舟山眼镜蛇的系统地理和种群遗传结构
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
舟山眼镜蛇分布于我国南部(包括台湾、香港及海南地区)及越南北部地区,30年前它曾是中国最常见的蛇类之一,由于当地居民的过度捕猎现已被列为濒危物种。为了检测舟山眼镜蛇的遗传多样性、种群结构和进化史,本研究在其分布的全境范围内系统采样,分析来自27个种群390条个体的线粒体控制区序列。结果显示,在全长1029 bp中存在40个变异位点,共检测到52个单元型。NJ树显示52个单元型分为两支:来自四川米易、云南河口的H41自成一支;来自除米易之外的其他各种群的其余51个单元型聚为一支。
     罗霄山脉和南岭山脉是限制舟山眼镜蛇基因交流的重要屏障。以这两个山系为界,把舟山眼镜蛇分为东部、南部和西部三个集合种群。东部种群单元型主要集中在单元型网络图的右侧,其中H1为多个种群所共享,包括南方种群;西部种群主要集中在网络图的左侧,其中H30和H42为多个种群所共享。南部种群主要位于网络图的中间连接位置。AMOVA分析结果显示,32.58%的变异发生在地区之间,地区内种群间变异占43.18%,种群内变异占24.25%。中性检验和歧点分布分析提示东部集合种群显示历史上曾经历种口扩张,τ值为1.992,其种群种口扩张约发生在0.298百万年前。
     本研究还从舟山眼镜蛇基因库中筛选出13个AC重复类型的多态性微卫星位点。这13个位点从永安和赣州两个种群的48条个体中筛选而来,各位点等位基因数在4-12之间,平均值为7.54,观测杂合度0.213-0.854,平均值为0.459,期望杂合度0.301-0.838,平均值为0.6341,有较高的杂合度,其中四个位点偏离哈温平衡。这些通过微卫星位点显示出来的高水平的多态性将有助于进一步深入研究舟山眼镜蛇的基因流动、种群结构及进化史。
The Chinese cobra (Naja atra) is an oviparous elapid snake with a distribution covering southeastern China (including Taiwan, Hongkong and Hainan) and northern Vietnam. The cobra was one of the most commonly found snakes in China some thirty years ago. Largely because the cobra has been over hunted by local people for meat, skin, medicine and handiwork, it is currently regarded as a highly vulnerable species according to a published volume of China Red Data Book of Endangered Animals. To assess the genetic diversity within N. atra, and its population structure and evolutionary history, we sequenced 1029 bp of control region for 390 individuals collected from 27 localities covering almost the whole range of the snake. Forty variable sites were observed, and 52 haplotypes were defined. We identified two genetically distinct clades. one clade including haplotypes from Hekou and Miyi (western China), and the other clade from the whole distributional range except for Miyi.
     The Luoxiao mountain ranges and Nanling mountain ranges are important barriers limiting gene exchange between populations on the both sides of these two mountain series. Analysis of molecular variance indicated that a significant proportion (32.58%) of the total variation in the mitochondrial DNA data could be attributable to differences among groups:[Eastern China] [Southern China & Vietnam] [Western China]. A significant proportion of variation also occurred among populations within groups (43.18%) and within populations (24.25%). One plausible scenario to explain ourgenetic data is a historically widespread population that has been structured by vicariant factors such as the mountains and sea level fluctuations. Significantly large negative values of Fu's Fs test reject the null hypothesis of neutral evolution of the control region marker for the population group in Eastern China. This provides an inference for population expansion in Eastern China, which is supported by the mismatch distribution analysis and Rogers test of sudden population expansion. The value ofτfor the population group in Eastern China was 1.992. For the substitution rate for a variety of snakes were about 0.0065 site-1 myr-1, the expansion time was estimated to be 0.298 mya.
     We characterize thirteen polymorphic microsatellite loci isolated from N. atra genomic libraries, which enriched for AC-motif microsatellites. The thirteen loci were screened on a group of 48 individuals from two populations, one in Yong'an and the other in Ganzhou. These markers revealed a relatively high degree of genetic diversity (4-12 alleles per locus) and heterozygosity (Ho ranged from 0.213-0.854 and He ranged from 0.301-0.838). Four loci deviated from Hardy-Weinberg equilibrium. The high level of polymorphism revealed by these microsatellite markers will be useful for the study of gene flow, population structure and evolutionary history of N. atra.
引文
[1]Amos W, Rublnszteln DC. Microsatellites are subject to directional evolution. Nature Genetics.1996.12:13-14.
    [2]Andrew JC, Smith EN. Cenozoic biogeography and evolution in direct-develop ing frogs of Central America (Leptodactylidae: Eleuthero-dactylus) as inferred from a phylogenetic analysis of nuclear and mito-chondrial genes. Molecular Phylogenetics and Evolution.2005.35: 536-555.
    [3]Arevalo E, Davis SK, Sites JW. Mitochondrial DNA sequence divergence and phylogenetic relationships among eight chromosome races of the Sceloporus grammicus complex (Phrynosomatidae) in Central Mexieo. Systematic Biology.1994.43:387-418.
    [4]Babik W, Pabijan M, Radwan J. Contrasting patterns of variation in MHC loci in the Alpine newt. Molecrlar Ecology.2008.17:2339-2355.
