用户名: 密码: 验证码:
分子器件负微分电阻效应和整流效应的理论研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
近年来,随着微观操控技术和微观组装技术的快速发展,人们可以在纳米尺度操控单个分子并将其制造成具有特定功能的分子器件。这些分子器件被认为是慢慢接近尺度极限的传统电子器件的最合适的替代者。因此在实验和理论两方都吸引了越来越多的关注。本论文利用基于密度泛函理论的第一性原理方法研究了分子器件输运性质中的几个问题,重点探讨了分子受外压形变、分子与电极连接位置的变化、外加门压、侧基团取代以及非对称电极连接对分子器件输运性质中负微分电阻(NDR)和整流的影响。其主要内容如下:
     研究了单个C60分子与金属铝电极组成的分子器件的电子输运性质,同时还研究分子受外压发生形变和外加门压对器件电子输运性质的影响。结果表明,当单个C60分子通过范德华力吸附在金属铝电极上,其电流并不是按照传统的欧姆定律随着电压的增大而增大,而是在特定的电压区间随着电压的增大而减小表现出奇特的负微分电阻效应。与此同时,我们还发现当分子受到外加压力时,这种负微分电阻效应可以伴随着分子的径向形变先增大后减小直至消失。此外,我们还发现门压对分子器件电子输运性质的影响也很强烈。通过调控门压可以使分子器件在高导态与低导态之间切换从而实现分子电流开关功能。此外,我们还发现门压也可以调控分子器件的负微分电阻效应使其减弱或消失。
     研究了侧基团取代对有机共轭分子OPV电子输运性质的影响。计算结果表明,当OPV分子被氨基取代后,分子的占据态轨道被局域。然而,当OPV分子被硝基取代后,分子的非占据态轨道被局域。当氨基或者硝基单独取代分子时,可以增大器件的电子传输能力。但是,当这两个基团同时取代分子时却减弱器件的电子传输能力。更有趣的是,当且仅当OPV分子被两个氨基共同取代后,器件会出现负微分电阻效应
     研究了双分子器件的电子输运性质。我们将两个OPV分子平行放置于金电极之间,重点研究了侧基团的相对取代位置对双分子器件电子输运性质的影响。由于分子层间强烈的相互作用,双OPV分子器件的轨道和输运系数比单OPV分子器件要复杂的多。同时,侧基团的取代作用也大不相同。结果表明,在双分子器件中,侧基团对器件输运性质的影响强烈地依赖于取代位置。氨基在同侧取代双OPV分子后,器件的电流要大于氨基在异侧取代分子后的电流。对于硝基来说,情况恰恰相反。更重要的是,我们发现当且仅当氨基在同侧取代分子后,器件的电流曲线会出现负微分电阻效应
     研究了单phenalenyl分子与金电极构成的分子器件的电子输运性质。Phenalenyl分子是一个高度对称(D3h)的有机自由基,其分子自身有两个不同的连接位置可以与外界电极相连接。计算结果表明,分子自身的连接位置是影响器件输运性质的重要因素。当连接位置为相对于中心原子的两个二近邻原子或者一个二近邻和一个三近邻原子,器件的电流曲线会呈现出强烈的负微分电阻效应。同时,我们还发现当连接位置为相对于中心原子的一个二近邻和一个三近邻原子,器件的电流会呈现出整流效应。
     研究了非对称电极对单个C60分子器件电子输运性质的影响。由于金电极与碳纳米管电极在费米能级附近差异很大,使Au-C60-CNT器件的电流在小偏压范围内与同性质电极所构成的器件相比缩小了三个数量级。同时,我们还发现器件的电流曲线呈现出整流效应,并可以通过外加门压对整流比进行调控。
In recent years, the rapid progresses in micro-fabrication and self-assembly tech-niques have made it possible to control the molecules in nanoscale and to assemble them as the molecular device. These molecular devices are considered the suitable candidate of electronic devices which trend toward the ongoing miniaturization. For this reason, the experimental and theoretical studies on the molecular device have attracted more and more attentions. In this dissertation, we use the first-principles in combination with the density-functional theory to study the transport properties of some molecular devices and mainly discuss the effect of deformation, connected sites, gate voltage, side groups and asymmetric electrodes on the negative differential resistance (NDR) and the rectifying behavior.
