基于种子传播方式和植物分布演化的种子优化算法研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
智能计算方法的主要构建思想是从自然界的生物系统、生命现象中寻求问题求解的灵感和方法,通过对自然生物系统的生存繁衍过程、生命个体的进化过程、自适应行为等现象和行为的建模和模拟,构建各种智能计算模型,用于求解现实世界中的大规模、高维度、非线性的复杂优化问题。探讨如何从生物适应环境、自主优化过程中获取灵感,构建智能计算方法,将会在很多方面弥补经典最优化方法的不足,对人工智能新原理、新方法的发展将具有很好的推动作用。大量的研究者仍然在致力于发展更高效、更实用的群体智能优化算法。种子优化算法是受自然界种子传播方式和种群分布演化的启发而设计的,它通过模拟植物生存的宏观自适应现象,来解决复杂的优化计算问题。其寻优机理不同于现有群体智能优化算法,主要通过父种选择和种群分布演化两个算子进行寻优。算法结构较简单,实现较容易,对算法的研究和实验也表明:在所开展的实验中,种子优化算法符合我们预期的全局寻优能力强、收敛速度快的特点。
     本论文的主要贡献和创新点包括以下几个方面:
     1.借鉴自然界种子传播方式和种群分布演化,本文构建了种子优化算法这一种新的群体智能算法,该算法具有较新颖的设计思想和明确的仿生含义。通过调研和学习生物统计学的相关研究结果,构建了三种BOA的种群分布演化模型,分别是基于分段函数的分布模型、基于正态分布的模型和基于负二项分布的模型。并分别针对上述三种算法模型构建了相应的BOA算法,并针对11个典型的基准函数,开展了函数优化实验,实验结果与粒子群优化算法的结果进行了对比分析,结果表明BOA在所开展的实验中,性能明显优于PSO算法,也验证了这三种算法模型的有效性。同时,还开展了算法自身参数的调整对比实验,初步研究了算法参数对算法性能的影响。
     2.基于逆推理归纳,构建了初步的BOA算法的优化策略自适应选择机制。列举了现有BOA算法的主要参数,初步确定了一种优化策略分项的调整顺序,并整理出相关的参数调整规则;并构建了一种优化策略性能评价方法,用以综合评价算法的寻优能力和收敛速度,用以评价优化策略的优劣。最后选择了两个500维的多峰基准测试函数进行了自适应优化策略调整的测试,实验结果表明,该优化策略自适应选择机制取得了较好的参数调整表现,求解效果明显优于固定参数的BOA算法。
     3.对BOA算法中的几个基本定义作了严格的数学描述和重新定义,构建了BOA算法的Markov链模型,明确了相关的算法性质,基于此,依据Solis和Wets提出的随机算法收敛的标准,对BOA算法的收敛性做了初步分析,证明了BOA算法是以概率1全局收敛的。
     4.应用BOA算法求解了三个典型的最优化问题。其中FM参数合成估计问题是IEEE-CEC2011“应用进化算法求解真实世界优化问题”专题所列举的第一个用于测试智能计算方法应用能力的最优化问题,本文即以该会议的原题为例,应用BOA算法进行了求解,求解结果与CEC公布的DE-RHC算法的求解结果进行了对比,表明了BOA的优越性;然后结合目前正在开展的减灾科技支撑项目,以汶川地震灾后恢复重建为例,构建了项目排序的最优化问题,应用BOA算法进行了优化求解,求解结果兼顾了专家的意见,符合了中国地震灾后恢复重建规划标准和我国政府的以人为本的原则;TSP问题是典型的离散优化问题,机器人全局路径规划问题基本都能转化成TSP问题的求解。本文利用种群迁移和最优信息交叉共享的思想,设计了一种用于离散优化问题求解的种子优化算法,克服了基本BOA算法不适合求解离散优化问题的缺点,通过典型的TSP问题求解实验,并与交叉PSO和MAX-MIN AS进行了实验结果对比,验证了离散BOA的优越性和有效性,深化了BOA算法的理论研究,扩大了BOA算法的应用领域,有望在日后应用于目前正在开展的老人服务机器人的全局路径规划中。
Many complex self-adaptive phenomena in the nature often give us inspiration. Some scholars were inspired from these natural bio-based phenomena and many nature-inspired optimization algorithms have been proposed by them. When solving some complex problems which the traditional optimization algorithm can not solve easily, the nature-inspired optimization algorithms have its own unique advantages. Inspired by the transmission mode of seeds, a novel evolutionary algorithm named Bean Optimization Algorithm (BOA) is proposed, which can be used to solve complex optimization problems by simulating the adaptive phenomenon of plants in the nature. BOA is the combination of nature evolutionary tactic and limited random search. BOA has stable robust behavior on explored tests and stands out as a promising alternative to existing optimization methods for engineering designs or applications. This thesis carries out a comprehensive research on BOA.
