北京地区油松林分生长、枯损和进界模型的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
森林是陆地生态系统的主体,是维持生态平衡和改善生态环境的重要保障,在应对全球气候变化中发挥着不可替代的作用。因此及时、准确、有效地监测和评价森林,对科学合理经营森林、充分发挥森林的多功能效益至关重要。森林资源的监测和评价的核心问题就是要及时了解森林生长、枯损和进界的动态变化情况。而及时了解森林生长、枯损和进界的动态变化,就必须应用森林模型技术。林分动态变化模型包括了生长、枯损和进界模型。应用林分动态变化模型可以使我们更深入地了解森林动态发展的模式,为有效地进行森林资源监测和合理地经营森林提供理论基础和分析评价方法。本研究以北京地区油松(Pinus tabulaeformis Carr.)林分为研究对象,根据林学和生物学特性,采用近代生物数学模型和统计分析方法,构建油松林分生长、枯损和进界动态变化模型:
     (1)分别利用传统的固定生长率法和可变生长率法建立了单木直径年生长预测模型,并对这两种方法进行比较研究。研究结果表明,利用可变生长率法建立单木直径年生长预测模型,其均方根误差(RMSE=1.0182)比固定生长率法(RMSE=1.1393)的小,决定系数(R2=0.9310)比固定生长率法(R2=0.9136)的大,因此其拟合效果比固定生长率法好。可变生长率法估计单木生长模型参数时,考虑了林木因子的变化及通过建立林分模型预估林分变量因子(林分断面积,优势高)的变化,从而导致单木直径年生长量的变化,这符合林木生长的规律。同时,本研究也利用了可变生长率法建立了全林分年生长预测模型,该方法能够提供林分的年生长变化情况,并利用似乎不相关联立估计全林分生长模型参数,这样能够提高参数估计的有效性和一致性,减少系统估计误差。
     (2)组合预测方法在提高模型预测精度方面有很好的表现。该方法充分利用单项预测模型所提供的有效信息,减少单个模型中随机因素的影响,把不同的模型误差分散化,从而提高预测精度。研究结果表明,组合预测模型精度(R2=0.9298)比单木模型(R2=0.9255)、林分模型(R2=0.9282)、分布模型(R2=0.9244)的预测精度都要高。利用组合预测估计方法预测林分断面积,使三个不同水平模型所得的林分断面积组合成一个预测值,保证了林分断面积预测的一致性,解决了不同预测模型间的相容性问题,为林分断面积生长模型一体化的研究提供了可行性。在组合预测模型中,权重的选取对提高组合预测结果的精度至关重要。相对于本研究所利用的误差平方和法和方差协方差法,最优加权法能够去除单项预测在组合预测模型中有偏的影响,从而使得组合预测达到无偏,最终达到提高预测精度的目的。
     (3)解聚法以单木水平模型所得的林分变量尽可能地与林分水平模型所得的林分变量相匹配为迭代目标,进而调整单木生长模型以提高预测精度。本研究利用3种不同的解聚法(指数法,比例调整法,可加法)进行调整油松单木枯损,研究结果表明:这3种方法都提高了单木枯损的预测精度,可加法相对好于其它2种方法。相对于这2种迭代求解调整系数的方法,可加法直接通过调整系数公式计算得到,计算更加简单、有效。同时,在研究中我们也发现林分密度模型预测的精度在解聚法中起到重要的作用。林分株数密度预测精度高,那么就可以减少不同单木枯损预测方法的差别。组合预测法综合利用了不同水平模型所提供的信息,分散预测误差,进而提高林分变量预测精度。本研究中,我们结合解聚法和组合预测法调整单木枯损模型,研究结果表明综合利用这两种方法调整单木枯损,着实提高了单木枯损的预测精度。
     (4)林分枯损和进界是描述林分动态变化特征的重要因子。然而,调查间隔期内可能有大量的样地没有发生林分枯损或进界现象,这意味着在所研究的数据中包含有大量的零数据,即数据结构是离散的。如果继续用最小二乘方法分析,估计不准确,会产生较大的偏差。本研究以计数类模型为基础,分别利用Poisson回归模型、负二项模型、零膨胀模型和Hurdle模型拟合林木枯损株数和林木进界株数,并通过AIC值,Pearson残差图以及Vuong检验对这些模型进行了详细分析比较。研究结果表明:Poisson回归模型不适用于模拟林木枯损株数。负二项回归模型相对于Poisson回归模型,比较适用。但是对于零枯损过多的数据,这两类模型拟合效果较差。零膨胀模型和Hurdle模型对这类数据有很好的解决办法。其中,零膨胀负二项模型和Hurdle-负二项模型拟合效果优于其它几种模型,而且这两个预测模型表现相当。本研究得出的结果可为分析林分枯损或者进界提供了一种可行性方法。
     最后,利用C#.NET设置界面,通过SAS的IOM编程接口,实现了油松林分生长、枯损和进界动态变模型的系统集成。
The forest is the main body of terrestrial ecosystem. It plays a very crucial role inmaintaining ecological balance, improving ecological environment, as well as regulating globalclimate change. It is very important to forecast and evaluate forest resource accurately in timefor managing forest reasonably. The key problem of monitoring forest is how to know thedynamic change of foret growth, mortality and recruitment. As we know, the modelingtechnique is the basic method for knowing the forest dynamic change. Based on the forestdynamic models, we can know fully the forest development mode, which is helpful to monitorforest effectively and mange forest in reason. The dynamic models are composed of forestgrowth model, mortality model and recruitment model. In this study, based on the permanentdata of Chinese pine (Pinus tabulaeformis Carrière), the forest dynamic models includinggrowth, mortality and recruitment were developed using the modern biomathematics modeland statistical analysis method:
     (1) The annual individual tree diameter model was developed with constant rate methodand variable rate method. Results showed that the variable rate method (RMSE=1.0182,R2=0.9310) outperformed the constant rate method (RMSE=1.1393, R2=0.9136) in predictingfuture individual tree diameter growth because the former accounted for the variable rate ofannual diameter growth, which was caused by changes of stand (basal area, dominant height)and tree attributes. It reflects the fact of tree growth. Also the whole stand models wereestablished with the variable rate method, which provided the annual forest stand changes. Theparameters of stand models were estimated via seemingly unrelated regression (SUR). Basedon the estimation method, the parameters had no obvious biases, and the precision of parameterestimation was more effectively.