    [5]Bardeleben C, Gray MM, Hoskin CJ. Isolation of polymorphic tetranucleotide microsatellite markers for the ornate nursery frog Cophixalus ornatus. Molecular Ecology Notes.2006.6:888-890.
    [6]Bekessy SA, Ennos RA, Burgman MA, Newton AC, Ades PK. Neutral DNA markers fail to detect genetic divergence in an ecologically important trait. Biological Conservation.2003.110:267-275.
    [7]Benson G. Tandem repeats finder:a program to analyze DNA sequences. Nucleic Acids Research.2003.27:573-580.
    [8]Bessert ML, Orti G. Microsatellite loci for paternity analysis in the fathead minnow, Pimephales promelas (Teleostei:Cyprinidae). Molecular Ecology Notes.2003.3:532-534.
    [9]Biernea N, Launey S, Naciri-Graven Y, Bonhommea F. Early effect of inbreeding as revealed by microsatellite analyses on Ostrea edulis larvae. Genetics.1998.148:1893-1906.
    [10]Bonneaud C, Chastel O, Federici P, Westerdahl H, Sorci G. Complex MHC-based mate choice in a wild passerine. Proceedings of the Royal Society B.2006.273:1111-1116.
    [11]Bowen L, Aldridge BM, Delong R, Melin S, Godinez C, Zavala A, Gulland F, Lowenstine L, Stott JL, Johnson ML. MHC gene configuration variation in geographically disparate populations of California sea lions (Zalophus californianus). Molecular Ecology.2006.15:529-533.
    [12]Brookfield JFY. A simple new method for estimating null allele frequency from heterozygote deficiency. Molecular Ecology.1996.5:453-455.
    [13]Bryson RW, Pastorini J, Burbrink FT, Forstner MRJ. A phylogeny of the Lampropeltis mexicana complex (Serpentes:Colubridae) based on mitochondrial DNA sequences suggests evidence for species-level polyphyly within Lampropeltis. Molecular Phylogenetics and Evolution.2007.43: 674-684.
    [14]Burbrink FT, Lawson R, Slowinski JB. Mitochondrial DNA phylogeography of the polytypic north American rat snake(Elaphe obsoleat):a critique of the subspecies concept. Evolution.2000.54:2107-2118.
    [15]Burns E, Ferrari G. Microsatellite loci for the green and golden bell frog (Litoria aurea). Conservation Genetics.2004.5:421-423.
    [16]Carranza S, Arnold EN, Mateo JA, Geniez P. Relationships and evolution of the North African geckos, Geckonia and Tarentola (Reptilia: Gekkonidae), based on mitochondrial and nuclear DNA sequences. Molecular Phylogenetics and Evolution.2002.23:244-256.
    [17]Carranza S, Arnold EN, Pleguezuelos JM. Phylogeny, biogeography, and evolution of two Mediterranean snakes, Malpolon monspessulanus and Hemorrhois hippocrepis (Squamata, Colubridae), using mtDNA sequences. Molecular Phylogenetics and Evolution.2006.40:532-546.
    [18]Castoe TA, Gu W, De Koning AP, Daza JM, Jiang ZJ, Parkinson CL, Pollock DD. Dynamic nucleotide mutation gradients and control region usage in squamate reptile mitochondrial genomes. Cytogenet and Genome Research. 2009.127:112-27.
    [19]Charruau P, Fernandes C, Orozco-Terwengel P, Peters J, Hunter L, Ziaie H, Jourabchian A, Jowkar H, Schaller G, Ostrowski S, Vercammen P, Grange T, Schlotterer C, Kotze A, Geigl EM, Walzer C, Burger PA. Phylogeography, genetic structure and population divergence time of cheetahs in Africa and Asia:evidence for long-term geographic isolates. Molecular Ecology.2011.20: 706-724.
    [20]Chen KC, Kao PH, Lin SR, Chang LS. The mechanism of cytotoxicity by Naja naja atra cardiotoxin 3 is physically distant from its membrane-damaging effect. Toxicon.2007.50:816-824.
    [21]Chen N, Zhao S. New progress in snake mitochondrial gene rearrangement. Mitochondrial DNA.2009.20:69-71.
    [22]Chijiwa T, Tokunaga E, Ikeda R, Terada K, Ogawa T, Oda-Ueda N, Hattori S, Nozaki M, Ohno M. Discovery of novel [Arg49] phospholipase A2 isozymes from Protobothrops elegans venom and regional evolution of Crotalinae snake venom phospholipase A2 isozymes in the southwestern islands of Japan and Taiwan. Toxicon.2006.48:672-682.
    [23]Chippaux JP, Williams V, White J. Snake venom variability: methods of study, results and interpretation. Toxicon.1991.29:1279-1303.
    [24]Daltry JC, Ponnudurai G, Shin CK, Tan NH, Thorpe RS, Wiister W. Electrophoretic profiles and biological activities:intraspecific variation in the venom of the Malayan pit viper(Calloselasma rhodostoma). Toxicon.1996. 34:67-79.
    [25]Dong S, Kumazawa Y. Complete mitochondrial DNA sequences of six snakes: phylogenetic relationships and molecular evolution of genomic features. Journal of Molecular Evolution 2005.61:12-22.
    [26]Douglas D, Gower D. Snake mitochondrial genomes:phylogenetic relationships and implications of extended taxon sampling for interpretations of mitogenomic evolution. BMC Genomics.2010.11:14.