     We investigate the transport properties of a single molecular device constructed by one C60 molecule sandwiched between two Al electrodes. At the same time, we also in-vestigate the effect of deformation and gate voltage on the device's current-voltage prop-erties. The calculated results show that the currents of the device which the C60 connects with the Al electrodes by van der waals force not accord with the traditional Ohm theo-rem. In the special voltage region, the currents decrease with the increase of bias voltages and show the NDR behavior. In addition, we find that the NDR behavior can be enlarged or reduced and shut off by squashing the molecule on the vertical direction. Further study indicates that the gate voltage can also affects the device's transport properties intensively. As a result, we can modulate the device between the high and low conductive states and make it as a gate-controlled current switch. In the same way, the NDR behavior also can be reduced and shut off by the gate voltage.
     We study the effect of side groups on the transport properties of a linearπconju-gated molecule OPV sandwiched between two Au electrodes. Our calculation explicitly demonstrates that when the molecule modulated by amino, the highest occupied molecu-lar orbitals are localized, while the molecule modulated by nitro, the lowest unoccupied molecular orbitals are localized. The electron transport of device will be enhanced when it modulated by amino or nitro, but will be weakened when it modulated by both of them. More interesting, negative differential resistance is only observed when the molecule modulated by two amino at the same time.
     Then, we investigate the transport properties of a bimolecular device. The two par- allel OPV molecules are sandwiched between two Au electrodes and the effect of side groups is studied again. Due to the intensive interaction between the two molecules, the molecular orbitals and transport properties of the bimolecular device are more complex than the single molecular device, so does the side groups. The results show that the side groups can modulate the bimolecular device's transport properties by the substituted posi-tion. The current of the device substituted by two amino groups on the same side is bigger than that on the different side. Contrarily, the current of the device substituted by two nitro groups on the same side is smaller than that on the different side. More importantly, the NDR behavior can be observed only when the system is substituted by two amino groups on the same side.
     We study the transport properties of a single phenalenyl molecular device. Phenalenyl is a well known stable organic radical with high symmetry (D3h) and has two differ-ent sites to connect with the electrodes. The results show that the electronic transport properties are strongly dependent on these contact sites. The negative differential resis-tance behavior with large peak to valley ratio is observed when the molecule contacts the Au electrodes through two second-nearest sites or one second-nearest site and one third-nearest site, while the rectifying behavior is observed only when the molecule contacts the Au electrodes through one second-nearest site and one third-nearest site.
     We perform a theoretical study of a single C60 sandwiched between Au electrode and nanotube electrode. Due to the huge difference, the matching of orbitals around the Fermi energy among the two electrodes and the molecule is not very well. So the current value of the Au-C60-CNT is much smaller than the C60 device combining the same electrode up to three orders of magnitude. Moreover, the rectifying behavior is observed in this device and the rectification ratio can be modulated by the gate voltage.
