豆科树种根部解剖结构和化学物质与结瘤的关系
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
自1886年德国学者Hermann Hellriegel首次发现大豆的根瘤具有固氮功能,1888年荷兰人首次分离获得根瘤菌的纯培养以来,有关豆科植物—根瘤菌共生体系的研究日益增多,成为当今世界上最活跃的研究领域之一。多年来,人们在固氮生物学,生物化学和遗传学研究均有了许多重要进展。但对非结瘤豆科树种不能结瘤固氮原因的研究较少。本文从根系的外部形态、根部解剖结构以及根内所存在的抑菌化学物质等方面对非结瘤豆科树种不能结瘤固氮的原因作了初步探讨,主要研究结果如下:
     1.22个豆科树种(含羞草亚科3属,蝶形花亚科2属,苏木亚科3属),用水培和盆栽的方法观察根的外部形态与结瘤的关系,结果表明:选取的含羞草亚科和蝶形花亚科中的树种结瘤,而苏木亚科中的树种都不结瘤。结瘤与非结瘤豆科树种的根系外形存在明显差异。非结瘤豆科树种的根系外形都是坚实如铁丝,呈深褐色至黑色;而结瘤豆科树种的根系外形较软,颜色较浅呈乳白色至土黄色。结瘤豆科树种的根瘤大小、形状、颜色有所不同,但部位相同都以侧根结瘤为主。根系的发达程度与是否结瘤没有相关性。
     2.根毛的多少与豆科植物是否结瘤没有十分密切的关系。非结瘤豆科树种的侧根都没有根毛,主根都具有比较浓密的根毛;接菌苗与对照苗无区别,根毛都没有弯曲形变。结瘤豆科树种的根毛接菌前后形变比较明显,特别是侧根根毛,接菌后根毛弯曲形变;有的树种对照苗的侧根没有根毛,接菌后侧根基部具较多弯曲形变的根毛(例如合欢)。说明根瘤菌对有些结瘤豆科树种的根毛具有诱导作用。
     3.以1cm左右的侧根(对照苗)为实验材料,通过石蜡切片显微镜观察,结果表明非结瘤豆科树种与结瘤豆科树种在根的表皮部分存在明显差异。非结瘤豆科树种的表皮细胞坚硬,切片完整;结瘤豆科树种的表皮细胞柔软,容易收缩破损。非结瘤豆科树种的表皮细胞外切向壁都呈现黑色,结瘤豆科树种表皮细胞外切向壁无色。非结瘤豆科树种的表皮细胞外切向壁的厚度平均4.8微米,结瘤豆科树种平均1.1微米。
     4.选取饱满有活力的结瘤与非结瘤豆科树种的种子在试验田中播种,5个月后取根并提取根内的单宁,用分光光度法测定单宁含量。结果表明,非结瘤豆科树种的根含有单宁,结瘤豆科树种的根不含有单宁,说明根内是否含有单宁是豆科植物能否结瘤的原因之一。
     5.在各豆科植物的培养液中加入根瘤菌,一段时间后测定细菌在培养液中的增殖情况。结果表明结瘤豆科树种非结瘤豆科树种的培养液中,根瘤菌的增殖没有明显差别。用不同浓度的单宁在平板上测定对根瘤菌的抑制作用,显示即使高达8%的单宁,在平板上也没有抑菌圈出现,说明单宁虽然对其他细菌有抑制作用,但对根瘤菌没有明显的效果。
Since the German scholar, Hermann Hellriegel firstly studied the rhizobia of the soybean having nitrogen fixation in 1886 and the Dutch separated and obtained the pure culture of rhizobia originally in 1888, there were more and more research about the symbiosis of the legume-rhizobia, and it becomes one of the most active research fields in the world now. For many years, people have got great important research achievements in biological nitrogen fixation, biochemistry and the genetics, but there is little research on the program about non-nodule legume. With the comparison on the morphology, anatomy and the anti-germ chemical extracted from the root between the nodule and non-nodule legume, this article has studied and discussed the possible reasons why the non-nodule legume cannot nodulate. The main results were as follow:
    22 species of legume were selected from legume (3 genera from Mimosoideae, 2 genera from Papilionideae and 3 genera from Caesalpinioideae) and cultivated in water and pots respectively. The relationship between the morphological variation of the root and their nodulation were studied. The results indicated that the species of legume from Mimosoideae and Papilionideae can nodulate, while the species of legume from Caesalpinioideae can not nodulate. There were distinctive differentiation of the root morphology existed in the nodule legume and the non-nodule ones. The roots of non-nodule legume species are messiness, wiriness and dark brown to black in colors, however, the roots of nodule legume species are all soft and ivory to earth yellow in colors. Although the root nodule's size, shape and the color were different, the position where the nodules form (mostly in lateral roots) was same. It also showed that the nodulation of the legume had no relation to the extent of the root's development.