    [27]Elmer KR, Davila JA, Lougheed SC. Isolation of simple and compound polymorphic tetranucleotide microsatellites for the neotropical leaflitter frog Eleutherodactylus ockendeni (Leptodactylidae). Molecular Ecology Notes. 2006.6:891-893.
    [28]Feldman CR, Omland KE. Phylogenetics of the common raven complex (Corvus: Corvidae) and the utility of ND4, CO I and intron 7 of the β-fibrinogen gene in avian molecular systematics. Zoologica Scripta.2005.34: 145-156.
    [29]Feofanov AV, Sharonov GV, Dubinnyi MA, Astapova MV, Kudelina IA, Dubovskii PV, Rodionov DI, Utkin YN, Arseniev AS. Comparative study of structure and activity of cytotoxins from venom of the cobras Naja oxiana, Naja kaouthia, and Naja haje. Biochemistry (Moscow) 2004.69:1148-57.
    [30]Fisher PJ, Gardner RC, Richardso TE. Single locus microsatellites isolated using 5'Anchored PCR. Nucleic Acids Research.1999.24:4369-4371.
    [31]Flanders J, Jones G, Benda P, Dietz C, Zhang S, Li G, Sharifi M, Rossiter SJ. Phylogeography of the greater horseshoe bat, Rhinolophus ferrumequinum: contrasting results from mitochondrial and microsatellite data. Molecular Ecology.2009.18:306-318.
    [32]Frost DR, Grant T, Faivovich J, Bain RH, Haas A, Haddad CFB, De Sa RO, Channing A, Wilkinson M, Donnellan SC, Raxworthy CJ, Campbell JA, Blotto BL, Moler P, Drewes RC, Nussbaum RA, Lynch JD, Green DM, Wheeler WC. The amphibian tree of life. Bulletin American Museum of Natural History.2006.297:1-370.
    [33]Fry BG, Winkel KD, Wickramaratna JC, Hodgson WC, Wuster W. Effectiveness of snake antiserum:species and regional venom variation and its clinical impact. Journal of Toxicology.2003.22:23-34.
    [34]Fu JZ, Zeng XM. How many species are in the genus Batrachuperusl A phylogeographical analysis of the stream salamanders (family Hynobiidae) from southwestern China. Molecular Ecology.2008.17:1469-1488.
    [35]Gao LM, Moller M, Zhang XM, Hollingsworth ML, Liu J, Mill Rr, Gibby M, Li DZ. High variation and strong phylogeographic pattern among cpDNA haplotypes in Taxus wallichiana (Taxaceae) in China and North Vietnam. Molecular Ecology.2007.16:4684-4698.
    [36]Gao XJ, Nelson GW, Karacki P, Martin MP, Phair J, Kaslow R, Goedert JJ, Buchbinder S, Hoots K, Vlahov D, O'brien SJ, Carrington M. Effect of a single amino acid change in MHC class I molecules on the rate of progression to AIDS. The New England Journal Medicine.2004.344:1668-1675.
    [37]Gardner MG, Cooper SJB, Bull CM, Grant WN. Brief communication. Isolation of microsatellite loci from a social lizard, Egernia stokesii, using a modified enrichment procedure. J Hered.1999.90:301-304.
    [38]Glenn TC, Staton JL, Vu AT, Davis LM, Bremer JRA, Rhodes WE, Brisbin IL, Sawyer RH. Low Mitochondrial DNA variation among American alligators and a novel non-coding region in crocodilians. Journal of Experimental Zoology.2002.294:312-324.
    [39]Goncalves H, Martinez-Solano I, Ferrand N, Garcia-Paris M. Conflicting phylogenetic signal of nuclear vs mitochondrial DNA markers in midwife toads (Anura, Discoglossidae, Alytes):Deep coalescence or ancestral hybridization? Molecular Phylogenetics and Evolution.2007.44:494-500.
    [40]Goncalves H, Pereira R, Rowe G, Beebee T, Ferrand N. Isolation and characterization of two dinucleotide and four tetranucleotide polymorphic microsatellite loci in the Iberian midwife toad Alytes cisternasii. Molecular Ecology Notes.2005.5:767-769.
    [41]Gravlund P. Radiation within the advanced snakes (Caenophidia) with special emphasis on African opistoglyph colubrids, based on mitochondrial sequence data. Biological Journal of the Linnean Society.2001.72:92-114.
    [42]Gray MM, Hoskin CJ, Bardeleben C. Isolation of polymorphic tetranucleotide microsatellite markers for the green-eyed tree frog (Litoria genimaculata). Molecular Ecology Notes.2006.6:859-861.
    [43]Hedrick PW. Conservation genetics:where are we now? Trends in Ecology and Evolution.2001.16:629-636.
    [44]Hu Y, Qi D, Wang H, Wei F. Genetic evidence of recent population contraction in the southernmost population of giant pandas. Genetica.2010.138: 1297-1306.
    [45]Hu YL, Wu XB, Jiang ZG, Yan P, Su X, Cao SY. Population genetics and phylogeography of Bufo gargarizans in China. Biochemical Genetics.2007. 45:697-711.
    [46]Huang S, He S, Peng Z, Zhao K, Zhao E. Molecular phylogeography of endangered sharp-snouted pitviper (Deinagkistrodon acutus; Reptilia, Viperidae) in Mainland China. Molecular Phylogenetics and Evolution.2007. 44:942-952.