     The main work of this thesis can be introduced as follows:
     1. Learn from the seed dispersal mode and population distribution of evolution in nature, this thesis proposes a novel swarm intelligence algorithm-BOA. This optimization algorithm is provided with relatively new design ideas and clear meaning of bionic. Through research and study on the relevant research results of biostatistics, three distribution models of population evolution for BOA are built. These three models are respectively distribution model based on piecewise function, normal distribution model and negative binomial distribution model. Three kinds of BOA algorithms are presented based on the three distribution models respectively. In order to verify the validity of the three algorithms, function optimization experiments are carried out, which include eleven typical benchmark functions. The results of BOA in the experiments are made a comparative analysis with that of particle swarm optimization. From the results analysis, we can see that BOA is significantly better than PSO algorithm. We also research on the characters of BOA. A contrast experiment is carried out to verify the research conclusions about the relations between the algorithm parameters and its performance.
     2. A preliminary adaptive optimization strategy selection mechanism of BOA is proposed based on inductive reasoning. This thesis firstly lists the main parameters of the existing BOA algorithms and develops a kind of adjusting order of sub options in optimal strategy. Then the relevant parameter adjustment rules are sort out. This thesis also builds a performance evaluation method to evaluate the ability of optimization and convergence speed of the selected optimization strategy. Finally, two 500-dimensional multi-peak benchmark functions are used in the experiments to verify the validity of the adaptive optimization strategy of BOA. The experimental results show that the adaptive selection mechanism for optimal strategy can adjust the parameters to achieve a better performance than that of the BOA algorithm with fixed parameters.
     3. As BOA is a novel proposed optimization algorithm, theoretical analysis for the algorithm is still very preliminary at present. This thesis carries out the research on the state transfer process and the convergence behavior of BOA. Firstly several basic definitions of BOA are re-defined in strict mathematical description. Then the Markov chain model of BOA is established and the analysis of the Markov chain is made. Then I prove that BOA satisfies the two convergence conditions of the random search algorithms. Finally according to Global Search Convergence Theorem, BOA will converge to the global optimal solution with probability 1. The research conclusion is of great significance for BOA’s understanding, improvement and application.
     4. Algorithm application is the best way to test the algorithm. So in this thesis, BOA algorithm is applied to solve three typical optimization problems. The problem of parameter estimation for frequency-modulated (FM) sound waves is to generate a sound similar to target sound. It is a six dimensional optimization problem with the properties of highly complex multimodal and strong epistasis. It is also the No.1 problem of“Testing Evolutionary Algorithms on Real World Optimization Problems”in IEEE-CEC2011. BOA is used to solve the FM problem and the result is compared with that of DE-RHC. By comparing the results, we can see that BOA is better than DE-RHC. In China, it is important to establish a complete post-disaster reconstruction and rehabilitation system to respond to sudden natural disasters. In order to get post-disaster restoration items scheduling, we invited experts to give the fuzzy preference relation coefficients on the restoration items. Then an optimization model was proposed based on the fuzzy preference relation. BOA is proposed to solve the model and obtain ranking values of the items. The experimental result gives priority to the restoration of basic livelihood of the people and public service facilities. TSP is a typical discrete optimization problem. This thesis presents a discrete BOA for solving discrete optimization problems based on the ideas of population migration and information cross-sharing. This method overcomes the defect of basic BOA algorithms which do not suit for solving discrete optimization problems. Finanlly, five typical TSP problems are used to verify the validity of discrete BOA. The results of the experiments compared with that of the Cross-PSO and MAX-MIN AS show that discrete BOA gets better results than that of the other two algorithms and it suits for solving the discrete optimization problems. This research also deepens the BOA algorithm theory and expands the application areas of it.