     (2) Forest combination method is a good method for improving model performance. Itefficiently uses information generated from different models to improve predictions byreducing errors from a single model. Results showed that the forecast combination method (R2=0.9298) provided overall better predictions of stand basal area than tree level model(R2=0.9255), stand level model (R2=0.9282) and distribution model (R2=0.9244). It alsoimproved the compatibility of stand basal area growth predicted from models of differentresolutions. In other words, it resolved the inconsistency of stand variable predictions atdifferent levels. It provided a method for integration of stand basal area. But we should alsorecognize that the method of calculating weights in combined models is very important. If themethod for calculating weights is good, then we will get the better results for combined model.In this thesis, the sum of squared errors method, variance-covariance method and optimalweight method were used to calculate the weights. The optimal weight method was superior toother two models, which removes the biased impact of single model on combined model, andthen gets the unbiased estimators.
     (3) Disaggregation is a good method for improving prediction of tree models. In thismethod, individual-tree model predictions are adjusted so that the resulting sums would matchoutputs from a stand-level model. In this research, three disaggregation methods were used foradjusting tree mortality, which are power function method, proportional adjustment method,and addition method. Results showed that the disaggregation approach improved theperformance of tree survival models and the addition method performed slightly better than theother two disaggregation methods. An advantage of the addition method is that it alloweddirect computation of the adjusting coefficient, whereas the other methods required that theadjusting coefficient be resolved in an iterative manner. Meanwhile, we also showed thatstand-level prediction played a crucial role in refining outputs from a tree survival model,especially when it is a very simple model. Because the forecast combination method producedbetter stand-level prediction, we prefer the use of this method in conjunction with thedisaggregation approach, even though the performance gain in using the forecast combinationmethod shown for this data set was modest. And the results showed that the tree mortalityprediction was improved using the two methods together.
     (4) Stand mortality and recruitment are very important variables for describing the standcharacters. Considering the fact that in permanent sample plots a relatively high number of the plots have no occurrences of recruitment or mortality even over periods of several years, itmeans that data are bounded and characteristically exhibit varying degrees of dispersion andskewness in relation to the mean. Additionally, the data often contain an excess number of zerocounts. Yet least squares method implicitly presumes that the data are Gaussian distributed withconstant variance, or at least satisfy the Gauss-Markov conditions. If the method is still used todeal with the data with large proportion of zero counts, the estimated results will be biased.Based on the theory of count models, poisson model, negative binomial model, zero-inflatedmodels and Hurdle models were used to analyze stand mortality and recruitment. The bestmodel was chose according to the AIC value, Pearson redidual plot and vuong test. Resultsshowed that: Poisson model was not suitable for stand mortality and recruitment, and negativebinomial was superior to the Poisson model. But both of them were not competent for theover-dispersion data. Zero-inflated model and hurdle model were fitted into the data.Additionally, zero-inflated negative binomial model (ZINB) and Hurdle-negative binomialmodel (HNB) outperformed than other models. The two models performed similarly inmodeling stand mortality and recruitment. The result provided a feasible method for analyzingstand mortality and recruitment.
     Finally, integration system of forest growth, mortality and incruitment dynamic modelsfor Chinese pine was implemented. System interface was setup based on the C#. NET, linkedwith SAS through the SAS IOM programming.
引文
Adame P, del Rìo M, Ca ellas I. Ingrowth model for pyrenean oak stands in north-western Spain usingcontinuous forest inventory data. European Journal of Forest Research,2010,129(4):669-678.
    Adame P, Hynynen J, Ca ellas I, del Río M. Individual-tree diameter growth model for rebollo oak (Quercuspyrenaica Willd.) coppices. Forest Ecology and Management,2008,255(6):1011-1022.
    Adams D M, Ek A R. Optimizing the management of uneven-aged forest stands. Canadian Journal of ForestResearch,1974,4:274-287.
    Affleck D L R. Poisson mixture models for regression analysis of stand-level mortality. Canadian Journal ofForest Research,2006,36(11):2994-3006.
    Amaro A P N. Modelacao do crescimento de povoamentos de Eucalyptus globules Labill de1rotacao emPortugal. Ph.D. dissertation. UTL, Lisboa.1997,241p.
    Amemiya T. Regression analysis when the dependent vairable is truncated normal. Econometrica (TheEconometric Society)1973,41(6):997-1016.
    Andreassen K. Development and yield in selection forest. Meddelelser fra Skogforsk,1994,47(5):1-37.
    Anta M B, Blsnco H S, Rey I C. Dynamic growth model for I-214poplar plantations in the northern andcentral plateaus in Spain. Forest Ecology and Management,2008,255(7):1167-1178.
    Bailey R L, Burgan T M, Jokela E J. Fertilized midrotation-aged slash pine plantations-stand structure andyield prediction models. Southern Journal of Applied Forestry,1989,13(2):76-80.
    Bailey R L, Dell T R. Quantifying diameter distribution with the Weibull function. Forest Science,1973,19(2):97-104.
    Barry S C, Welsh A H. Generalized additive modeling and zero inflated count data. Ecological modeling,2002,157(2):179-188.
    Bates J M, Granger C W J. The combination of forecasts. Operation Research Quarterly,1969,20(4):451-468.
    Becher D W, Holdaway M R, Brand G J. A description of STEMS-the stand and tree evaluation andmodeling system. USDA Forest Service General Technique Report.1982, NC-79.
    Bermejo I, Canellasa I, Miguel A S. Growth and yield models for teak plantations in Costa Rica. ForestEcology and Management,2004,189:97-110.
    Bliss C I, Reinker K A. A log-normal approach to diameter distribution in even-aged stands. Forest Science,1964,10(3):350-360.
    Borders B E. Systems of equations in forest stand modeling. Forest Science,1989,35(2):548-556.
    Borders B E, Souter R A, Bailey, R L, Ware K D. Percentile-based distributions characterize forest standtables. Forest Science,1987,33(2):570-576.
    Bosch C A. Redwoods: a population model. Science,1971,172:345-349.
    Botkin D B, Janak J F, Wallis J R. Some ecological consequences of a computer model of forest growth.Journal of Ecology,1972,60(3):849-872.