    [47]Huang S, Liu SY, Guo P, Zhang YP, Zhao EM. What are the closest relatives of the hot-spring snakes (Colubridae, Thermophis), the relict species endemic to the Tibetan Plateau? Molecular Phylogenetics and Evolution.2009.51: 438-446.
    [48]Huang Z, Liu N, Liang W, Zhang Y, Liao X, Ruan L, Yang Z. Phylogeography of Chinese bamboo partridge, Bambusicola thoracica thoracica (Aves: Galliformes) in south China:inference from mitochondrial DNA control-region sequences. Molecular Phylogenetics and Evolution.2010.56: 273-280.
    [49]Jarne P, Lagoda PJL. Microsatellites, from molecules to populations and back. Trends in Ecology and Evolution.1996.11:424-429.
    [50]Jesus J, Brehm A, Harris DJ. Phylogenetic relationship s of Hemidactylus geckos from the Gulf of Guinea islands:patterns of natural colonizations and anthropogenic introductions estimated from mitochondrial and nuclear DNA sequences. Molecular Phylogenetics and Evolution.2005.34:480-485.
    [51]Ji X, Du WG. The effects of thermal and hydric conditions on incubating eggs and hatchling traits in the cobra, Naja naja atra. Journal of Herpetology.2001. 35:186-194.
    [52]Jiang ZJ, Todd AC, Christopher CA, Frank TB, Matthew DH, Jimmy AM, Christopher LP, David DP. Comparative mitochondrial genomics of snakes: extraordinary substitution rate dynamics and functionality of the duplicate control region. BMC Evolutionary Biology.2007.7:123.
    [53]Jin YT, Brown RP, Liu NF. Cladogenesis and phylogeography of the lizard Phrynocephalus vlangalii (Agamidae) on the Tibetan plateau. Molecular Ecology.2008.17:1971-1982.
    [54]Kelly CMR, Barker NP, Villet MH. Phylogenetics of advanced snakes (Caenophidia) based on four mitochondrial genes. Systematic Biology.2003. 52:439-453.
    [55]Kelly CMR, Barker NP, Villet MH, Broadley DG, Branch WR. The snake family Psammophiidae (Reptilia: Serpentes):Phylogenetics and species delimitation in the African sand snakes(Psammophis Boie,1825) and allied genera. Molecular Phylogenetics and Evolution.2008.47:1045-1060.
    [56]Kiara C, Marcio DS, Gustavo C, Tatiana T, Luiz DB, Ramon V, Marcelo M, Stephen H. A transcriptomic analysis of gene expression in the venom gland of the snake Bothrops alternatus (urutu). BMC Genomics.2010.11:605.
    [57]Kima HS, Lee BL, Woo DK, Bae SI, Kim WH. Assessment of markers for the identification of microsatellite instability phenotype in gastric neoplasms. Cancer Letters.2001.164:61-68.
    [58]Knapp LA. Facts faeces and setting standards for the study of MHC genes using noninvasive samples. Molecrlar Ecology.2005.14:1597-1599.
    [59]Kumazawa Y. Mitochondrial DNA sequences of five squamates:phylogenetic affiliation of snakes. DNA Research.2004.11:137-144.
    [60]Kumazawa Y, Endo H. Mitochondrial genome of the Komodo dragon: efficient sequencing method with reptile-oriented primers and novel gene rearrangements. DNA Research.2004.11:115-125.
    [61]Kumazawa Y, Ota H, Nishida M, Ozawa T. Gene rearrangements in snake mitochondrial genomes:highly concerted evolution of control-region-like sequences duplicated and inserted into a tRNA gene cluster. Molecular Biology and Evolution.1996.13:1242-1254.
    [62]Kumazawa Y, Ota H, Nishida M, Ozawa T. The complete nucleotide sequence of a snake (Dinodon semicarinatus) mitochondrial genome with two identical control regions. Genetics.1998.150:313-329.
    [63]Lahanas PL, Miyamoto MM, Bjomdal KA. Moleeula revolution and population genetics of Great Garibbean green turtles as interfered from mitoehondrial DNA control region sequence. Genetica.1994.94:57-67.
    [64]Lawson R, Slowinski JB, Crother BI, Burbrink FT. Phylogeny of the colubroidea (Serpentes):New evidence from mitochondrial and nuclear genes. Molecular Phylogenetics and Evolution.2005.37:581-601.
    [65]Li M, Liu Z, Gou J, Ren B, Pan R, Su Y, Funk SM, Wei F. Phylogeography and population structure of the golden monkeys(Rhinopithecus roxellana): inferred from mitochondrial DNA sequences. American Journal of Primatology.2007.69:1195-1209.
    [66]Li SH, Yeung CK, Feinstein J, Han L, Le MH, Wang CX, Ding P. Sailing through the Late Pleistocene:unusual historical demography of an East Asian endemic, the Chinese Hwamei(Leucodioptron canorum canorum), during the last glacial period. Molecular Ecology.2009.18:622-633.
    [67]Lin HC, Li SH, Fong J, Lin SM. Ventral coloration differentiation and mitochondrial sequences of the Chinese Cobra (Naja atra) in Taiwan. Conservation Genetics.2008.9:1089-1097.