引文
[1] Adam Prugel-Bennett. Benefits of a Population: Five Mechanisms That Advantage Population-Based Algorithms, IEEE Transactions on Evolutionary Computation, 2010, Vol.14(4), pp.500-517.
    [2] Jeffrey O. Kephart. Learning from Nature, Science, 2011, Vol.331, pp.682-683.
    [3] Y. Afek, N. Alon, O. Barad, E. Hornstein, N. Barkai, Z. Bar-Joseph. A Biological Solution to a Fundamental Distributed Computing Problem, Science, 2011, Vol.331, pp.183-185.
    [4]张晓明,王儒敬,宋良图.一种新的进化算法-种子优化算法.模式识别与人工智能, 2008, Vol.21(5), pp.677-681.
    [5] H.Robbins and S. Monro. A stochastic approximation method. Annal of Mathematical Statistics, 1951, Vol.22(3), pp.400-407.
    [6] I. Rechenberg. Cybernetic solution path of an experimental problem. Technical report, Royal Air Force Establishment, 1965.
    [7] Fogel, L.J., Owens, A.J., Walsh, M.J., Artificial Intelligence through Simulated Evolution, John Wiley, 1966.
    [8] Fogel L.J. Intelligence through Simulated Evolution: Forty Years of Evolutionary Programming, John Wiley,1999.
    [9] John H Holland, Adaptation in Natural and Artificial Systems, University of Michigan Press, 1975.
    [10] Kirkpatrick, S.; C. D. Gelatt, M. P. Vecchi. Optimization by Simulated Annealing, Science, New Series, 1983, Vol.220 (4598), pp.671–680.
    [11] V. Cerny, A thermodynamical approach to the travelling salesman problem: an efficient simulation algorithm. Journal of Optimization Theory and Applications, 1985, Vol.45, pp.41-51
    [12] Cramer, Nichael Lynn. A representation for the Adaptive Generation of Simple Sequential Programs International Conference on Genetic Algorithms and the Applications, 1985, pp.183-187.
    [13] Koza J.R. Genetic Programming: On the Programming of Computers by Means of Natural Selection, MIT Press, 1992.
    [14] Koza J.R. Genetic Programming II: Automatic Discovery of Reusable Programs, MIT Press, 1994.
    [15] Koza J.R., Keane, M.A., Streeter, M.J., Mydlowec, W., Yu, J., Lanza, G. Genetic Programming IV: Routine Human-Competitive Machine Intelligence, Kluwer Academic Publishers, 2003.
    [16] F.Glover. Future paths for integer programming and links to artificial intelligence. Computer and Operations Research, 1986, Vol.13, pp.533-549,.
    [17] Glover, F. Tabu Search—Part I, ORSA Journal on Computing, 1989, Vol.1 (3), pp.190-206.
    [18] Glover, F. Tabu Search—Part II, ORSA Journal on Computing, 1990, Vol.2 (1), pp.4-32.
    [19] J.D. Farmer, N. Packard, A. Perelson. The immune system, adaptation and machine learning, Physica D, 1986, vol. 2, pp.187–204.
    [20] H. Bersini, F.J. Varela, Hints for adaptive problem solving gleaned from immune networks.First Workshop PPSN, 1990, pp.343-354.
    [21] Moscato, P. On Evolution, Search, Optimization, Genetic Algorithms and Martial Arts: Towards Memetic Algorithms. Caltech Concurrent Computation Program(report 826), 1989.
    [22] M. Dorigo, Optimization, Learning and Natural Algorithms, PhD thesis of Politecnico di Milano, Italie, 1992.