    Bouchard M, Kneeshaw D, Bergeron Y. Forest dynamics after successive spruce budworm outbreaks inmixedwood forests. Ecology,2006,87(9):2319-2329.
    Bouchard M, Pathier D. Spatiotemporal variability in tree and stand mortality causd by spruce budwormoutbreaks in eastern Quebec. Canadian Journal of Forest Research,2010,40(1):86-94.
    Bowling E H, Burkhart H E, Burk T E, Beck D E. A stand-level multispecies growth model for Appalachianhardwoods. Canandian Journal of Forest Research,1989,19(4):405-412.
    Brando P M, Nepstad D C, Balch J K, et al. Fire-induce tree mortality in neotropical forest: the rols of barktraits, tree size, wood density and fire behavior. Global Change Biology,2011,30:1-12.
    Breidenbac J, Kublin E, Mcgaughey R J, et al. Mixed-effects models for estimating stand volume by meansof small footprint airborne laser scanner data. The Photogrammetric Journal of Finland,2008,21(1):4-15.
    Buckman R E. Growth and yield of red pine in Minnesota U.S.D.A. Tech Bull.1962.
    Budhathoki C B, Lynch T B, Guldin J M. A mixed-effects model for the dbh-height relationship of shortleafpine(pinus echinata Mill.). South Journal of Applied Forest,2008,32(1):3-11.
    Buford M A, Hafley W L. Modeling the probability of individual tree mortality. Forest Science,1985,31(2):331-341.
    Buongiorno J, Michie B R.1980. A matrix model of uneven-aged forest management. Forest Science,1980,26(4):609-625.
    Calegario N, Daniels R F, Maestri R, Neiva R. Modeling dominant height growth based on nonlinearmixed-effects model: a clonal Eucalyptus plantation case study. Forest Ecology and Management,2005,204(1):11-21.
    Cameron A C, Trivedi P K. Regression Analysis of Count Data. Cambridge University Press, Cambridge.1998.
    Campbell R G, Ferguson I S, Opie J E. Simulating growth and yield of mountain ash stands: a deterministicmodel. Australian Forest Research,1979,9:189-202.
    Candy S G. Growth and yield estimates for Pinus raidata in Tasmania. New Zealand Journal of ForestScience,1989,19:112-133.
    Cao Q V, Li S S, Mcdill M E. Developing a system of annual tree growth equations for the loblollypine-shortleaf pine type in Louisiana. Canada Journal Forest Research,2002,32(11):2051-2059.
    Cao Q V, Strub M. Evaluation of four methods to estimate parameters of an annual tree survival and
    diameter growth model. Forest Science,2008,54(6):617-624.
    Cao Q V. Annual tree growth predictions based on periodic measurements. P.7-13in IUFRO symposium onstatistics and information technology in forestry. Blacksburg, VA,2002.
    Cao, Q.V. Prediction of annual diameter growth and survival for individual trees from periodicmeasurements. Forest Science,2000,46(1):127-131.
    Cao Q V. Predictions of individual-tree and whole-stand attributes for loblolly pine plantations. ForestEcology and Manage.2006,236:342-347.
    Cao Q V. Adjustments of individual-tree survival and diameter-growth equations to match whole-standattributes. In: proceedings of the14thbiennial southern silvicultural research conference.2010,369-373.
    Castedo-Dorado F, Diéguez-Aranda U, Anta M B, Rodríguez M S, Von Gadow K. A generalizedheight-diameter model including random components for radiata pine plantations in northwestern Spain.Forest Ecology and Management,2006,229(2):202-213.
    Clutter J L, Fortson J C, Pienaar L V, et al. Timber management, a quantative approach. Wiley, New York,1983.
    Clutter J L, Jones E P. Prediction of growth after thinning in old-field slash pine plantationis. USDA ForestService Reseach.1980, Paper SE-217.
    Clutter J L. Compatible growth and yield models for loblolly pine. Forest Science,1963,9(3):354-371.
    Collingham Y C, Wadsworth R A, Huntleyb, et al. Prediction of the spatial distribution on no indigenousweeds: Issues of spatial scale and extent. Journal of Applied Ecology,2000,37(Supp.1):13-27.
    Crecente-Campo F, Soares P, Tomé M, Diéguez-Aranda U. Modelling annual individual-tree growth andmortality of Scots pine with data obtained irregular measurement intervals and containing missingobservations. Forest Ecology and Management,2010,260(10):1965-1974.
    Cunniningham R B, Lindenmayer D B. Modeling count data of rare species: Some statistical issues. Ecology,2005,86(5):1135–1142.
    Curtis R O, Clendenen G W, Renkema D L. A new stand simulator for coastal Douglas—fir:DFSIM
    user’ guide. USDA Forest Service General Technical Report,1981, PNW-128:79.
    Curtis R O, Marshall D D. Why quadratic mean diameter? West Journal of Applied Forest,2000,15(3):137-139.
    Dahms W G. Growth-simulation model for lodgepole pine in central Oregon. USDA Forest Service ResearchPaper,1983, PNW-302.
    Daniels R F, Burkhart H E, Clason T R. A comparison of competition measures for predicting growth ofLoblolly pine trees. Canadian Journal of Research,1986,16(6):1230-1237.
    Daniels R F. Simple competition indices and their correlation with annual loblolly pine tree growth. ForestScience,1976,22(4):454-456.
    Daniels R F, Burkhart H E. An integrated system of forest stand models. Forest Ecology and Management,1988,23(2):159-177.
    De Luis M, Raventos J, Cortina J et al. Assessing components of a competition index to predict growth in aneven-aged pinus nitra stand. New Forests,1998,15:223-242.
    Diéguez-Aranda U, Castedo-Dorado F, álvarez-González J G, Rodríguez-Soalleiro R. Modelling mortalityof Scots pine (Pinus sylvestris L.) plantations in the northwest of Spain. European Journal of ForestResearch,2005,124(2):143-153.
    Dieguez-Ar U, Dorado F C, Gonzalez J G A, Alboreca A R. Dynamic growth model for Scots pine (Pinussylvestris L.) plantations in Galicia (north-western Spain). Ecological Modelling,2006,191(2):225-242.
