankar P, Sanchez C, Rose LF, Orihuela CJ (2009) The Streptococcus pneumoniae adhesin PsrP binds to Keratin 10 on lung cells. Mol Microbiol 73: 663-679
    Siboo IR, Chambers HF, Sullam PM (2005) Role of SraP, a serine-rich surface protein of Staphylococcus aureus, in binding to human platelets. Infect Immun 73:2273-2280
    Sotomayor M, Weihofen WA, Gaudet R, Corey DP (2012) Structure of a force-conveying cadherin bond essential for inner-ear mechanotransduction. Nature 492:128-+
    Srinivas VR, Reddy GB, Ahmad N, Swaminathan CP, Mitra N, Surolia A (2001) Legume lectin family, the 'natural mutants of the quaternary state' provide insights into the relationship between protein stability and oligomerization. Biochim Biophys Acta 1527:102-111
    Stephenson AE, Wu H, Novak J, Tomana M, Mintz K, Fives-Taylor P (2002) The Fapl fimbrial adhesin is a glycoprotein:antibodies specific for the glycan moiety block the adhesion of Streptococcus parasanguis in an in vitro tooth model. Mol Microbiol 43:147-157
    Svergun DI (1992) Determination of the regularization parameter in indirect-transform methods using perceptual criteria. JAppl Crystallogr 25:495-503
    Svergun DI (1999) Restoring low resolution structure of biological macromolecules from solution scattering using simulated annealing. Biophys J 77:2896-2896
    Svergun DI, Petoukhov MV, Koch MHJ (2001) Determination of domain structure of proteins from X-ray solution scattering. Biophys J 80:2946-2953
    Takamatsu D, Bensing BA, Cheng H, Jarvis GA, Siboo IR, Lopez JA, Griffiss JM, Sullam PM (2005) Binding of the Streptococcus gordonii surface glycoproteins GspB and Hsa to specific carbohydrate structures on platelet membrane glycoprotein Ibα. Mol Microbiol 58:380-392
    Takamatsu D, Bensing BA, Prakobphol A, Fisher SJ, Sullam PM (2006) Binding of the Streptococcal surface glycoproteins GspB and Hsa to human salivary proteins. Infect Immun 74:1933-1940
    Takamatsu D, Bensing BA, Sullam PM (2004) Four proteins encoded in the gspB-secY2A2 operon of Streptococcus gordonii mediate the intracellular glycosylation of the platelet-binding protein GspB. J Bacteriol 186:7100-7111
    Takeuchi F, Watanabe S, Baba T, Yuzawa H, Ito T, Morimoto Y, Kuroda M, Cui L, Takahashi M, Ankai A, Baba S, Fukui S, Lee JC, Hiramatsu K (2005) Whole-genome sequencing of Staphylococcus haemolyticus uncovers the extreme plasticity of its genome and the evolution of human-colonizing Staphylococcal species. J Bacteriol 187:7292-7308
    Tanaka Y, Sakamoto S, Kuroda M, Goda S, Gao YG, Tsumoto K, Hiragi Y, Yao M, Watanabe N, Ohta T, Tanaka I (2008) A helical string of alternately connected three-helix bundles for the cell wall-associated adhesion protein Ebh from Staphylococcus aureus. Structure 16:488-496
    Terwilliger TC (2003) Automated main-chain model building by template matching and iterative fragment extension. Acta Crystallogr D Biol Crystallogr 59:38-44
    Terwilliger TC, Berendzen J (1999) Automated MAD and MIR structure solution. Acta Crystallogr D Biol Crystallogr 55:849-861
    Ton-That H, Liu G, Mazmanian SK, Faull KF, Schneewind O (1999) Purification and characterization of sortase, the transpeptidase that cleaves surface proteins of Staphylococcus aureus at the LPXTG motif. Proc Natl Acad Sci U S A 96: 12424-12429
    Trott O, Olson AJ (2010) AutoDock Vina:improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading. J Comput Chem 31:455-461