    [68]Lin LH, Ji X, Diong CH, Du Y, Lin CX. Phylogeography and population structure of the Reevese's Butterfly Lizard (Leiolepis reevesii) inferred from mitochondrial DNA sequences. Molecular Phylogenetics and Evolution.2010. 56:601-607.
    [69]Lin LH, Li H, An H, Ji X. Do temperature fluctuations during incubation always play an important role in shaping the phenotype of hatchling reptiles. Journal of Thermal Biology.2008a.33:193-199.
    [70]Lin LH, Zhao Q, Ji X. Conservation genetics of the Chinese cobra (Naja atra) investigated with mitochondrial DNA sequences. Zoological Science.2008b. 25:888-893.
    [71]Liu S, Dong WH, Kong TH. Preparation and characterization of immunoglobulin yolk against the venom of Naja naja atra. Indian Journal of Experimental Biology.2010.48:778-785.
    [72]Liu Y, Zhan X, Wang N, Chang J, Zhang Z. Effect of geological vicariance on mitochondrial DNA differentiation in common pheasant populations of the Loess Plateau and eastern China. Molecular Phylogenetics and Evolution. 2010.55:409-417.
    [73]Liu ZJ, Ren BP, Wei FW, Long YC, Hao YL, Li M. Phylogeography and population structure of the Yunnan snub-nosed monkey (Rhinopithecus bieti) inferred from mitochondrial control region DNA sequence analysis. Molecular Ecology.2007.16:3334-3349.
    [74]Lunt DH, Hutchinson WF, Carvalho GR. An efficient method for PCR-based identification of microsatellite arrays (PIMA). Molecular Ecology.1999.8: 891-894.
    [75]Manierh MK, Arnold SJ. Population genetic analysis identifies source-sink dynamics for two sympatric garter snake species (Thamnophis elegans and Thamnophis sir tails). Molecular Ecology.2005.14:3965-3976.
    [76]Mao XG, Zhu GJ, Zhang S, Rossiter SJ. Pleistocene climatic cycling drives intra-specific diversification in the intermediate horseshoe bat (Rhinolophns affinis) in Southern China. Molecular Ecology.2010.19:2754-2769.
    [77]Marshall TC, Slate J, Kruuk LEB, Pemberton JM. Statistical confidence for likelihood-based paternity inference in natural populations. Molecrlar Ecology. 1998.7:639-655.
    [78]Martinez-Solano I, Goncalves HA, Arntzen JW, Garcia-Paris M. Phylogenetic relationships and biogeography of midwife toads (Discoglossidae:Alytes). Journal of Biogeography.2004.31:603-618.
    [79]Mccue MD, Mason R. Cost of producing venom in three North American pitiver species. Copeia.2006.2006:818-825.
    [80]Mebs D. Toxicity in animals. Trends in evolution? Toxicon.2001.39:87-96.
    [81]Miller KJ, Maynard BT, Mundy CN. Genetic diversity and gene flow in collapsed and healthy abalone fisheries. Molecular Ecology.2009.18: 200-211.
    [82]Misener S, Krawetz SA, Burland TG. DNASTAR's lasergene sequence analysis software. Bioinformatics Methods and Protocols.1999. Humana Press. 71-91.
    [83]Miyao A, Zhong HS, Monna L, Yano M, Yamamoto K, Havukkala I, Minobe Y, Sasaki T. Characterization and genetic mapping of simple sequence repeats in the rice genome. DNA Research.1996.3:233-238.
    [84]Mona S, Crestanello B, Bankhead-Dronnet S, Pecchioli E, Ingrosso S, D'amelio S, Rossi L, Meneguz PG, Bertorelle G. Disentangling the effects of recombination, selection, and demography on the genetic variation at a major histocompatibility complex class II gene in the alpine chamois. Molecrlar Ecology.2008.17:4053-4067.
    [85]Norri AT, Bradley DG, Cunningham EP. Microsatellite genetic variation between and within farmed and wild atlantic salmon (Salmo salar) populations. Aquaculture.1999.180:247-264.
    [86]Paetgkau D. Microsatellites obtained using strand extension:an enrichment protocol. Biotechniques.1999.26:690-697.
    [87]Peng MS, He JD, Liu HX, Zhang YP. Tracing the legacy of the early Hainan Islanders-a perspective from mitochondrial DNA. BMC Evolutionary Biology.2011.11:46-58.
    [88]Peng MS, Palanichamy MG, Yao YG, Mitra B, Cheng YT, Zhao M, Liu J, Wang HW, Pan H, Wang WZ, Zhang AM, Zhang W, Wang D, Zou Y, Yang Y, Chaudhuri TK, Kong QP, Zhang YP. Inland post-glacial dispersal in East Asia revealed by mitochondrial haplogroup M9a'b. BMC Biology.2011.9:2.
    [89]Perdices A, Coelho MM. Comparative phylogeography of Zacco platypus and Opsariichthys bidens (Teleostei,Cyprinidae) in China based on cytochrome b sequences. Journal of Zoological Systematics and Evolutionary Research. 2006.44:330-338.
    [90]Peters MB, Beard KH, Hagen C, O'neill EM, Mock KE, Pitt WC, Glenn TC. Isolation of microsatellite loci from the coqui frog, Eleutherodactylus coqui. Molecular Ecology Resources.2008.8:139-141.
    [91]Piertney SB, Oliver MK. The evolutionary ecology of the major histocompatibility complex. Heredity.2006.96:7-21.