    Eid T, yen B H. Models for prediction of mortality in even-aged forest. Scandinavian journal of forestresearch,2003,18(1):64-77.
    Eskelson B. N.I., Temesgen H, and Barrett T M. Estimating cavity tree and snag abundance using negativebinomial regression models and nearest neighbor imputation methods. Canadian Journal of ForestResearch,2009,39(9):1749-1765.
    Evans M, Hastings N, Peacock B. Statistical Distributions. John Wiley, New York, USA.2000, pp221.
    Fang Z, Bailey RL, Shiver B D. A multivariate simultaneous prediction system for stand growth and yieldwith fixed and random effects. Forest Science,2001,47(4):550-562.
    Ferguson D E, Stage A R, Boyd R J. Predicting regeneration in the grand fir-cedar-hemlock ecosystem of thenorthern rocky mountains. Forest Science,1986, Monograph,26,41p.
    Fielding A H, Bell J F. A review of methods for the assessment of prediction errors in conservationpresence/absence models. Environmental Conservation,1997,24(1):38-49.
    Fortin M, DeBlois J. Modeling tree recruitment with zero-inflated models: the example of hardwood standsin southern Québec, Canada. Forest Science,2007,53(4):529-539.
    Frazier, J.R. Compatible whole-stand and diameter distribution models for loblolly pine plantations.Blackburg, VA: Virginia Polytechnic Institute and State University, School of Forestry and Wildlife.1981, Ph.D. dissertation,125p.
    Franklin J F, Shugart H H, Harmon M E. Tree death as an ecological process. The causes, consequences andvariability of tree mortality. Bioscience,1987,37(8):550-556.
    Furnival G M, Wilson K W Jr. Systems of equations for predicting forest growth and yield. In G. P. Patil, E.C. Pielon and W. E. Waters (eds) Statistical Ecology. Pennsylvania State University Press, UniversityPark.1971,3:43-57.
    Garcia O. On bridging the gap between tree-level and stand-level models. in Proc.of IUFRO,4.11Conference ‘Forest Biometry Modeling and Information Science’, University of Greenwich.2001.
    González J G A, Dorado F G, Gonzalez A D R, Sanchez C á L, Gadow K V. A two-step mortality model foreven-aged stands of Pinus radiate D.Don in Galicia (Northwestern Spain). Annals of Forest Science,2004,61(5):439-448.
    Granger C W J, Newbold P. Forecasting economic time series. Academic Press, New York, U. S.,1977.
    Grimes R F, Pegg R E. Growth data for a spotted gum-ironbark forest in south-east Queensland. Queensland,Department of Foestry, Technical Paper,1979,17.30p.
    Guarín A, Taylor A H. Drought triggered tree mortality in mixed conifer forests in Tosemite National Park,California, USA. Forest Ecology and Management,2005,218:229-244.
    Hafley W L, Schreuder H T. Statistical distributions for fitting diameter and height data in even-aged stands.Canadian Journal of Forest Research,1977,7(3):481-487.
    Hamilton D A, Edwards B M. Modelling the probability of individual tree mortality. USDA Forest ServiceResearch Paper,1976, INT-185.
    Hamilton D A. Modelling mortality: a component of growth and yield modelling. In: K.M. Brown and F.R.Clarke (eds) Forecasting Forest Stand Dynamics. Proc. of Workshop held at Sch. For. Lakehead Univ.,Thunder Bay, Ont.,24-25June1980. Sch. For., Lakehead Univ. P.82-99.
    Hann D W. Development and evaluation of an even-and uneven-aged ponderosa pine/Arizone fescue standsimulator. USDA Forest Service Research Paper,1980, INT-267.95p.
    Hartmann H, Messier C, Beaudet M. Improving tree mortality models by accounting for environmentalinfluences. Canadian Journal of Forest Research,2007,37(11):2106-2114.
    Hegyi F. A simulation model for managing jack-pine stands. In: Fries, J.(Ed.), Growth models for tree andstand simulation. Royal College of Forestry, Stockholm, Sweden,1974, pp.74-90.
    Heilbron D. Zero-altered and other regression models for count data with added zeros. Biometrical Journal,1994,36(5):531-547.
    Jackman S. pscl: Classes and Methods for R Developed in the Political Science Computational Laboratory,Stanford University. Department of Political Science, Stanford University. Stanford, California. Rpackage version1.04.1. URL http://pscl.stanford.edu/.2011.
    Jeong D I, Kim Y O. Combining single-value streamflow forecasts-A review and guidelines for selectingtechniques. Journal of Hydrology,2009,377(3):284-299.
    Jesper R, Igor R. A note on estimation of intensities of fire ignitions with incomplete data. Fire SafetyJournal,2006,41(5):399-405.
    Jutras S, H kk H, Alenius V, Salminen H. Modeling mortality of individual trees in drained peatland sites inFinland. Silva Fennica,2003,37(2):235-251.
    Kariuki M. Modelling dynamics including recruitment, growth and mortality for sustainable management inuneven-aged mixed-species rainforests,2005, PhD thesis, Southern Cross University, Lismore, NSW.
    Kenkel N C. Pattern of self-thinning in jack pine-testing the random mortality hypothesis. Ecology,1988,69(4):1017-1024.
    Kneeshaw D D, Bergeron Y. Canopy gap characteristics and tree replacement in the southeastern borealforest. Ecology,1998,79(3):783-794.
    Knoebel B R, Burkhart, H E, Beck D E. A growth and yield model for thinned stands of yellow-poplar.Forest Science Monograph.1986,32(2):1:41.
    Knowe S A, Harrington T B, Shula R G. Incorporating the effects of interspecific competition and vegetationmanagement treatments in diameter distribution models for Douglas-fir saplings. Canadian Journal ofForest Research,1992,22(9):1255-1262.
    Knowe S A. Basal area and diameter distribution models for loblolly pine plantations with hardwoodcompetition in the piedmont and upper coastal plain. Southern Journal of Applied Forestry,1992,16(2):93-98.
    Kobe R K, Coates K D. Models of sapling mortality as a function of growth to characterize interspecificvariation in shade tolerance of eight tree species of northwestern British Columbia. Canadian Journal ofForest Research,1997,27(2):227-236.
    Lambert D. Zero-inflated Poisson regression, with an application to defects in manufacturing. Technometrics,1992,34(1):1-14.