    van Sorge NM, Quach D, Gurney MA, Sullam PM, Nizet V, Doran KS (2009) The group B Streptococcal serine-rich repeat 1 glycoprotein mediates penetration of the blood-brain barrier. J Infect Dis 199:1479-1487
    Velloso LM, Svensson K, Schneider G, Pettersson RF, Lindqvist Y (2002) Crystal structure of the carbohydrate recognition domain of p58/ERGIC-53, a protein involved in glycoprotein export from the endoplasmic reticulum. J Biol Chem 277: 15979-15984
    Wu H, Fives-Taylor PM (1999) Identification of dipeptide repeats and a cell wall sorting signal in the fimbriae-associated adhesin, Fapl, of Streptococcus parasanguis. Mol Microbiol 34:1070-1081
    Wu H, Mintz KP, Ladha M, Fives-Taylor PM (1998a) Isolation and characterization of Fapl, a fimbriae-associated adhesin of Streptococcus parasanguis FW213. Mol Microbiol 28:487-500
    Wu H, Zeng M, Fives-Taylor P (2007) The glycan moieties and the N-terminal polypeptide backbone of a fimbria-associated adhesin, Fapl, play distinct roles in the biofilm development of Streptococcus parasanguinis. Infect Immun 75:2181-2188
    Xiong YQ, Bensing BA, Bayer AS, Chambers HF, Sullam PM (2008) Role of the serine-rich surface glycoprotein GspB of Streptococcus gordonii in the pathogenesis of infective endocarditis. Microb Pathog 45:297-301
    Zhang YQ, Ren SX, Li HL, Wang YX, Fu G, Yang J, Qin ZQ, Miao YG, Wang WY, Chen RS, Shen Y, Chen Z, Yuan ZH, Zhao GP, Qu D, Danchin A, Wen YM (2003) Genome-based analysis of virulence genes in a non-bio film-forming Staphylococcus epidermidis strain (ATCC 12228). Mol Microbiol 49:1577-1593
    Zhou M, Wu H (2009) Glycosylation and biogenesis of a family of serine-rich bacterial adhesins. Microbiology 155:317-327
    Adams PD, Afonine PV, Bunkoczi G, Chen VB, Davis IW, Echols N, Headd JJ, Hung LW, Kapral GJ, Grosse-Kunstleve RW, McCoy AJ, Moriarty NW, Oeffner R, Read RJ, Richardson DC, Richardson JS, Terwilliger TC, Zwart PH (2010) PHENIX:a comprehensive Python-based system for macromolecular structure solution. Acta Crystallogr D Biol Crystallogr 66:213-221
    Barendt SM, Land AD, Sham LT, Ng WL, Tsui HC, Arnold RJ, Winkler ME (2009) Influences of capsule on cell shape and chain formation of wild-type and pcsB mutants of serotype 2 Streptococcus pneumoniae. J Bacteriol 191:3024-3040
    Barendt SM, Sham LT, Winkler ME (2011) Characterization of mutants deficient in the L,D-carboxypeptidase (DacB) and WalRK (VicRK) regulon, involved in peptidoglycan maturation of Streptococcus pneumoniae serotype 2 strain D39. J Bacteriol 193:2290-2300
    Bisicchia P, Noone D, Lioliou E, Howell A, Quigley S, Jensen T, Jarmer H, Devine KM (2007) The essential YycFG two-component system controls cell wall metabolism in Bacillus subtilis. Mol Microbiol 65:180-200
    Bochtler M, Odintsov SG, Marcyjaniak M, Sabala I (2004) Similar active sites in lysostaphins and D-Ala-D-Ala metallopeptidases. Protein Sci 13:854-861
    Breton YL, Maze A, Hartke A, Lemarinier S, Auffray Y, Rince A (2002) Isolation and characterization of bile salts-sensitive mutants of Enterococcus faecalis. Curr Microbiol 45:434-439
    Brodersen DE, de La Fortelle E, Vonrhein C, Bricogne G, Nyborg J, Kjeldgaard M (2000) Applications of single-wavelength anomalous dispersion at high and atomic resolution. Acta Crystallogr D Biol Crystallogr 56:431-441