    [23] M. Dorigo, L.M. Gambardella, Ant Colony System: A Cooperative Learning Approach to the Traveling Salesman Problem, IEEE Transactions on Evolutionary Computation, 1997, Vol.1(1), pp.53-66.
    [24] R. G. Reynolds, An Introduction to Cultural Algorithms, the 3rd Annual Conference on Evolutionary Programming, 1994, pp 131–139.
    [25] Kennedy, J.; Eberhart, R. Particle Swarm Optimization. IEEE International Conference on Neural Networks IV, 1995, pp.1942–1948.
    [26] Storn, R.; Price, K. Differential evolution - a simple and efficient heuristic for global optimization over continuous spaces. Journal of Global Optimization, 1997, Vol.11, pp.341–359.
    [27] Takagi, H. Interactive Evolutionary Computation: Fusion of the Capacities of EC Optimization and Human Evaluation. Proceesings of the IEEE, 2001, Vol.89(9), pp.1275-1296.
    [28] Geem, Z. W., Kim, J. H., Loganathan, G. V. A New Heuristic Optimization Algorithm: Harmony Search, Simulation, 2001, Vol.76(2), pp.60-68.
    [29]李晓磊,邵之江,钱积新.一种基于动物自治体的寻优模式:鱼群算法.系统工程理论与实践, 2002, Vol.22(11), pp.32-38.
    [30] Tapabrata Ray, K. M. Liew. Society and Civilization: An Optimization Algorithm Based on the Simulation of Social Behavior. IEEE Transactions on Evolutionary Computation, 2003, Vol.7(4), pp.386-396.
    [31] Chong C, Low MYH, Sivakumar AI, Gay KL, A Bee Colony Optimization Algorithm to Job Shop Scheduling, The 38th Conference on Winter Simulation, 1954-1961.
    [32] M. Eusuff, K. Lansey, F. Pasha. Shuffled frog-leaping algorithm: a memetic meta-heuristic for discrete optimization. Engineering Optimization, 2006, Vol.38(2), pp.129-154.
    [33] He S., Wu Q.H., Saunders J.R. Group Search Optimizer: An Optimization Algorithm Inspired by Animal Searching Behavior. IEEE Transactions on Evolutionary Computation, 2009, Vol.13(5), pp.973-990.
    [34] Beni, G., Wang, J. Swarm Intelligence in Cellular Robotic Systems, NATO Advanced Workshop on Robots and Biological Systems, 1989, pp.26–30.
    [35] E. Bonabeau, M. Dorigo, and G. Theraulaz. Inspiration for Optimization from Social Insect Behavior. Nature, 2000, Vol.406(6), pp.39-42.
    [36] M. Dorigo, M. Birattari, T. Stützle. Ant Colony Optimization-- Artificial Ants as a Computational Intelligence Technique, IEEE Computational Intelligence Magazine, 2006, Vol.11(4), pp.28-39.
    [37] T. Stützle,H.Hoos. MAX-MIN ant system. Future Generation Computer Systems, 2000,Vol.16(8), pp.889-91
    [38] B.Bullnheimer,R.F.Hartl,C.Strauss. A new rank based version of the Ant System: A computational study, Central European Journal of Operations Research and Economics, 1999, Vol.7(1), pp.25-38.
    [39] Cordon O., Fern I., de Viana A. , Herrera F., Moreno L., A new ACO model integrating evolutionary computation concepts: The best-worst Ant System, Ants 2000, pp.22-29.
    [40] C. Blum, A. Roli, M. Dorigo. HC-ACO: The Hyper-Cube Framework for Ant Colony Optimization. Proceedings of the Fourth Metaheuristics International Conference, 2001, Vol.2, pp. 399-403.
    [41] C.Blum. Beam-ACO-hybridizing ant colony optimization with beam search : an application to open shop scheduling, Computers and Operations Research, 2005, Vol.32(6):1565-1591.