    Larsen T N. Modeling individual-tree growth from data with highly irregular measurement intervals. ForestScience,2006,52(2):198-208.
    Leary R A, Holdaway M R, Hahn J T. Diameter growth allocation rule. In A generalized forest growthprojection system applied to the Lake States region. USDA Forest Service General Technical Report,1979, NC-49. pp.39-46.
    Leduc D J, Matney T G, Belli K L, Baldwin V C Jr. Predicting diameter distributions of longleaf pineplantations: a comparison between artificial neural networks and other accepted methodologies. USDAForest Service Research Paper,2001, SRS-25.
    Lee Y. Predicting mortality for even-aged stands of lodgepole pine. The Forestry Chronicle,1971,47:29:32.
    Lei Y. Evaluation of three methods for estimating the Weibull distribution parameters of Chinese Pine (Pinustabulaeformis). Journal of Forest Science,2008,54(12):549-554.
    Levin K A, Davies C A, Topping G V A, Assal A V, Pitts N B. Inequalities in dental caries of5-year-oldchildren in Scotland,1993-2003. European Journal of Public Health,2009,19(3):337-342.
    Lexer d N L. Recruitment models for different tree species in Norway. Forest Ecology and Management,2003,206(2):91-108.
    Lexer d N L.2005. Recruitment models for different tree species in Norway. Forest Ecology andManagement,2005,206:91-108.
    Li F, Zhang L, Davis CJ. Modeling the joint distribution of tree diameters and heights by bivariategeneralized beta distribution. Forest Science,2002,48(1):47-58.
    Li W J, Wang Z J, Ma Z J. Designing the core zone in a biosphere reserve based on suitable habitats:Yanchang Biosphere Reserve and the red2crowned crane(Grus japonensis). Biological Conservation,1999,90(3):167-173.
    Liang J, Buongiorno J, Monserud R A. Estimation and application of a growth and yield model foruneven-aged mixed conifer stands in California. Internation Forestry Review.2005b,7(2):101-112.
    Liang J, Buongiorno J, Monserud R A. Growth and yield of all-aged Douglas-fir-western hemlock foreststands: a matrix model with stand diversity effects. Canadian Journal of Forest Research,2005a,35(10):2368-2381.
    Little S N. Weibull diameter distributions for mixed stands of western conifers. Canadian Journal of ForestResearch,1983,13(1):85-88.
    Liu C, Berrypm, Dawson T P, et al. Selecting thresholds of occurrence in the prediction of speciesdistributions. Ecography,2005,28(3):385-393.
    Liu C, Zhang S Y, Lei Y C. Evaluation of three methods for predicting diameter distributions of black spruce(Picea mariana) plantations in central Canada. Canadian Journal Forest Science,2004,34(12):2424-2432.
    Liu W, Cela J. Count data models in SAS. Statistics and data analysis in SAS Global Forum,2008.
    Long J S, Freese J. Regression models for categorical dependent variables using stata.2nd ed. CollegeStation, TX: Stata Press.2006.
    Lynch T B, Holley A G, Stevenson D J. A random-parameter height-diameter model for Cherry-bark Oak.Southern Journal of Applied Forest,2005,29(1):22-26.
    Lynch T B, Murphy P A. A compatible height prediction and projection system for individual trees in natural,even-aged shortleaf pine stands. Forest Science,1995,41:194-209.
    Mackinney A L, Chaiken L E. Volume, yield and gowth of loblolly pine in the mid-Atlantic region.Appalachian For. Exp. Sta. Tech. Note33. USDA Forest Service,1939.
    MacNeil M A, Carlson J K, Beerkircher L R. Shark depredation rates in pelagic longline fisheries: a casestudy from the Northwest Atlantic. ICES Journal of Marine Science,2009,66(4):708-719.
    Mackinney A L, Schumacher F X, Chaiken L E. Construction of yield tables for nonnormal loblolly pinestands. Journal of Agriculture Research,1937,54:531-545.
    Mahadev S, John P. Height-diameter equations for boreal tree species in Ontario using a mixed-effectsmodeling approach. Forest Ecology and Management,2007,249(1):187-198.
    Mailly D, Gaudreault M, Picher G, Auger I, Pothier D. A comparison of mortality rates between top heighttrees and average site trees. Annals of Forest Science,2009,66(2):202-209.
    Manel S, Williams H, Ormerod S J. Evaluating presence–absence models in ecology: the need to account forprevalence. Journal of Applied Ecology,2001,38(5):921-931.
    Martin T G, Wintle B A, Rhodes J R, et al. Zero tolerance ecology: improving ecological inference bymodeling the source of zero observation. Ecology Letters,2005,8(11):1235-1246.
    McPherson J M, Jetz W, Rogers D J. The effects of species’ range sizes on the accuracy of distributionmodels: ecological phenomenon or statistical artifact? Journal of Applied Ecology,2004,41(5):811-823.
    Matney T G, Sullivan A D. Compatible stand and stock tables for thinned and unthinned loblolly pine stands.Forest Science,1982,28(1):161-171.
    Mcdill M E, Amateis R L.1993. Fitting discrete-time dynamic models having any time interval. ForestScience,39(3):499-519.
    McTague J P, Stansfield W F. Stand, species, and tree dynamics of an uneven-aged, mixed conifer forest type.Canandian Journal of Forest Research,1995,25(5):803-812.
    Mendoza G A, Setyarso A. A transition matrix forest growth model for evaluating alternative harvestingschemes in Indonesia. Forest Ecology and Management,1986,15:219-228.
    Mirmanto E. Forest dynamics of peat swamp forest in Sebangau, Central Kalimantan. Biodiversitas,2009,10(4):187-194.
    Monserud R A, Leemans R. Comparing global vegetation maps with the Kappa statistic. EcologicalModelling,1992,62(4):275-293.
    Monserud R A. Simulation of forest tree mortality. Forest Science,1976,22:438-444.
    Monserud R A, Sterba H. Modeling individual tree mortality for Austrian forest species. Forest Ecology andManagement,1999,113(2):109-123.
    Moore J A, Zhang L, Newberry J D. Effects of intermediate silvicultural treatments on the distribution ofwithin stand growth. Canadian Journal of Forest Research,1994,24(2):398-404.