    Bussiere DE, Pratt SD, Katz L, Severin JM, Holzman T, Park CH (1998) The structure of VanX reveals a novel amino-dipeptidase involved in mediating transposon-based vancomycin resistance. Mol Cell 2:75-84
    Collaborative Computational Project N (1994) The CCP4 suite:programs for protein crystallography. Acta Crystallogr D Biol Crystallogr 50:760-763
    Courtin P, Miranda G, Guillot A, Wessner F, Mezange C, Domakova E, Kulakauskas S, Chapot-Chartier MP (2006) Peptidoglycan structure analysis of Lactococcus lactis reveals the presence of an L,D-carboxypeptidase involved in peptidoglycan maturation. J Bacteriol 188:5293-5298
    Cowtan K (2006) The Buccaneer software for automated model building.1. Tracing protein chains. Acta Crystallogr D Biol Crystallogr 62:1002-1011
    De Las Rivas B, Garcia JL, Lopez R, Garcia P (2002) Purification and polar localization of pneumococcal LytB, a putative endo-beta-N-acetylglucosaminidase: the chain-dispersing murein hydrolase. JBacteriol 184:4988-5000
    Emsley P, Cowtan K (2004) Coot:model-building tools for molecular graphics. Acta Crystallogr D Biol Crystallogr 60:2126-2132
    Garcia P, Gonzalez MP, Garcia E, Lopez R, Garcia JL (1999) LytB, a novel pneumococcal murein hydrolase essential for cell separation. Mol Microbiol 31: 1275-1281
    Giefing-Kroll C, Jelencsics KE, Reipert S, Nagy E (2011) Absence of pneumococcal PcsB is associated with overexpression of LysM domain-containing proteins. Microbiology 157:1897-1909
    Hao Q, Gu YX, Zheng CD, Fan HF (2000) OASIS:a computer program for breaking phase ambiguity in one-wavelength anomalous scattering or single isomorphous substitution (replacement) data. J Appl Crystallogr 33:980-981
    Higgins ML, Pooley HM, Shockman GD (1970) Site of initiation of cellular autolysis in Streptococcus faecalis as seen by electron microscopy. JBacteriol 103:504-&
    Higgins ML, Shockman GD (1976) Study of cycle of cell wall assembly in Streptococcus faecalis by three-dimensional reconstructions of thin sections of cells. J Bacteriol 127:1346-1358
    Holtje JV (1998) Growth of the stress-bearing and shape-maintaining murein sacculus of Escherichia coli. Microbiol Mol Biol Rev 62:181-203
    Korndorfer IP, Kanitz A, Danzer J, Zimmer M, Loessner MJ, Skerra A (2008) Structural analysis of the L-alanoyl-D-glutamate endopeptidase domain of Listeria bacteriophage endolysin Ply500 reveals a new member of the LAS peptidase family. Acta Crystallogr D Biol Crystallogr 64:644-650
    Korza HJ, Bochtler M (2005) Pseudomonas aeruginosa LD-carboxypeptidase, a serine peptidase with a Ser-His-Glu triad and a nucleophilic elbow. J Biol Chem 280: 40802-40812
    Matthews ML, Periyannan G, Hajdin C, Sidgel TK, Bennett B, Crowder MW (2006) Probing the reaction mechanism of the D-ala-D-ala dipeptidase, VanX, by using stopped-flow kinetic and rapid-freeze quench EPR studies on the Co(Ⅱ)-substituted enzyme. J Am Chem Soc 128:13050-13051
    Mattos-Graner RO, Jin S, King WF, Chen T, Smith DJ, Duncan MJ (2001) Cloning of the Streptococcus mutans gene encoding glucan binding protein B and analysis of genetic diversity and protein production in clinical isolates. Infect Immun 69: 6931-6941
    Meziane-Cherif, D., Stogios, P. J., Evdokimova, E., Savchenko, A. & Courvalin, P. (2014). Structural basis for the evolution of vancomycin resistance D,D-peptidases. Proc Natl Acad Sci U S A.111,5872-5877.