    [42] P.K.Jain, P.K.Sharma. Solving job shop layout problem using ant colony optimization technique, IEEE International Conference on Systems, Man and Cybernetics, 2005, pp.288-292.
    [43] L.Y.Tseng, S.C.Chen. A hybrid metaheuristic for the resource-constrained project scheduling problem.European Journal of Operational Research, 2006, Vol.175(2), pp.707-721.
    [44] C.J.Liao, H.C.Juan. An ant colony optimization for single-machine tardiness scheduling with sequence-dependent setups. Computers and Operations Research, 2007, Vol.34(7), pp.1899-1909.
    [45] M. Birattari, Thomas Stützle, Zhi Yuan, M. Dorigo. Estimation-based Ant Colony Optimization and Local Search for the Probabilistic Traveling Salesman Problem. Swarm Intelligence, 2009, Vol.3(3), pp.223-242.
    [46] N.C.Demirel,M.D.Toksan. Optimization of the quadratic assignment problem using an ant colony algorithm.Applied Mathematics and Computation, 2006, Vol.183(1), pp.427-435.
    [47] W. C. Chiang. Scatter search for the vehicle routing problem with time windows, European Journal for Operations Research, 2006, Vol.169(2), pp.606-622.
    [48] W.D.Lin, T.X.Cai. Ant colony optimization for VRP and Mail Delivery Problems.IEEE International Conference on Industrial Informatics, 2006, pp.1143-1148
    [49] S.Okdem, D.Karaboga. Routing in wireless sensor networks using ant colony optimization. First NASA/ESA Conference on Adaptive Hardware and Systems, 2006, pp.401-404.
    [50] Liangjun Ke, Zuren Feng, Zhigang Ren. An efficient ant colony optimization approach to attribute reduction in rough set theory. Pattern Recognition Letters, 2008, Vol.29(9), pp. 1351-1357.
    [51] D. Martens, M. De Backer, R. Haesen, J. Vanthienen, M. Snoeck, B. Baesens. Classification with Ant Colony Optimization, IEEE Transactions on Evolutionary Computation, 2007, Vol.11(5), pp.651-665.
    [52] J.Dreo, P.Siarry. An ant colony algorithm aimed at dynamic continuous optimization.Applied Mathematics and Computation, 2006, Vol.181(1), pp.457-467.
    [53] K. Socha, M. Dorigo. Ant Colony Optimization for Continuous Domains. European Journal of Operational Research, 2008, Vol.185(3), pp.1155-1173.
    [54] L.Li,Y Yang, H.Peng. Parameters identification of chaotic systems via chaotic ant swarm. Chaos, Solitons and Fractals, 2006, Vol.28(5), pp.1204-1211.
    [55] X.N.Wang, Y.J.Feng, Z.R.Feng. Ant colony optimization for image segmentation. International Conference on Machine Learning and Cybernetics, 2005, pp.5355-5360.
    [56] Y F.Han, P.F.Shi. An improved ant colony algorithm for fuzzy clustering in image segmentation. Neurocomputing, 2007, Vol.70(4-6), pp.665-671.
    [57] S.H.M.Le, A.Kallel, X.Descombes. Ant colony optimization for image regularization based on a nonstationary Markov modeling. IEEE Transactions on Image Processing, 2007,Vol.16(3), pp.865-878.
    [58]冯春时.群智能优化算法及其应用,中国科学技术大学博士学位论文, 2009.
    [59] Reynolds C.W.Flocks. Herds and Schools: A Distributed Behavioral Model.Computer Graphics, 1987, Vol.21(4), pp.25-34.
    [60] Shi Y, Eberhart R.C.A Modified Particle Swarm Optimizer. IEEE Conference of Evolutionary Computation. 1998, pp.69-73.
    [61] Shi Y, Eberhart R.C. Empirical Study of Particle Swarm Optimization. IEEE Congress on Evolutionary Computation, 1999, pp.1945-1949.
    [62] Clerc, M. and Kennedy, J., The particle swarm-explosion, stability, and convergence in a multidimensional complex space, IEEE Transactions on Evolutionary Computation, 2002, Vol.6(1), pp. 58-73.