    Moser J W. Dynamics of an uneven-aged forest stand. Forest Science,1972,18(3):184-191.
    Mullahy J. Specification and testing of some modified count data models. Journal of Econometrics,1986,33(3):341-365.
    Munro, D.D. Forest growth models-a prognosis. In: Growth models of tree and stand simulation, J. Fries,editor. Royal College of Forestry, Research Note no.30, Stockholm,1974.
    Nagel J, Biging GS. Schazung der Weibull function zur Generierung con durchmesserverteilungen. AllgForst-uJ-Ztg,1995,166:185-189.
    Nebel G, Kvist L P, VanclaybJ K, Vidaurre H. Forest dynamics in flood plain forests in the Peruvian Amazon:effects of disturbance and implications for management. Forest Ecology and Management,2001,150(1):79-92.
    Nie L, Wu G, Brockman F J, Zhang W. Integrated analysis of transcriptomic and proteomic data ofdesulfovibrio vulgaris: zero-inflated Poisson regression models to predict abundance of undetectedproteins. Bioinformatics,2006,22(13):1641-1647.
    Newbold P, Granger C W J. Experience with forecasting univariate time series and the combination offorecasts. Journal of the Royal Statistical Society Series A,1974,137(2):131-165.
    Newbold P, Harvey I H. Forecast Combination and Encompassing. In: M.P. Clements&D.F. Hendry ACompanion to Economic Forecasting. Blackwell Publishers,2002, pp.268-283.
    Ochi, Cao Q V. A Comparison of Compatible and Annual Growth Models. Forest Science,2003,49(2):285-290.
    Opie J E. Predictability of individual tree growth using various definitions of competing basal area. ForestScience,1968,14(3):314-323.
    Peet R K, Christensen N L. Competition and tree death. Bioscience,1987,37(8):586-595.
    Peng C, Ma Z, Lei X, et al. A drought-induced pervasive increase in tree mortaltiy across Canada’s borealforests. Nature Climate Change,2011,1:467-471.
    Perdeck A C. Poisson regression as a flexible alternative in the analysis of ring-recovery data. EyringNewsletter,1998,2:30-36.
    Pielou E. C. The effect of quadrat size on the estimation of the parameters of Neyman’s and Thomas’distributions, Journal fo Ecology,1957,45(1),31-47.
    Pienaar L V, Harrison W M. Simultaneous growth and yield prediction equation for Pinus elliottii plantationsin Zululand. South African Forest Journal,1993,149(1):45-83.
    Pothier D, Mailly D. Stand-level prediction of balsam fir mortality in relation to spruce budworm defoliation.Canadian Journal of Forest Research,2006,36(7):1631-1640.
    Qin J, Cao Q V. Using disaggregation to link individual-tree and whole-stand growth models. CanadianJournal of Forest Research,2006,36(4):953-960.
    Qin J H, Cao Q V. Projection of a diameter distribution through time. Canadian Journal of Forest Research,2007,37(1):188-194.
    Radtke P J, Westfall J A, Burkhart H E. Conditioning a distance-dependent competition index to indicate theonset of inter-tree competition. Forest Ecology and Management,2003,175(1):17-30.
    Rathbun S L, Fei S. A spatial zero-inflated Poisson regression model for oak regeneration. Environmentaland Ecological Statistics,2006,13(4):409-426.
    Richards F J. A flexible growth function for empirical use. Journal of Experimental Botany,1959,10(2):290-300.
    Ritchie M W, Hann D W. Implication s of disaggregation in forest growth and yield modeling. ForestScience,1997,43(2):223-233.
    Rose C E, Lynch T B. Estimating parameters for tree basal area growth with a system of equations andseemingly unrelated regressions. Forest Ecology and Management,2001,148(1):51-61.
    Rose C E, Hall D B, Shiver D B, Clutter M L, Border B. A multilevel approach to individual tree survivalprediction. Forest Science,2006,52(1):31-43.
    Sah J P, Ross M S, Snyder J R, et al. Tree mortality following prescribed fire and a storm surge event in slashpine (Pinus elliottii var. densa) Forests in the Florida keys, USA. International Journal of ForestResearch,2010,2010:1-13.
    Saveland J M, Neuenschwander L F. A signal detection framework to evaluate models of tree mortalityfollowing fire damage. Forest Scienca,1990,36(1):66-76.
    Schumacher F X. A new growth curve and its application to timber-yield studies. Journal of Forestry,1939,37:819-820.
    Senn J. Tree mortality caused by Gremmeniella abietina in a subalpine afforestation in the central Alps andits relationship with duration of snow cover. European Journal of Forest Pathology,1999,29(1):65-74.
    Shifley S R, Ek A R, Burk T E. A generalized methodology for stimating forest ingrowth at multiplethreshold diameters. Forest Science,1993,39:776-798.
    Somers G L, Oderwald RC, Harris W R, Lamgdon O G. Predicting mortality with a Weibull function. ForestScience,1980,26(2):291-300.
    Stage A R. Prognosis model for stand development.1973, USDA For. Ser., Res. Pap. INT-137.
    Sullivan A D, Clutter J L. A simultaneous growth and yield model for loblolly pine. Forest Science,1972,18(1):76-86.
    Swaine m D, Lieberman D, Putz F E. The dynamics of tree populations in tropical forest: a review. Journalof Tropical Ecology,1987,3(4):350-366.
    Tahvanainen T, Forss E. Individual tree model for the crown biomass distribution of Scots pine, Norwayspruce and birch in Finland. Forest Ecology and Management,2008,255(2):455-467.
    Tobin J. Estimation of relationships for limited dependent variables. Econometrica (The EconometricSociety)1958,26(1):24-36.
    Trasobares A, Pukkala T, Miina J. Growth and yield model for uneven-aged mixtures of Pinus sylvestrisLand Pinus nigra Arn. In Catalonia, north-east Spain. Annal of Forest Science,2004,61(1):9-24.
    Turner M G, Romme W H, Gardner R H, Hardrove W W. Effects of fire size and pattern on early successionin Yellowstone National Park. Ecological Monographs,1997,67(4):411-433.
    Usher M B.1966. A matrix approach to the management of renewable resources, with special reference toselection forests. Journal of Applied Ecology,1966,3(2):355-367.