    Morlot C, Noirclerc-Savoye M, Zapun A, Dideberg O, Vernet T (2004) The D,D-carboxypeptidase PBP3 organizes the division process of Streptococcus pneumoniae. Mol Microbiol 51:1641-1648
    Morlot C, Pernot L, Le Gouellec A, Di Guilmi AM, Vernet T, Dideberg O, Dessen A (2005) Crystal structure of a peptidoglycan synthesis regulatory factor (PBP3) from Streptococcus pneumoniae. JBiol Chem 280:15984-15991
    Murshudov. GN, Vagin. AA, Dodson. EJ (1997) Refinement of macromolecular structures by the maximum-likelihood method. Acta Crystallogr D Biol Crystallogr 53:240-255
    Nemmara VV, Dzhekieva L, Sarkar KS, Adediran SA, Duez C, Nicholas RA, Pratt RF (2011) Substrate specificity of low-molecular mass bacterial DD-peptidases. Biochemistry 50:10091-10101
    Otwinowski Z, Minor W (1997) Processing of X-ray diffraction data collected in oscillation mode. Method Enzymol 276:307-326
    Pagliero E, Dideberg O, Vernet T, Di Guilmi AM (2005) The PECACE domain:a new family of enzymes with potential peptidoglycan cleavage activity in Gram-positive bacteria. BMC Genomics 6:19
    Pancholi V, Boel G, Jin H (2010) Streptococcus pyogenes Ser/Thr kinase-regulated cell wall hydrolase is a cell division plane-recognizing and chain-forming virulence factor. JBiol Chem 285:30861-30874
    Reinscheid DJ, Gottschalk B, Schubert A, Eikmanns BJ, Chhatwal GS (2001) Identification and molecular analysis of PcsB, a protein required for cell wall separation of group B streptococcus. JBacteriol 183:1175-1183 Scheffers DJ, Pinho MG (2005) Bacterial cell wall synthesis:new insights from localization studies. Microbiol Mol Biol Rev 69:585-607
    Severin A, Home D, Tomasz A (1997) Autolysis and cell wall degradation in a choline-independent strain of Streptococcus pneumoniae. Microb Drug Resist 3: 391-400
    Severin A, Schuster C, Hakenbeck R, Tomasz A (1992) Altered murein composition in a DD-carboxypeptidase mutant of Streptococcus pneumoniae. J Bacteriol 174: 5152-5155
    Sham LT, Barendt SM, Kopecky KE, Winkler ME (2011) Essential PcsB putative peptidoglycan hydrolase interacts with the essential FtsXSpn cell division protein in Streptococcus pneumoniae D39. Proc Natl Acad Sci USA 108:E1061-1069
    Sheldrick GM (2008) A short history of SHELX. Acta Crystallogr A 64:112-122
    Singh SK, SaiSree L, Amrutha RN, Reddy M (2012) Three redundant murein endopeptidases catalyse an essential cleavage step in peptidoglycan synthesis of Escherichia coli K12. Mol Microbiol 86:1036-1051
    Suginaka H, Blumberg PM, Strominger JL (1972) Multiple penicillin-binding components in Bacillus subtilis, Bacillus cereus, Staphylococcus aureus, and Escherichia coli. JBiol Chem 247:5279-5288
    Suzuki H, van Heijenoort Y, Tamura T, Mizoguchi J, Hirota Y, van Heijenoort J (1980) In vitro peptidoglycan polymerization catalysed by penicillin binding protein lb of Escherichia coli K-12. FEBSLett 110:245-249
    Templin MF, Ursinus A, Holtje JV (1999) A defect in cell wall recycling triggers autolysis during the stationary growth phase of Escherichia coli. EMBO J 18: 4108-4117
    Terwilliger TC (2003) Automated main-chain model building by template matching and iterative fragment extension. Acta Crystallogr D Biol Crystallogr 59:38-44
    Terwilliger TC, Berendzen J (1999) Automated MAD and MIR structure solution. Acta Crystallogr D Biol Crystallogr 55:849-861
    Trott O, Olson AJ (2010) AutoDock Vina:improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading. J Comput Chem 31:455-461
    Varma A, de Pedro MA, Young KD (2007) FtsZ directs a second mode of peptidoglycan synthesis in Escherichia coli. JBacteriol 189:5692-5704
    Vollmer W (2012) Bacterial growth does require peptidoglycan hydrolases. Mol Microbiol 86:1031-1035
    Vollmer W, Blanot D, de Pedro MA (2008) Peptidoglycan structure and architecture. FEMS Microbiol Rev 32:149-167
    Yang DC, Peters NT, Parzych KR, Uehara T, Markovski M, Bernhardt TG (2011) An ATP-binding cassette transporter-like complex governs cell-wall hydrolysis at the bacterial cytokinetic ring. Proc Natl Acad Sci USA 108:E1052-1060
    Zapun A, Contreras-Martel C, Vernet T (2008) Penicillin-binding proteins and beta-lactam resistance. FEMS Microbiol Rev 32:361-385

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700