    [63]沈林成,霍霄华,牛轶峰.离散粒子群优化算法研究现状综述,系统工程与电子技术, 2008, Vol.30(10), pp.1986-1990.
    [64] Margarita Reyes-Sierra, Carlos A. Coello Coello. Multi-Objective Particle Swarm Optimizers: A Survey of the State-of-the-Art, International Journal of Computational Intelligence Research, 2006,Vol.2(3), pp. 287–308.
    [65] Kennedy J. Small Worlds and Mega-minds: Effects of Neighborhood Topology on Particle Swarm Performance. IEEE Congress on Evolutionary Computation, 1999, pp.1931-1938.
    [66] Kennedy J, Mendes R. Topological Structure and Particle Swarm Performance. IEEE Congress on Evolutionary Computation, 2002, pp.1671-1676.
    [67] Mendes R. Population Topologies and Their Influence in Particle Swarm Performance, PHD Thesis of University of Minho, 2004.
    [68] Gray G.Y, Haiming L. Dynamic Population Strategy Assisted Particle Swarm Optimization. IEEE International Symposium on Intelligent Control, 2003, pp.697-702.
    [69] Mohais A.S, Ward C, Posthoff C. Randomized Directed Neighborhoods with Edge Migration in Particle Swarm Optimization. IEEE Congress on Evolutionary Computation. 2004, pp.548-555.
    [70] Emad Elbeltagia, Tarek Hegazyb, Donald Grierson. Comparison among five evolutionary-based optimization algorithms, Advanced Engineering Informatics, 2005, Vol.19, pp.43–53.
    [71] Zwe-Lee Gaing. A Particle Swarm Optimization Approach for Optimum Design of PID Controller in AVR System. IEEE TRANSACTIONS ON ENERGY CONVERSION, 2004, Vol.19(2), pp.384-391.
    [72] Gudise V.G, Venayagamoorthy G.K. Adaptive Critics for Dynamic Particle Swarm Optimization. IEEE International Symposium on Intelligent on Control, 2004, pp.380-384.
    [73] Reis C., Machado J.A.T., Galhano A.M.S., Cunha J.B. Circuit Synthesis using Particle Swarm Optimization. IEEE International Conference on Computational Cybernetics, 2006, pp.1-6.
    [74] Kassabalidis I.N, EI-Sharkawi M.A., Marks R.J. Dynamic Security Border Identification Using Enhanced Particle Swarm Optimization. IEEE Transactions on Power Systems, 2002, Vol.17(3), pp.723-729.
    [75] Shinn-Ying Ho, Hung-Sui Lin, Weei-Hurng Liauh, Shinn-Jang Ho. OPSO: Orthogonal Particle Swarm Optimization and Its Application to Task Assignment Problems. IEEE Transactions on Systems, Man and Cybernetics, Part A, 2008, Vol.38(2), pp.288-298.
    [76] Souda T., Silva A., Neves A. Particle Swarm based Data Mining Algorithms for classification task. Parallel Computing, 2004, Vol.30(5), pp.767-783.
    [77]李宁,刘飞,孙德宝.基于带变异算子粒子群优化算法的约束布局优化研究.计算机学报,2004, Vol.27(7), pp.897-903.
    [78]黄岚,王康平,周春光.粒子群优化算法求解旅行商问题.吉林大学学报(理学版), 2004, Vol.41(4), pp.477-480.
    [79] Wu Bin, Zhao Yanwei, MaYaliang. Particle Swarm Optimization Method for Vehicle Routing Problem. The 5th World Congress on Intelligent Control and Automation. 2004, pp.2219-2221.
    [80] Pham DT, Ghanbarzadeh A, Koc E, Otri S, Rahim S, Zaidi M. The Bees Algorithm. Technical Note of Manufacturing Engineering Centre of Cardiff University, 2005.
    [81] D. T. Pham, E. Koc, J. Y. Lee, J. Phrueksanant, Using the Bees Algorithm to schedule jobs for a machine, The Eighth International Conference on Laser Metrology and Machine Tool Performance, 2007, pp. 430–439.