引文
[1]Moore G E. Cramming More Components onto Integrated Circuits. Electronics Magazine,1965,38(8):114-117
    [2]杜磊,庄奕琪.纳米电子学.北京:电子工业出版社,2004年,5-6页
    [3]冯端,金国钧.凝聚态物理学(上卷).北京:高等教育出版社,2006年,287页
    [4]Massimiliano Di ventra. Electrical transport in nanoscale systems. Landon:Cam-bridge,2008,209-248
    [5]Feynman R P. There is plenty of room at the bottom. Engineering and Science, 1960,23(5):22-36
    [6]韩钕珊编著.分子纳电子学科导论.北京:科学出版社,2009年,6-156页
    [7]李群祥,任浩,杨金龙等.单分子物理和化学的新进展.物理学进展,2007年,27(2):201
    [8]Aviram A, Ratner M A. Molecular Rectifiers. Chem. Phys. Lett.,1974,29(2):277-283
    [9]Nebesny K W, Collins G E, Lee P A, etal. Organic inorganic-molecular beam epitaxy:formation of an ordered phthalocyanine tin(IV) sulfide heterojunction. Chem. Mater,1991,3(5):829-838
    [10]Reed M A, Zhou C, Muller C J, et al. Conductance of a Molecular Junction. Science,1997,278(5336):252-254
    [11]Kerguelis C, Bourgoin J P, Palacin S, et al. Electron transport through a metal-molecule-metal junction. Phys. Rev. B,1999,59(19):12505-12513
    [12]Giner I, Gascn I, Vergara J, etal. Molecular Arrangement in Langmuir and Langmuir-Blodgett Films of a Mesogenic Bent-Core Carboxylic Acid. Langmuir, 2009,25(20):12332-12339
    [13]Pieczonka N P W, Moula G, Aroca R F. SERRS for Single-Molecule Detection of Dye-Labeled Phospholipids in Langmuir Blodgett Monolayers. Langmuir,2009, 25(19):11261-11264
    [14]Reed M A. The electrical measurement of molecular junction. Ann NY Acad Sci, 1998,852:133-144
    [15]Gimzewski J K, Stoll E P, Schlittler R R. Scanning tunnelling microscopy on indi-vidal molecules of copper phthalocyanine adsorbed. Surf. Sci.,1987,181(2):267-277
    [16]Joachim C, Gimzewski J K, Schlitttler R R, et al. Electronic Transparence of a Single C60 Molecule. Phys. Rev. Lett.,1996,74(11):2102-2105
    [17]Kushmerick J G, Holt D B, Yang J C, et al. Metal-molecule contacts and charge transport across monomolecular layers:Measurement and theory. Phys. Rev. Lett., 2002,89(8):086802-086805
    [18]Rousset V, Joachim C, Rousset B, et al. Fabrication of co-planar metalinsulator-metal nanojunction with a gap lower than 10 nm. J. Phys. Ⅲ,1995,5:1983-1989
    [19]Fabrizio E D, Grella L, Gentili M, et al. Fabrication of 5 nm resolution electrodes for molecular devices by means of electron beam lithography. Jpn. J. Appl. Phys., 1997,36(2):L70-L72
    [20]Tour J M. Molecular Electronics. Synthesis and Testing of Components. Acc. Chem. Res,2000,33(11):791-804
    [21]Nitum A, Batner M A. Electron Transport in Molecular Wire Junctions. Science, 2003,300(5624):1384-1389
    [22]Donhausor Z J, Mantooth B A, KeHy K F, et al. Conductance Switching in Single Molecules Through Conformational Changes. Science,2001,292(5525):2303-2307
    [23]Xu B Q, Tao N J. Measurement of Single-Molecule Resistance by Repeated For-mation of Molecular Junctions. Science,2003,301(5637):1221-1223
    [24]Ventra M D, Pantelides S T, Lang N D. First-Principles Calculation of Transport Properties of a Molecular Device. Phys. Rev. Lett.,2000,84(5):979-982
    [25]Taylor J, Guo H, Wang J. Ab initio modeling of quantum transport properties of molecular electronic devices. Phys. Rev. B,2001,63(24):245407-245420
    [26]游效曾编著.分子材料—光电功能化合物.上海:上海科学技术出版社,2001年,83-119页