    The number of the root hair of the legume had no close relation to the nodulation. On the non-nodule legume species, bushy root hairs develop on the main roots, but no root hair on lateral roots. There is no difference between the inoculated seedlings and the control and root hairs didn't crook to deform on them. On the nodule legume, however, root hairs changed greatly after inoculated, especially the lateral roots hair. Even on some species (for example Albizia julibrissiri), root hairs did not develop at the no inoculated seedlings, but more deformed roots developed on the lateral root base at the inoculated seedlings. All the things showed that the rhizobia could induce the root hairs on the lateral roots of some legume species.
    Taken one part about 1 cm of the control seedlings' lateral root as the experiment
    
    
    material, olefin slice were be tailored. The anatomic structure of this roots was observed using the microscope. The results showed that epidermal cells of the nodule legume's root were different to the non-nodule legume's. First, The epidermal cells of non-nodule legume species were hardness and kept full after slice up. The epidermal cells of nodule legume species, however, were soft and easy by damaged. Second, the cuter tangential wall of the epidermal cells of non-nodule legume were black, but nodule legume's were tint or without blackness. Finally, The average thickness of cuter tangential wall of epidermal cells of non-nodule legume were 4.8 m, however, the thickness of nodule legume's were 1.1 m on the average.
    Selected plump and vigorous seeds of the non-nodule legume and nodule legume respectively and planted them in the test fields and pull out them after five months. Tannin was extracted from the root and was quantitative analysis using the ultraviolet spectra-photometric. The results showed that there were some tannin in the root of non-nodule legume plant, but not any tannin in the root of nodule legume. It showed that tannin was one of the factors to affect the legume nodulation.
    Added the suspension of nodule bacteria to culture liquid of legume plant, the multiplication was tested after culturing a period. The result showed that the multiplication rates of bacteria were no di
引文
01 曾定,固氮微生物学,厦门大学出版社,1987
    02 樊庆笙,生物固氮的近况和展望,农业微生物研究论文集,1991,74—81
    03 周湘泉.豆类植物共生固氮研究近况和展望.南京林产工业学院学报,1983,(4):88-99
    04 周湘泉,韩素芬,豆科树种根瘤菌共生体系研究进展,林业科学,1989,(3):243—251
    05 孙鸥,非豆科植物共生固氮的研究进展,中国科学院南京土壤研究所国际情报研究室编印1982
    06 陈因,陈永宾,唐锡华等编著,生物固氮,上海科学技术出版社,1985
    07 Allen, O.N., and Allen E. K., 1981, The Legumrnosae, a source book of characterisitics, Uses and Nodulation, The Univ. of Wisconsin Press, madisen.
    08 韩素芬,1995,我国豆科树种结瘤情况的补充资料,南京林业大学学19(4):89-92
    09 周湘泉,韩素芬,豆科树种根瘤菌共生体系研究进展,林业科技,1989,25:(3)243-246
    10 孙建光,陈婉华,谢应先,非豆科植物固氮研究概况,微生物杂志,1997,17(4):40-43
    11 Perret X, StachelinC, W J Broughton, Molecular basis of symbiotic Promiscuity. Microbial and Mol Biol Reviews, 2000, 64:180-201
    12 Schmidt J, Rohrig H, John M et al. Alteration of plant growth and development by Rhizobium nodA and nodB genes involved in the synthesis of oligosaccharide signal molecules. The Plant Journal,1993,4(4):651-658
    13 Spaink H P, Regulation of plant morphogenesis by lipo-chitin oligosaccharides. Critical Reviews in Plant Sciences, 1996,15(586):559-582
    14 Spaink H P, Rob J Ⅱ Okker, Carel A Wijffelman et al, Syembiotic Properties of Rhizobia Containing a Flavonoid-Independent Hybrid nodD Product, Journal of Bacteriology, 1989, 171(7):4045-4053
    15 Spaink H P, Wijffelman C A, Pees E.Location and functional regions of the Rhizobium nodD product using hybrid nodD genes. Plant Molecular Biology,1989,12:59-73
    16 Martinez-Romero, E, Recent. Development in Rhizobium taxonomy. Plant soil, 1994,16:11-20
    17 Van Rhijin P, Vanderleyden J., The rhizobium-plant symbiosis. Microbiol, 1995,59(1): 124-142
    18 窦新田,豆科植物-根瘤菌共生固氮体系中的根瘤菌结瘤基因组(nod和hsn基因)和固氮基因组(nif和fix基因)及其功能,生物技术,1992,2(3):1-3
    19 Sanjuan J and Olivares J., Multicopy plasmids carrying the Klebsiella pneumoniae nifA gene enhance Rhizobium malilotii nodulation competitiveness on alfalfa. Mol.Plant Microb.Interaction.1991,4(2):365-369
    20 Sanjuan J and Olivares J., Nif-NtrA regulatory system activates transcription of nfe,a gene locus involved in nodulation competitiveness of Rhizobium malilotii.Arch.Microbiol. 1991, 155:543-548