    [82] Pham D.T., Ghanbarzadeh A., Koc E., Otri S., Rahim S., M.Zaidi. The Bees Algorithm– A Novel Tool for Complex Optimisation Problems, IPROMS 2006 Conference, 2006, pp.454–461.
    [83] Pablo Rabanal, Ismael Rodríguez , Fernando Rubio. Using River Formation Dynamics to Design Heuristic Algorithms, Lecture Notes in Computer Science, 2007, Vol. 4618, pp.163-177.
    [84] Pablo Rabanal, Ismael Rodríguez, Fernando Rubio. Finding Minimum Spanning/Distances Trees by Using River Formation Dynamics, Lecture Notes in Computer Science, 2008, Vol. 5217, pp.60-71.
    [85] Bishop, J.M.. Stochastic Searching Networks. 1st IEE Conferrance. on Artificial Neural Networks, 1989, pp 329–331.
    [86] Bishop, J.M. & Torr, P.. The Stochastic Search Network. In R. Linggard, D.J. Myers, C. Nightingale (eds.), Neural Networks for Images, Speech and Natural Language, 1992, pp.370–387.
    [87] Beattie P.D., Bishop J.M.. Self-Localisation in the 'Senario' Autonomous Wheelchair. Journal of Intelligent and Robotic Systems, 1998, Vol.22, pp.255–267.
    [88] Whitaker R.M., Hurley S. An agent based approach to site selection for wireless networks. ACM Symposium on Applied Computing, 2002, pp. 574–577.
    [89] Tapabrata Ray, K. M. Liew. Society and Civilization: An Optimization Algorithm Based on the Simulation of Social Behavior. IEEE Transactions on Evolutionary Computation, 2003, Vol.7(4), pp.386-396.
    [90] M. Eusuff, K. Lansey, F. Pasha. Shuffled frog-leaping algorithm: a memetic meta-heuristic for discrete optimization. Engineering Optimization, 2006, Vol.38(2) pp.129-154.
    [91] Yunming Li. Solving TSP by an ACO-and-BOA-based hybrid algorithm, International Conference on Computer Application and System Modeling, 2010, pp.189-192.
    [92] Xiaoming Zhang, Bingyu Sun, Tao Mei, Rujing Wang. Post-disaster Restoration Based on Fuzzy Preference Relation and Bean Optimization Algorithm. 2nd IEEE Youth Conference on Information, Computing and Telecommunications, 2010, pp.271-274.
    [93]程乐.新的仿生算法:蟑螂算法.计算机工程与应用, 2008, Vol.44(34), pp.44-46.
    [94]陈国良,王煦法,庄镇泉,王东升.遗传算法及其应用,北京:人民邮电出版社1996
    [95] Solis F, Wets R. Minimization by random search techniques .Mathematics of Operations Research, 1998, Vol.6(1), pp.19-30.
    [96] Cui Zhihua, Zeng Jianchao. A Guaranteed Global Convergence Particle Swarm Optimizer. RSCTC'2004, 2004, pp.762-767
    [97]张晓明,王儒敬.一种带逆反的粒子群算法计算机科学2006, Vol.10, pp.156-159.
    [98]兰国玉,雷瑞德.植物种群空间分布格局研究方法概述,西北林学院学报, 2003, Vol.18(2), pp.17-21.
    [99]李海涛.植物种群分布格局研究概况,植物学通报, 1995, Vol.12(2), pp. 15-26.
    [100]王伯荪,彭少麟.鼎湖山森林群落分析--II物种联结性.中山大学学报(自然科学版), 1983, Vol.4, pp. 27-35.
    [101]费世民,何亚平,陈秀明,蒋俊明,郭志.华秦岭水灾迹地油松和华山松更新种群数量特征,植物生态学报, 2008, Vol.32(1), pp.95-105.
    [102]李宁.粒子群优化算法的理论分析与应用研究,华中科技大学博士学位论文, 2006.