    [92]Pinou T, Vicario S, Marschner M, Caccone A. Relict snakes of North America and their relationships within caenophidia, using likelihood-based Bayesian methods on mitochondrial sequences. Molecular Phylogenetics and Evolution. 2004.32:563-574.
    [93]Pintor AFV, Krockenberger AK, Seymour JE. Costs of venom production in the common death adder (Acanthophis antarcticus). Toxicon.2010.56: 1035-1042.
    [94]Powell W, Morgante M, Andre C, Hanafey M, Vogel J, Tingey S, Rafalski A. The comparison of RFLP, RAPD, AFLP and SSR(microsatellite) markers for germplasm analysis. Molecular Breeding.1996.2:225-238.
    [95]Qu J, Liu N, Bao X, Wang X. Phylogeography of the ring-necked pheasant (Phasianus colchicus) in China. Molecular Phylogenetics and Evolution.2009. 52:125-132.
    [96]Queiroz AD, Lawson R, Lemos-Espinal JA. Phylogenetic relationships of north American garter snakes (Thamnophis) based on four mitochondrial genes:How much DNA sequence is enough? Molecular Phylogenetics and Evolution.2002.22:315-329.
    [97]Queney G, Ferrand N, Weiss S, Mougel F, Monnerot M. Stationary distributions of microsatellite loci between divergent population groups of the European rabbit(Oryctolagus cuniculus). Molecular Biology and Evolution. 2001.18:2169-2178.
    [98]Quinnell RJ, Kennedy LJ, Barnes A, Courtenay O, Dye C, Garcez LM, Shaw MA, Carter SD, Thomson W, Ollier WER. Susceptibility to visceral leishmaniasis in the domestic dog is associated with MHC class Ⅱ polymorphism. Immunogenetics.2003.55:23-28.
    [99]Randi E, Lucchini Ⅴ. Organization and evolution of the mitochondrial DNA control region in the avian genus Alectoris. Journal of Molecular Evolution. 1998.47:449-462.
    [100]Raymond M, Rousset F. GENEPOP (version 3.4):population genetics software for exact tests and ecumenicism. Journal of Heredity.1995.86: 248-249.
    [101]Rodriguez-Robles JA, Stewart GR, Papenfuss TJ. Mitochondrial DNA-based phylogeography of North American rubber boas, Charina bottae (Serpentes: Boidae). Molecular Phylogenetics and Evolution.2001.18:227-237.
    [102]Rossiter SJ, Benda P, Dietz C, Zhang S, Jones G. Rangewide phylogeography in the greater horseshoe bat inferred from microsatellites:implications for population history, taxonomy and conservation. Molecular Ecology.2007.16: 4699-4714.
    [103]Saccone C, Gissi C, Lanave C, Larizza A, Pesole G, Reyes A. Evolution of the mitochondrial genetic system:an overview. Gene.2000.261:153-159.
    [104]Sambrook J, Russell DW. Molecular cloning,3rd edn.2001, Cold spring harbour laboratory Press:New York.
    [105]Sasa M. Diet and snake venom evolution:Can local selection alone explain intraspecific venom variation?. Toxicon.1999a.37:249-252.
    [106]Sasa M. Reply. Toxicon.1999b.37:259-260.
    [107]Schlotteroer C, Amos B, Tautz D. Conservation of polymorphic simple sequence loci in cetacean species. Nature.1991.354:63-65.
    [108]Schwensow N, Fietz J, Dausmann K, Sommer S. MHC associated mating strategies and the importance of overall genetic diversity in an obligate pair-living primate. Evolutionary Ecology.2007.22:617-636.
    [109]Skinner A, Donnellan SC, Hutchinson MN, Hutchinson RG. A phylogenetic analysis of Pseudonaja (Hydrophiinae, Elapidae, Serpentes) based on mitochondrial DNA sequences. Molecular Phylogenetics and Evolution.2005. 37:558-571.
    [110]Stockburger EM, Green RD, Wood WO, Holm T, Macneil MD, Schafer DW. Determination of the stringency of DNA microsatellite marker genotypes for use in individual animal identification. Animal Genetics.2000.53:345-348.
    [111]Suzuki H, Sato JJ, Tsuchiya K, Luo J, Zhang YP, Wang YX, Jiang XL, Molecular phylogeny of wood mice (Apodemus, Muridae) in East Asia. Biological Journal of the Linnean Society.2003 80:469-481.
    [112]Thorpe RS, Pook CE, Malhotra A. Phylogeography of the Russell's viper (Daboia russelii) complex in relation to variation in the colour pattern and symptoms of envenoming. Herpetological Journal.2007.17:209-218.
    [113]Trajanovska S, Donald JA. Molecular cloning of natriuretic peptides from the heart of reptiles:loss of ANP in diapsid reptiles and birds. General and Comparative Endocrinology.2008.156:339-346.
    [114]Trape JF, Chirio L, Broadley DG, Wuster W. Phylogeography and systematic revision of the Egyptian cobra (Serpentes:Elapidae:Naja haje) species complex, with the description of a new species from West Africa. Zootaxa. 2009.2236:1-25.
    [115]Ueno S, Yoshimaru H, Tomaru N, Yamamoto S. Development and characterization of microsatellite markers in Camellia japonica L. Molecular Ecology.1999.8:335-346.