    [27]Huang S, Tour J M. Rapid Solid-Phase Synthesis of Oligo(1,4-phenylene ethyny-lene)s by a Divergent/Convergent Tripling Strategy. J. Am. Chem. Soc,1999, 121(20):4908-4909
    [28]Blum A S, Ren T, Parish T A, et al. Ru2(ap)4(σ-oligo(phenyleneethynyl)) Molec-ular Wires:Synthesis and Electronic Characterization. J. Am. Chem. Soc,2005, 127(28):10010-10011
    [29]Tsuda A, Osuka A. Fully Conjugated Porphyrin Tapes with Electronic Absorption Bands That Reach into Infrared. Science,2001,293(5527):79-82
    [30]Porath D, Bezryadin A, Vries S, et al. Direct measurement of electrical transport through DNA molecules. Nature,2000,403(6770):635-638
    [31]Kasumov A Y, Kociak M, Gueron S, et al. Proximity-Induced Superconductivity in DNA. Science,2001,291(5502):280-282
    [32]Hamada N, Sawada S, Oshiyama A. New one-dimensional conductors:Graphitic microtubules. Phys. Rev. Lett.,1992,68(10):1579-1581
    [33][日]近藤精一,石川达雄and安部郁夫著,李国希译.吸附科学.北京:化学工业出版社,2006年,6-30页
    [34]侯昭升,谭业邦,黄玉玲.葫芦脲超分子(准)聚轮烷的研究进展.高分子通报,2005.3:47-54
    [35]Bissell R A, Cordova E, Kaifer A E, et al. A chemically and electrochemically switchable molecular shuttle. Nature,1994,369:133-137
    [36]Collier C P, Mattersteig G, Wong E W, et al. A Catenane-Based Solid State Elec-tronically Reconfigurable Switch. Science,2000,289:1172-1175
    [37]Service R F. Assembling Nanocircuits From the Bottom Up. Science,2001, 293(5531):782-785
    [38]Esaki L. New Phenomenon in Narrow Germanium p-n Junctions. Phys. Rev.,1957, 109(2):603-604
    [39]Chen J, Reed M A, Rawlett A M, etal. Large On-Off Ratios and Negative Differen-tial Resistance in a Molecular Electronic Device. Science,1999,286:1550-1551
    [40]Seminario J M, Zacarias A G, Tour J M, etal. Theoretical Study of a Molecular Resonant Tunneling Diode. J. Am. Chem. Soc.,2000,122(13):3015-3020
    [41]Fan F-R F, Yang J, Dirk S W, etal. Determination of the Molecular Electrical Properties of Self-Assembled Monolayers of Compounds of Interest in Molecular Electronics. J. Am. Chem. Soc.,2001,123(10):2454-2455
    [42]Fan F-R F, Yang J, Cai L, etal. Charge Transport through Self-Assembled Mono-layers of Compounds of Interest in Molecular Electronics. J. Am. Chem. Soc., 2002,124(19):5550-5560
    [43]Farajian A A, Esfarjani K, Kawazoe Y. Nonlinear Coherent Transport Through Doped Nanotube Junctions. Phys. Rev. Lett.,1999,82(25):5084-5087
    [44]Kaun C C, Larade B, Mehrez H, et al. Current-voltage characteristics of car-bon nanotubes with substitutional nitrogen. Phys. Rev. B,2002,65(20):205416-205520
    [45]Zeng C G, Wang H Q, Wang B, et al. Negative differential-resistance device in-volving two C60 molecules. Appl. Phys. Lett.,2000,77(22):3595-3597
    [46]Larade B, Taylor J, Mehrez H, et al. Conductance, I-V curves, and negative differ-ential resistance of carbon atomic wires. Phys. Rev. B,2001,64(7):75420-75429
    [47]Damle P, Ghosh A W, Datta S. First-principles analysis of molecular conduction using quantum chemistry software. Chem. Phys.,2001,281:171-187
    [48]Roland C, Meunier V, Larade B, et al. Charge transport through small silicon clusters. Phys. Rev. B,2002,66(3):35332-35338
    [49]Dai Z X, Zheng X H, Shi X Q, et al. Effects of contact geometry on transport properties of a Si4 cluster. Phys. Rev. B,2005,72(20):205408-205416
    [50]Dai Z X, Shi X Q, Zheng X H, et al. Effect of gating on the transport properties of a Si4 cluster. Phys. Rev. B,2006,73(4):45411-45417