    Uzoh F C C, Oliver W W. Individual tree height increment model for managed even-aged stands ofponderosa Pine throughout the western United States using linear mixed effects models. Forest Ecologyand Management,2006,221(1):147-154.
    Vanclay J K. A growth model for north Queensland rainforest. Forest Ecology and Management,1989a,27(2):245-271.
    Vanclay J K. Data requirements for developing growth models for tropical moist forests. CommonwealthForestry Review,1991,70:248-271.
    Vanclay J K. Growth models for tropical forests: a synthesis or models and methods. Forest Science,1995,41(1):7-42.
    Vanclay J K. Modelling forest growth and yield. Applications to mixed and tropical forests. CABInternational, Wallingford UK,1994,312pp.
    Vanclay J K. Modelling regeneration and recruitment in a tropical rain forest. Canadian Journal of ForestResearch,1992,22(9):1235-1248.
    Vanclay J K. Modelling selection harvesting in tropical rain forests. Journal of Tropical Forest Science,1989b,1:280-294.
    von Bertalanffy L. Das biologische Weltbild. Francke, Bern,1949.
    von Bertalanffy L. Quantitative laws in metabolism and growth. Quarterly Review of Biology,1957,32:217-231.
    Vuong Q H. Likelihood ratio tests for model selection and non-nested hypotheses. Econonmetrica,1989,57(2):307-333.
    Walters J W, Hinds T E, Johnson D W, Beatty J. Effects of partial clearing on diseases, mortality andregeneration of Rocky Mountain aspen stands. USDA Forest Service Research Paper,1982, RM-240.12p.
    Wang M L, Renndls. A new parameterization of Johnson’s SB distribution witll application to fitting foresttree diameter data. Canadian Journal Forest Research,2005a,35(3):575-579.
    Wang M L, Renndls. Tree diameter distribution modeling:introducing the loglt-loistic distribution. CanadianJournal Forest Research,2005b,35(6):1305-1313.
    Wang Y, Lemay V M, Baker T G. Modelling and prediction of dominant height and site index of Eucalyptusglobulus plantations using a nonlinear mixed-effects model approach. Canadian Journal of ForestResearch,2007,37(8):1390-1403.
    Weber L A, Ek A R, Droessler T D. Comparison of stochastic and deterministic mortality estimation in anindividual tree based growth model. Canadian Journal of Forest Research,1986,16(5):1139-1141
    Weiskittel A R, Hann D W, Kershaw J A, Vanclay J K. Forest growth and yield modeling. Wiley-Blackwell,2011.
    Welsh A H, Cunningham R B, Donnelly C F, Lindenmayer D B. Modelling the abundance of rare species:statistical models for counts with extra zeros. Ecological Modeling,1996,88(10):297-308.
    Wieczkowski J. Tree mortality due to an Ei Nino flood along the lower Tana River, Kenya. African Journalof Ecology,2009,47(1):56-62.
    Winkler R L, Makridakis S. The combination of forecasts. The Royal Statistical Society, Series A,1983,146(2):150-157.
    Woollons R C, Hayward W J. Revision of a growth and yield model for Radiata pine in New Zealand. ForestEcology and Management,1985,11:191-202.
    Woollons RC. Even-aged stand mortality estimation through a two-step regression process. Forest Ecologyand Management,1998,105(2):189-195.
    Wunder J, Reineking B, Matter J F, Bigler C, Bugmann H. Predicting tree death for Fagus sylvatica andAbies alba using permanent plot data. Journal of Vegetation Science,2007,18(4):525-534.
    Yaacob W F W, Lazim MA, Wah Y B. A practical approach in modeling count data. Proceedings of RegionalConference on Statistical Sciences,2010,7:176-183.
    Yang Y, Titus S J, Huang S. Modeling individual tree mortality for white spruce in Alberta. EcologicalModeling,2003,163(5):209-222.
    Yao X, Titus S J, Macdonald S E. A generalized logistic model of individual tree mortality for aspen, whitespruce, and lodegepole pine in Alberta mixedwood forests. Canadian Journal of Forest Research,2001,31(2):283-291.
    Yue C F, Kohnle U, Hein S. Combining tree-and stand-level models: a new approach to growth prediction.Forest Science,2008,54(5):553-566.
    Zarnoch S J, Feduccia D P, Baldwin J R, et al.. Growth and yield predictions for thinned and unthinned slashpine plantations on cutover sites in the West Gulf region. USDA Forest Service Research Paper,1991,SO-264.
    Zeide B. Accuracy of equations describing diameter growth. Canadian Journal of Forest Research,1989,19(10):1283-1286.
    Zeide B. Analysis of growth equations. Forest Science,1993,39(3):591-616.
    Zhang L, Moore J A, Newberry J D. Disaggregating stand volume growth to individual trees. Forest Science,1993,39(2):295-308.
    Zhang L, Packard KC, Liu C. A comparison of estimation methods for fitting Weibull and Johnson’s SBdistributions to mixed spruce–fir stands in northeastern North America. Canadian Journal of ForestResearch,2003,33(7):1340-1347.
    Zhang L, Peng C, Dang Q. Individual-tree basal area growth models for jack pine and black spruce innorthern Ontario. The Forestry Chronicle,2004,80(3):366-374.
    Zhang X, Lei Y, Cai D, Liu F. Predicting tree recruitment with negative binomial mixture models. ForestEcology and Management,2012,270:209-215.
    Zhao D, Borders B, Wilson M. Individual-tree diameter growth and mortatliy models for bottomlandmixed-species hardwood stands in the lower Misssissippi alluvial valley. Forest Ecology andManagement,2004,199(2):307-322.
    Zuur A F, Ieno E N, Walker N J, et al. Mixed effects models and extensions in ecology with R. SpringerScience+Business Media, LLC,2009.
    Zweig M H, Cambell G. Receiver operating characteristic (ROC) plots: a fundamental evaluation tool inclinical medicine. Clinical Chemistry,1993,39(4):561-577.
    白云庆,郝文康,蒋伊尹.测树学.东北林业大学出版社,1987.
    陈平,程晓明.住院次数的负二项分布模型.卫生经济研究,1998,12(12):23-25
    陈永芳.人工林生长与收获预测模型的研究.林业资源管理,2001,1:50-54.