    21 Smit G, Koster CC, et al., Uridine, a cell division factor in pea roots. Plant Mol Biol. 1995, 29(4): 869-873.
    22 樊庆笙,固氮微生物学,农业出版社,1991,47-48
    23 Spaink HP, Sheeley DM, et al., A novel highly unsaturated fatty acid moiety of lipo-oligosaccharide signals determines host specificity of Rhizobium. Nature. 1991,354(6349): 125-130.
    24 Price NP, CarlsonRW. Rhizobial lipo-oligosaccharide nodulation factors: multidimensional chromatographic analysis of symbiotic signals involved in the development of legume root nodules., Glycobiology. 1995, 5(2):233-242.
    25 edstra R. Geurts R,et al., Root Hair Deformation Activity of Nodulation Factors and Their Fate on Vicia sativa.Plant Physiol. 1994, 105(3):787-797.
    26 Scheres B, Wick VD, et al., The ENOD12 gene product is involved in the infection process during the pea-Rhizobium interaction., Cell. 1990,60(2):281-94.
    27 Cook D.Dreyer D.et al Transient induction of a peroxidase gene in Medicago truncatula precedes infection by Rhizobium meliloti.Plant Cell. 1995,7(1):43-55.
    
    
    28 Herdstra R.Geurts R,et al., Root Hair Deformation Activity of Nodulation Factors and Their Fate on Vieia sativa. Plant Physiol. 1994, 105(3):787-797.
    29 Patel J.J., A.F.Yang, light and electron microscopic studies of nodule structure of Alfalfa C an.J.Microbiol., 1981,27:36-43
    30 林树燕,南京林业大学硕士论文,2002
    31 吴以德,银合欢根瘤细胞的超微结构 林业科学,1992,28 (3)
    32 韩素芬,黄金生,甘习华,苏纪宇,刺槐根瘤发生的超微结构研究,南京林业大学学报,1996,20(4):17-20
    33 吴以德,黄维南,豆科根瘤发育期间类菌体周膜结构动态研究,福建农学院,1985,14(3):
    34 Faucher C. Maillet F.Vasse J.M.et al.(1989).Nature, 338:579-581
    35 Kiss G B, Eva V, Zoltan V, Gabor T. Identification and cDNA cloning of a new nodule-specific gene,Nms-25(nodulin-25)of Medicago sativa. 1990,14:467-475
    36 Perlick A M,Marin F, Gerald S. The broad bean gene VINOD32 encodes a nodulin with sequence similarities to chitinase that is homologous to O-burrel-type seed proteins. Plant Physiol., 1996, 110:147-154
    37 樊庆笙,固氮微生物学,农业出版社,1991,(6):50
    38 樊庆笙,固氮微生物学,农业出版社,1991,(6):46-47
    39 吴均章,南京林业大学博士论文,2004
    40 Provorov, N.J.,1998. Coevolution of rhizobia with legumes:facts and hypotheses,Symbiosis, 24:337-368
    41 Bryan,J.A.,Berlyn,G.P.and Gordon,J.C.1996. Towards a new concept of the evolution of symbiotic nitrogen fixation in the Leguminosae., Plant and soil, 186:151-159
    42 Fisher, R.F.,Long, S.R.,1992.,Rhizobium-plant signal exchange.Nature,357(25):655-660
    43 Truchet,G.et al. 1991. Alfalfa nodulation in the absence of Rhizobium. Mol. Gen. Enel., 219:65-68
    44 胡小加,黄沁洁,张学江等,类黄酮促进根瘤菌侵染油菜根系的研究,土壤,1999,(1):43-45
    45 陈伟,叶明志,周洁,植物酚类物质研究进展,福建农业大学学报26(4):502~508,1997
    46 陈能场,黄维南,黄酮类物质在豆科植物结瘤固氮中的作用,植物生理学通讯,1994,30(5):368-374
    47 陈能场,黄维南,黄酮类物质在豆科植物结瘤固氮中的作用,植物生理学通讯,1994,30(5):368-374
    48 RECOURT K, ANTON A N, VAN BRUSEL, et al. Accumulation of a nod gene inducer, the flavonoid naringenin inthe cytoplasmic membrane of Rhizobium leguminosarum bv. viciae is caused by the p H-dependent hydrophobicity of Naringenin[J]. J Bacteriol, 1989, (171): 43-70
    49 王逸群,赵仁贵,王玉兰,孙珊珊,豆科植物结瘤及其结瘤的分子基础,吉林农业科学,2000,26(5):20-25
    50 杨兴洪,杨苏声,苜蓿中华根瘤菌042BnodD基因的克隆、序列分析及其表达,微生物学报,1999,39(5):416-425
    51 Surin BP, Watson JM, et al., Molecular characterization of the nodulation gene, nodT, from two biovars of Rhizobium leguminosarum.,Mol Microbiol. 1990,4(2):245-52.