    [51]Reed M A, Chen J, Rawlett A M, et al. Molecular random access memory cell. Appl. Phys. Lett.,2001,78(23):3735-3738
    [52]Donhauser Z J, Mantooth B A, Kelly K F, et al. Conductance Switching in Single Molecules Through Conformational Changes. Science,2001,292:2303-2307
    [53]Tour J M, Van-Zandt W L, Husband C P, et al. Nanocell Logic Gates for Molecular Computing. IEEE Transactions on Nanotechnology,2002,1(2):100-108
    [54]Nackashi D P, Amsinck C J, DiSpigna N H, et al. Molecular Electronic Latches and Memories. IEEE conference on Nanotechnology,2005,2:819-822
    [55]白春礼主编.分子科学前沿.北京:科学出版社,2007年,281-417页
    [56]Fu L, Liu Z, Liu Y, et al. Beaded Cobalt Oxide Nanoparticles along Carbon Nan-otubes:Towards More Highly Integrated Electronic Devices. Adv. Mater.,2005, 17(2):217-221
    [57]Zhao J, Zeng C, Cheng X, et al. Single C59N Molecule as a Molecular Rectifier. Phys. Rev. Lette.,2005,95(4):045502-045505
    [58]林梦海编著.量子化学计算方法与应用.北京:科学出版社,2004年,116-128页
    [59]林梦海,林银钟.结构化学.北京:科学出版社,2004年,2-23页
    [60]王志中编著.现代量子化学计算方法.北京:科学出版社,2004年,116-128页
    [61]Thmos H. The Calculation of Atomic Fields. Proc. Camb. Phil. Soc.,1927, 23:542-548
    [62]Fermi E. Un metodo statistico per la determinazione di alcune priorieta dell'atome. Atti Accad Naz Lincei,1927,6:602-607
    [63]Hohenberg P, Kohn W. Inhomogeneous Electron Gas. Phys. Rev.,1964, 136(3B):B864-B871
    [64]Kohn W, Sham L J. Self-Consistent equations including exchange and correlation erects. Phys. Rev.,1965,140(4A):A1133-A1138
    [65]Datta. Electronic Transport in Mesoseopic Systems. London:Cam-bridge:Cambridge University Press,1995
    [66]王怀玉.凝聚态物理的格林函数理论.北京:科学出版社,2008年,1-28页
    [67]Buttiker M, Imry Y, Landauer R, et al. Generalized many-channel conductance formula with application to small rings. Phys. Rev. B,1985,31(10):6207-6215
    [68]Brandbyge M, Mozos J L, Ordejon P, et al. Density-functional method for nonequi-librium electron transport. Phys. Rev. B,2002,65(16):165401
    [69]Andres R P, Bein T, Dorogi M, etal. "Coulomb Staircase" at Room Temperature in a Self-Assembled Molecular Nanostructure. Science,1996,272(5266):1323-1325
    [70]Kelly T R, Silva H D, Silva R A. Unidirectional rotary motion in a molecular system. Nature,1999,401:150-152
    [71]Chen J, Reed M A, Rawlett A M, et al. Room-temperature negative differential resistance in nanoscale molecular junctions. Appl. Phys. Lett.,2000,77:1224-1226
    [72]Gittins D I, Bethell D, J. Schiffrin D, et al. A nanometre-scale electronic switch consisting of ametal cluster and redox-addressable groups. Nature,2000,408:67-69
    [73]Lekshmi I C, Berera G, Afsar Y, et al. Controlled synthesis and characterization of Ag2S films with varied microstructures and its role as asymmetric barrier layer in trilayer junctions with dissimilar electrodes. J. Appl. Phys.,2008,103(09):093719
    [74]Chang L L, Esaki L, Tsu R. Resonant tunneling in semiconductor double barries. Appl. Phys. Lett.,1974,24(12):593-595
    [75]Tang Z K, Wang X R. Nonresonant electron tunneling in cluster superlattice of tellurium in zeolite. Appl. Phys. Lett.,1996,68(24):3449-3451
    [76]Wang X R, Niu Q. General analysis of instabilities and oscillations of the sequential tunneling in superlattices. Phys. Rev. B,1999,59(20):R12775