    [116]Ursenbacher S, Carlsson M, Helfer V, Tegelstrom H, Fumagalli L. Phylogeography and Pleistocene refugia of the adder(Vipera berus) as inferred from mitochondrial DNA sequence data. Molecrlar Ecology.2006.15: 3425-3437.
    [117]Van OC, Hutchinson WF, Wills DPM, Shipley P. MICRO-CHECKER: software for identifying and correcting genotyping errors in microsatellite data. Molecular Ecology Notes.2004.4:535-538.
    [118]Wallach V, Wuster W, Broadley DG. In praise of subgenera: taxonomic status of cobras of the genus Naja Laurenti (Serpentes:Elapidae). Zootaxa.2009. 2236:26-36.
    [119]Wang CH, Li CH, Li SF. Mitochondrial DNA-inferred population structure and demographic history of the mitten crab (Eriocheir sensu stricto) found along the coast of mainland China. Molecular Ecology.2008.17:3515-3527.
    [120]Wang GL, He SP, Huang S, He M, Zhao E. The complete mitochondrial DNA sequence and the phylogenetic position of Achalinus meiguensis (Reptilia: Squamata). Chinese Science Bulletin 2009.54:1713-1724.
    [121]Wang Z, Weber JL, Zhong G, Tanksley SD. Survey of plant short tandem DNA repeat. Tag Theoretical and Applied Genetics.1994.88:1-6.
    [122]Westhoff G, Tzschatzsch K, Bleckmann H. The spitting behavior of two species of spitting cobras. Journal of Comparative Physiology A.2005.191: 873-881.
    [123]Wongtongkam N, Wilde H, Sitthi-Amorn C, Ratanabanangkoon K. A study of Thai cobra (Naja kaouthia) bites in Thailand. Military Medicine.2005.170: 336-341.
    [124]Wu CY, Chen WC, Ho CL, Chen ST, Wang KT. The role of the N-terminal leucine residue in snake venom cardiotoxin Ⅱ (Naja naja atra). Biochemical and Biophysical Research Communications.1997.233:713-716.
    [125]Wuster W. The status of the cobras of the genus naja laurenti,1768 (Reptilia: Serpentes:Elapidae) on the island os sulawesi. The Snake.1996.27:85-90.
    [126]Wuster W. Taxonomic changes and toxinology: systematic revisions of the Asiatic cobras (Naja naja species complex). Toxicon.1996.34:399-406.
    [127]Wuster W. The cobras of the genus Naja in India. Hamadryad.1998.23: 15-32.
    [128]Wuster W, Broadley DG. A new species of spitting cobra from northeastern Africa (Serpentes:Elapidae:Naja). Journal of Zoology.2003.259:345-359.
    [129]Wiister W, Broadley DG. Get an eyeful of this:a new species of giant spitting cobra from eastern and north-eastern Africa (Squamata: Serpentes:Elapidae: Naja). Zootaxa.2007.1532:51-68.
    [130]Wuster W, Crookes S, Ineich I, Mane Y, Pook CE, Trape JF, Broadley DG. The phylogeny of cobras inferred from mitochondrial DNA sequences:evolution of venom spitting and the phylogeography of the African spitting cobras (Serpentes:Elapidae: Naja nigricollis complex). Molecular phylogenetics and evolution.2007.45:437-453.
    [131]Wiister W, Golay P, Warrell DA. Synopsis of recent developments in venomous snake systematics. Toxicon.1997.35:319-340.
    [132]Wiister W, Thorpe RS. Asiatic cobras:population systematics of the Naja naja species complex (Serpentes:Elapidae) in India and Central Asia. Herpetologica.1992.48:69-85.
    [133]Wuster W, Thorpe RS. Naja siamensis, a cryptic species of venomous snake revealed by mtDNA sequencing. Cellular and Molecular Life Sciences.1994. 50:75-79.
    [134]Xu L, He C, Shen C, Jiang T, Shi L, Sun K, Berquist SW, Feng J. Phylogeography and population genetic structure of the great leaf-nosed bat (Hipposideros armiger) in China. Journal of Heredity.2010.101:562-572.
    [135]Yan J, Li HD, Zhou KY. Evolution of the mitochondrial genome in snakes: Generearrangements and phylogenetic relationships. BMC Genomics.2008.9: 569.
    [136]Yang SJ, Yin ZH, Ma XM, Lei FM. Phylogeography of ground tit (Pseudopodoces humilis) based on mtDNA:evidence of past fragmentation on the Tibetan Plateau. Molecular Phylogenetics and Evolution.2006.41: 257-265.
    [137]Yao TD, Thompson LG, Shi YF, Qin DH, Jiao KQ, Yang ZH, Tian LD, Thompson EM. Climate variation since the last inter-glaciation recorded in the Guliya ice core. Science in China.1997.40:662-668.
    [138]Zane L, Bargelloni L, Patarnello T. Strategies for microsatellite isolation:a review. Molecular Ecology.2002.11:1-16.
    [139]Zhang DR, Chen MY, Murphy RW, Che J, Pang JF, Hu JS, Luo J, Wu SJ, Ye H, Zhang YP. Genealogy and palaeodrainage basins in Yunnan Province: phylogeography of the Yunnan spiny frog, Nanorana yunnanensis (Dicroglossidae). Molecular Ecology.2010.19:3406-3420.