    陈友华.组合预测方法有效性理论及其应用.北京:科学出版社,2008,60-65.
    丁咏梅,周晓阳.组合预测在粮食产量预测中的应用.决策参考,2004,3:44-45.
    段劼,马履一,贾黎明等.北京低山地区油松人工林立地指数表的编制及应用.林业科学,2009,45(3):7-12.
    范敏锐,余新晓,张振明等.北京山区油松林净初级生产力对气候变化情景的响应.东北林业大学学报,2010,38(11):46-48.
    高惠璇等. SAS系统, SAS/ATAT软件使用手册.中国统计出版社,1997.
    郭福涛.2010.基于负二项和零膨胀负二项回归模型的大型安岭地区雷击火与气象因素的关系.植物
    生态学报,34(5):571-577.
    黄家荣,孟宪宇,关毓秀.马尾松人工林直径分布神经网络模型研究.北京林业大学学报,2006,28(1):28-31.
    黄烺增.柳杉人工林林分生长模型的研究.福建林学院学报,2007,27(1):74-79.
    惠淑荣,吕永震. Weibul1分布函数在林分直径结构预测模型中的应用.北华大学学报,2003,4(2):101-104.
    兰再平.北京九龙山油松人工林地位指数表的编制及油松林生长与立地因子的关系.林业科学研究,1989,2(5):505-511.
    雷相东,李永慈,向玮.基于混合模型的单木断面积生长模型.林业科学,2009,45(1):74-80.
    李春明,唐守正.基于非线性混合模型的落叶松云冷杉林分断面积模型.林业科学,2010,46(7):106-113.
    李春明.基于非线性混合模型的栓皮栎树高与胸径关系研究.北京林业大学学报,2009,31(4):7-12.
    李际平,刘素青.基于最小偏差的林分生长组合预测模型及其应用.中南林学院学报,2004,24(5):80-83.
    李希菲,唐守正,王松林.大岗山实验局杉木人工林可变密度收获表的编制.林业科学研究,1988,1(4):382-389.
    李永慈,唐守正.带度量误差模型的全林整体模型参数估计研究.北京林业大学学报,2006,28(1):21-27.
    林成来,洪伟等.马尾松人工林生长模型的研究.福建林学院学报,2000,20(3):227-230.
    刘平,王玉涛,马履一,郑聪慧.油松人工林林分生长过程动态预测及检验.东北林业大学学报,2010,38(1):40-43.
    刘永霞,冯仲科,杜鹏志. Elman动态递归神经网络在树木生长预测中的应用.北京林业大学学报,2007,29(6):99-103.
    刘兆刚,李凤日,于金成.落叶松人工林单木模型的研究.植物研究,2003,23(2):237-244.
    马丰丰,贾黎明.林分生长和收获模型研究进展.世界林业研究,2008,21(3):21-27.
    马丰丰,贾黎明.北京地区侧柏、油松带皮胸径与去皮胸径的关系.浙江林学院学报,2009,26(1):13-16.
    孟宪宇,张弘.闽北杉木人工林单木模型.北京林业大学学报,1996,18(2):1-7.
    孟宪宇.测树学.中国林业出版社,1996.
    盂宪宇.使用weibull分布对人工油松林直径分布的研究.北京林学院学报,1985,1:30-40.
    桑卫国等.森林动态模型概论.植物学通报,1999,16(3):193-200.
    邵国凡,赵士洞,舒噶特等.森林动态模拟.北京:中国林业出版社,1995.
    邵国凡,赵士洞,赵光.应用地理信息系统模拟森林景观动态的研究.应用生态学报,1991,2(2):103-107.
    石丽萍,冯仲科.人工林生长与收获预测模型的基本方法.北京林业大学学报2005,27(增2):222-225.
    史宇,余新晓,张佳音等.北京山区油松人工林单木材积生长量BP神经网络模型.东北林业大学学报,2010,38(2):20-22.
    孙晓梅,李凤日,张阳武等.长白落叶松人工林生长模型的研究.东北林业大学学报,1998,11(3):306-312.
    唐守正,朗奎建,李海奎.统计和生物数学模型计算(ForStat教程).北京:科学出版社,2009,197-200.
    唐守正,李希菲,孟昭和.林分生长模型研究的进展.林业科学研究,1993,8(6):672-679.
    唐守正.广西大青山马尾松全林整体生长模型及应用.林业科学研究,1991,4(增刊):8-13.
    唐小我.最优组合预测方法及其应用.数理统计与管理,1992,11(1):31-35.
    田莉,蔡贤如,高博孝. Г (Gamma)分布及其在辽东天然阔叶混交林中的应用.沈阳农业大学学报,1994,25(3):321-326.
    王建平.组合预测权重公式的探讨.预测,1993,(4):54-55.
    魏占才.长白落叶松人工林林分模型的应用.东北林业大学学报,2006,34(4):31-33.
    向玮,雷相东,刘刚等.近天然落叶松云冷杉林单木枯损模型研究.北京林业大学学报,2008,30(6):90-98.
    许飞.负二项回归模型在过离散型索赔次数中的应用研究.统计教育,2009,4:53-55.
    徐化成.油松.北京:中国林业出版社,1993.
    杨运来.朝阳地区油松林立地类型划分及生长预测模型的研究.辽宁林业科技,1992,6:23-27.
    叶小华,荀鹏程,于浩,陈峰.传染病链二项分布资料的Poisson回归模型.中国卫生统计,2005,22(6):377-379.
    张惠光.福建柏单木生长模型的研究.中南林业调查规划,2006,25(3):1-4.
    张少昂,王冬梅. Richards方程的分析和一种新的树木理论生长方程.北京林业大学学报,1992,14(3):99-105.
    张少昂.兴安落叶松天然林林分生长模型和可变密度收获表的研究.东北林业大学学报,1986,14(3):17-25.
    张雄清,雷渊才.北京山区天然栎林直径分布的研究.西北林学院学报,2009,24(6):1-5.
    张雄清,雷渊才,陈新美,王金增.组合预测法在林分断面积生长预估中的应用研究.北京林业大学学报,2010,32(4):6-11.
    张艳,马川生,韦可.组合预测中权重的确定研究——最小绝对值法的应用.交通运输系统工程与信息,2006,6(4):125-129.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700