    [77]Wang X R, Wang Y P, Sun Z Z. Antiresonance scattering at defect levels in the quantum conductance of a one-dimensional system. Phys. Rev. B,2002, 69(19):193402
    [78]Ventra M D, Kim S G, Pantelides S T, et al. Temperature Effects on the Transport Properties of Molecules. Phys. Rev. Lett.,2001,86(2):288-291
    [79]Luo Y, Wang C K, Fu Y. Effects of chemical and physical modifications on the electronic transport properties of molecular junctions. J. Chem. Phys.,2002, 117(22):10283-10290
    [80]Chen L, Hu Z, Zhao A, et al. Mechanism for Negative Differential Resistance in Molecular Electronic Devices:Local Orbital Symmetry Matching. Phys. Rev. Lett.,2007,99(14):146803
    [81]Kroto H W, Heath J R, Curl R F, et al. C60:Buckminsterfullerene. Nature,1985, 318:162-163
    [82]Park H, Park J, Anderson E H, et al. Nanomechanical oscillations in a single-C60 transistor. Nature,2000,407:57-60
    [83]Taylor J, Guo H, Wang J. Ab initio modeling of open systems:Charge transfer, electron conduction, and molecular switching of a C60 device. Phys. Rev. B,2001, 63(12):121104(R)
    [84]Palacios J J, Perez-Jimenez A J, Louis E. Fullerene-based molecular nanobridges: A first-principles study. Phys. Rev. B,2001,64(11):115411
    [85]Palacios J J. Coulomb blockade in electron transport through a C60 molecule from first principles. Phys. Rev. B,2005,72(12):125424
    [86]Sergueev N, Demkov A A, Guo H. Inelastic resonant tunneling in C60 molecular junctions. Phys. Rev. B,2007,75(23):233418
    [87]Joachim C, Gimzewski J K, Aviram A. Electronics using hybrid-molecular and mono-molecular devices. Nature.,2000,408:541-548
    [88]Soler J M, Artacho E, Gale J D, etal. The SIESTA method for ab initio order-N materials simulation. J.phys.:Condens.Matter,2002,14:2745-2779
    [89]Shi X Q, Dai Z X, Zheng X H, etal. Ab Initio Electron Transport Study of Carbon and Boron-Nitrogen Nanowires. J. Phys. Chem. B,2006,110(34):16902-16907
    [90]Roland C, Larade B, Taylor J, et al. Ab initio I-V characteristics of short C2o chains. Phys. Rev. B,2001,65(04):041401(R)
    [91]Alavi S, Larade B, Taylor J, et al. Current-triggered vibrational excitation in single-molecule transistors. Chem. Phys.,2002,281:293-303
    [92]Zhang X Q, He W, Zhao A, et al. Electronic transport properties in doped C60 molecular devices. Phys. Rev. B,2007,75(23):235444
    [93]Xu Y, Zhou L L, Dai Z X. First-principles electronic transport properties study of small carbon clusters:Cyclic C6. Phys. Lett. A,2008,372:4465-4468
    [94]Zhou C, Kong J, Yenilmez E, et al. Modulated Chemical Doping of Individual Carbon Nanotubes. Science,2000,290:1552-1555
    [95]Yan Q, Zhou G, Hao S, et al. Mechanism of nanoelectronic switch based on tele-scoping carbon nanotubes. Appl. Phys. Lett.,2006,88(17):173107
    [96]Behnam A, Johnson J, Choi Y, et al. Metal-semiconductor-metal photodetectors based on single-walled carbon nanotube film-GaAs Schottky contacts. J. Appl. Phys.,2008,103(11):114315
    [97]Huang B, Yan Q, Zhou G, et al. Making a field effect transistor on a single graphene nanoribbon by selective doping. Appl. Phys. Lett.,2007,91(25):253122
    [98]Zheng X H, Zhang G R, Zeng Z, et al. Effects of antidots on the transport properties of graphene nanoribbons. Phys. Rev. B,2009,80(7):075413