    [103]骆剑平,李霞,陈泯融.混合蛙跳算法的Markov模型及其收敛性分析,电子学报, 2010, Vol.38(12), pp.2875-2880.
    [104] Emad Elbeltagia, Tarek Hegazyb, Donald Grierson. Comparison among five evolutionary-based optimization algorithms, Advanced Engineering Informatics. Vol.19, pp.43–53.
    [105] Wolpert, David H., William G. Macready. No free lunch theorems for optimization. IEEE Transactions on Evolutionary Computation, 1997, Vol.1(1), pp.67-82.
    [106] Feigenbaum, E.A., The art of artificial intelligence:Themes and case studies in knowledge engineering, IJCAI-5, 1997, pp.1014-1029.
    [107]胡运发.数据与知识工程导论,北京:清华大学出版社, 2003.
    [108] K. De Jong. Analysis of Behavior of a Class of Genetic Adaptive Systems, PHD Thesis of University of Michigan, 1975.
    [109]胡适耕.现代应用数学基础.北京:科学出版社, 2001.
    [110]申鼎煊.随机过程.武汉:华中理工大学出版社,1990.
    [111]奚宏生.随机过程引论.合肥:中国科技大学出版社, 2009.
    [112]张文修,梁怡.遗传算法的数学基础(第二版),西安:西安交通大学出版社, 2003.
    [113] Chowning, J. M. The synthesis of complex audio spectra by means of frequency modulation, Journal of the Audio Engineering Society. 1973, Vol.21(7), pp.526-534.
    [114] Kronland-Martinet R., Gillemain, P., Ystad S.. From Sound Modelling to Analysis-Synthesis of Sounds, Workshop on Current Research Directions in Computer Music, 2001, pp. 217-224.
    [115] Horner, A. Auto-Programmable FM and Wavetable Synthesizers. Contemporary Music Review, 2003, Vol.22(3), pp.21-29.
    [116] Payne, R. A Microcomputer Based Analysis/Resynthesis Scheme for Processing Sampled Sounds Using FM. The International Computer Music Conference, 1987, pp. 282-289.
    [117] Schottstaedt, B. The Simulation of Natural Instrument Tones Using Frequency Modulation with a Complex Modulating Wave, Computer Music Journal, 1977, Vol.1(4), pp.46-50.
    [118] Horner, J. Beauchamp, L. Haken, Genetic algorithms and their application to FM matching synthesis, Computer Music Journal, 1993, Vol.17(4), pp.17–29.
    [119] F. Herrera, M. Lozano. Gradual distributed real-coded genetic algorithms, IEEE Transactions on Evolutionary Computation, 2000, Vol.4(1), pp. 43–62.
    [120] S. Das, P. Suganthan. Problem definitions and evaluation criteria for CEC 2011 competition on testing evolutionary algorithms on real world optimization problems, Tech. Rep. of Department of Electronics and Telecommunication Engineering, 2011.
    [121] LaTorre A., Muelas S., Pefia J.-M. Benchmarking a hybrid DE-RHC algorithm on real world problems. IEEE Congress on Evolutionary Computation, 2011, pp.1027-1033.
    [122]岳晓燕,吴殿廷,赵西君,张佳蕾.我国灾后重建的思考与探索——以汶川地震为例.生态经济, 2009, Vol.1, pp.179-182.
    [123] http://www.gdemo.gov.cn/yjyj/zjjz/200901/t20090122_84443.htm
    [124]王晓陵,陆军.最优化方法和最优控制.哈尔滨:哈尔滨工程大学出版社,2006.
    [125] http://www.tsp.gatech.edu/data/ml/mona-lisa100K.tsp
    [126] Zhang Xiaoming, Sun Bingyu, Wang Rujing, Tan Jingdong. Application of GA based rough set theory in forecast of gas outbursts. International Symposium on Computational Intelligence and Design, 2008, pp.103-107.
    [127] http://optalgtoolkit.sourceforge.net
    [128]苏晋荣,王建珍.改进粒子群优化算法求解TSP问题,计算机工程与应用. 2010,Vol.46(4), pp.52-75.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700