    52 Hirsch A M, Brill L M, Lim P O,Scambray J,Van Rhijn P,1995.Steps toward defining the role of lectins in nodule development in legumes sybiosis.Symbiosis, 19:155-173
    53 Edwards G A, Hepher A,Clerk S P, Boulter D, 1991. Pealectin is correctly processed, stable, and active in leaves of transgenic potato plants.Plant Mol Bio1, 17:89-100
    54 叶丽冉,凝集素的研究进展,衡水师专学报,2001,3:(1)46-48
    55 Edwards G A, Hepher A, Clerk S P, Boulter D, 1991. Pealectin is correctly processed,stable,and active in leaves of transgenic potato plants. Plant Mol Biol, 17:89-100
    56 Lerouge P., Roche P., Faucher C. et al, Symbiotic host-specificity of Rhizobium meliloti is determined by a sulphated and acylated glucosamine oligosaccharide signal. Nature. 1990, 344:781-4.
    57 Roche P. Faucher C., Denarie J., Molecular basis of symbiotic host specificity in Rhizobium
    
    meliloti: nodH and nodPQ genes encode the sulfation of lipo-oligosaccharide signals.Cell. 1991,67(6): 1131-43.
    58 杨国平,朱军,徐苏芸等,根瘤菌结瘤因子的微量生物检测法,微生物学通报,1996,23(1):56-57
    59 游志鹏,廖玫江,朱家壁,结合态氮对根瘤菌生长液诱导的苜蓿根毛形变的抑制,植物生理学报,1998,24(3):215-219
    60 Diaz C.L., Melchers L.S.Hookaas P.J.J.et al., (1989), Nature,338:579-581
    61 高丙利,韩素芬,刺槐根瘤菌结瘤因子的初步研究,中南林学院学报,1997,17(2):38-40
    62 孙达旺,植物单宁化学,北京:中国林业出版社,1992:1-6
    63 何强,姚开,石碧,植物单宁的营养学特性,林产化学与工业,2001,21(1):80-85
    64 石碧,狄莹,植物多酚,科学出版社,2000,2(2):67-91
    65 姚新生,天然药物化学,人民卫生出版社,1994:273.
    66 刘程.周汝忠,食品添加剂实用大全,北京工业大学出版社,1993:50
    67 石碧,狄莹,植物多酚,科学出版社,2000,2(6),124-134
    68 石碧,何先祺,张敦信,植物鞣质与胶原的反应机理研究,中国皮革,1993,22(8):26~31
    69 姚开,吕远平,石碧,何强,黑荆树皮单宁不同级分对水解酶的抑制作用,林产化学与工业,2000,20(4) 6-10
    70 孙达旺,植物单宁化学[M],北京:中国林业出版社,1992:411-426
    71 石碧,狄莹,植物多酚,科学出版社,2000,2(5):111-123
    72 杨敏文,单宁的应用,知识介绍,2002,(10):27-29
    73 姚开,吕远平,石碧,何强,黑荆树皮单宁不同级分的抑菌性能,精细化工,2000,17(7):398-401
    74 Scalbert. A., Antimicrobial properties of tannins[J]., Phytochemistry, 1991, 30(12): 3875-3883
    75 何有节,姚开,石碧,黑荆树皮单宁降解产物的抑菌性能,林产化学与工业,1999,19(2):1-7
    76 范六民,植物体内的单宁,生物学通报,1996,31(3):33
    77 Scalbert.A., Antimicrobial properties of tannins [J]., Phytochemistry, 1991, 30(12):3575-3883
    78 陈景荣,南京林业大学硕士学位论文.1997

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700