    [140]Zhang FF, Jiang ZG. Mitochondrial phylogeography and genetic diversity of Tibetan gazelle (Procapra picticaudata):implications for conservation. Molecular Phylogenetics and Evolution.2006.41:313-321.
    [141]Zhang H, Yan J, Zhang GQ, Zhou KY. Phylogeography and demographic history of Chinese black-spotted frog populations (Pelophylax nigromaculata): evidence for independent refugia expansion and secondary contact. BMC Evolutionary Biology.2008.21:1-16.
    [142]Zhang M, Rao D, Yang J, Yu G, Wilkinson JA. Molecular phylogeography and population structure of a mid-elevation montane frog Leptobrachium ailaonicum in a fragmented habitat of southwest China. Molecular Phylogenetics and Evolution.2010.54:47-58.
    [143]Zhang YP, Ge S. Molecular evolution study in China: progress and future promise. Philosophical Transactions of the Royal Society B.2007.362: 973-986.
    [144]Zhong J, Liu ZQ, Wang YQ. Phylogeography of the rice frog, Fejervarya multistriata (Anura: Ranidae), from China based on mtDNA D-loop sequences. Zoological Science.2008.25:811-820.
    [145]Zou F, Lim HC, Marks BD, Moyle RG, Sheldon FH. Molecular phylogenetic analysis of the Grey-cheeked Fulvetta (Alcippe morrisonia) of China and Indochina: a case of remarkable genetic divergence in a "species". Molecular Phylogenetics and Evolution.2007.44:165-174.
    [146]陈念,赖小平.短尾蝮蛇线粒体基因组全序列分析.生命科学研究.2010.14:189-195.
    [147]陈念,赖小平.眼镜王蛇线粒体基因组全序列分析Hereditas.2010.32: 719-725.
    [148]陈业裕.第四纪地质学.1984,河北师范大学出版社:石家庄.
    [149]黄大卫.支序系统学概论.1996,中国农业出版社:北京.
    [150]黄映萍.DNA分子标记研究进展.中山大学研究生学刊.2010.31:27-36.
    [151]黄原.分子系统学——原理、方法及应用.1998,中国农业:北京.
    [152]黄族豪,龙进,张立勋,刘重斌,刘迺发.从线粒体DNA控制区基因探讨红腹锦鸡和白腹锦鸡的分类关系.江西师范大学学报.2006.30:91-94.
    [153]计翔,陈慧丽,杜卫国,朱炳全.实验室越冬眼镜蛇体温调节和低温耐受性的无线电遥测.动物学报.2002.48:591-598.
    [154]季国庆,杨光,刘珊,周开亚.中国水域瓶鼻海豚的mtDNA控制区序列变异性分析.动物学报.2002.48:487-493.
    [155]李桂芬,骆侠,贝永建,蒙绍权,张保卫基于线粒体细胞色素b基因序列的版纳鱼螈四个种群遗传多样性与遗传结构研究.动物分类学报.2010.35:494-503.
    [156]李建华,王继文.动物线粒体DNA在进化遗传学研究中的应用.生物学通报.2005.40:5-7.
    [157]李莉,王翀,陈瑶生DHPLC系统工作原理及其应用.生物技术通报.2006.增刊:120-125.
    [158]李润枝,张娟.SSR技术在遗传多样性研究中的应用.安徽农业科学.2010.38:10492-10494.
    [159]刘奎,陈卫.核基因在两栖爬行动物分子系统学中的研究进展.四川动物.2009.28:473-479.
    [160]刘铸,杨春文,金建丽,金志民,戴鹏.鸟类线粒体DNA结构特点及在鸟类研究中的应用.生物技术通报.2009.12:42-47.
    [161]施雅风.中国冰川概论,中国科学院兰州冰川冻土研究所,Editor.1988,科学出版社:北京.
    [162]唐伯平,周开亚,宋大祥.分子系统学的发展及其现状.生物学通报.1999.34:10-12.
    [163]童宗中,王义权,周开亚.从12S rRNA基因片段序列研究20种蛇的系统发生关系.动物学报.2002.48:494-500.
    [164]阎雪岚,唐文乔,杨金权.基于线粒体控制区的序列变异分析中国东南部沿海凤鲚种群遗传结构.生物多样性.2009.17:143-150.
    [165]杨玉慧,张德兴,李义明,吉亚杰.中国黑斑蛙种群的线粒体DNA多样性和生物地理演化过程的初探.动物学报.2004.50:193-201.
    [166]姚檀栋.末次冰期青藏高原的气候突变-古里雅冰芯与格陵兰GRIP冰芯对比研究.中国科学(D辑).1999.29:175-184.
    [167]易朝路,崔之久,熊黑钢.中国第四季冰期数值年表初步划分.第四季研究.2005.25:609-611.
    [168]袁娟,张其中,罗芬.鱼类线粒体DNA及其在分子群体遗传研究中的应用.生态科学.2008.27:272-276.
    [169]曾庆国,陈艺燕.微卫星位点筛选方法综述.西北植物学报.2005.24: 368-372.
    [170]赵尔宓.中国濒危动物红皮书(两栖类和爬行类).1998,科学出版社:北京.274-276.
    [171]周国利,朱奇,郭彦,吴玉厚.微卫星DNA在进化中的研究进展.激光生物学报.2007.16:512-515.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700