    [99]Zheng X H, Rungger I, Zeng Z, et al. Effects of antidots on the transport properties of graphene nanoribbons. Phys. Rev. B,2009,80(7):075413
    [100]Diana Duli, Molen S J, Kudernac T, etal. One-Way Optoelectronic Switching of Photochromic Molecules on Gold. Phys. ReV. Lett,2003,91(20):207402
    [101]Deng X Q, Zhou J C, Zhang Z H, et al. Electrode metal dependence of the rectifying performance for molecular devices:A density functional study. Appl. Phys. Lett., 2009,95(10):103113
    [102]Alekandar Staykov, Daijiro Nozaki, Kazunari Yoshizawa. Theoretical Study of Donor-Bridge-Acceptor Unimolecular Electric Rectifier. J. Phys. Chem. C,2007, 111:11699-11705
    [103]Hirose K, Kobayashi N. Ab initio RTM/NEGF study on electron transport through single molecules. Appl. Phys. Lett.,2007,40(2):237-240
    [104]Geng H, Hu Y B, Shuai Z G, et al. Molecular Design of Negative Differential Resistance Device through Intermolecular Interaction. J. Phys. Chem. C,2007, 111(51):19098-19102
    [105]Long M Q, Chen K Q, Wang L L, et al. Negative differential resistance behaviors in porphyrin molecular junctions modulated with side groups. Appl. Phys. Lett., 2008,92(24):243303
    [106]Schreiber F. Self-assembled monolayers:from'simple'model systems to bio-functionalized interfaces. J. Phys.:Condens. Matter,2004,16:R881-R900
    [107]Cornil J, Karzazi Y, Bredas J L. Negative Differential Resistance in Phenylene Ethynylene Oligomers. J. Am. Chem. Soc.,2002,124(14):3516-3517
    [108]Khondaker S I, Yao Z, Cheng L, et al. Electron transport through single pheny-lene-ethynylene molecular junctions at low temperature. Appl. Phys. Lett.,2004, 85(4):645-647
    [109]Kaasbjerg K, Flensberg K. Strong Polarization-Induced Reduction of Addition Energies in Single-Molecule Nanojunctions. Nano Lett.,2008,8(11):3809-3814
    [110]Yasuda T, Saito M, Nakamura H. Control of p-and n-type carriers by end-group substitution in oligo-p-phenylenevinylene-based organic field-effect transis-tors. Appl. Phys. Lett.,2006,89(18):182108
    [111]Yasuda T, Saito M, Nakamura H, et al. Conjugation-length dependency of un-substituted oligo-p-phenylenevinylenes on the performance of organic field-effect transistors. Chem. Phys. Lett.,2008,452:110-114
    [112]Zimbovskaya N A, Pederson M R, Blum A S, et al. Nanoparticle networks as chemoselective sensing devices. J. Chem. Phys.,2009,130(9):094702
    [113]Crljen Z, Grigoriev A, Wendin G, et al. Nonlinear conductance in molecular de-vices:Molecular length dependence. Phys. Rev. B,2005,71(16):165316
    [114]Tsoi S, Griva I, Trammell S A, et al. Electrochemically Controlled Conductance Switching in a Single Molecule:Quinone-Modified Oligo(phenylene vinylene). ACS Nano.,2008,2(6):1289-1295
    [115]Danilov A, Kubatkin S, Kafanov S, et al. Electronic Transport in Single Molecule Junctions:Control of the Molecule-Electrode Coupling through Intramolecular Tunneling Barriers). Nano Lett.,2008,8(1):1-5
    [116]Kushmerick J G, Lazorcik J, Patterson C H, et al. Vibronic Contributions to Charge Transport Across Molecular Junctions. Nano Lett.,2004,4(4):639-642
    [117]Paulsson M, Frederikse T, Brandbyge M. Inelastic Transport through Molecules: Comparing First-Principles Calculations to Experiments. Nano Lett.,2006, 6(2):258-262
    [118]Long D V, Patterson C H, Moore M H. Magnetic directed assembly of molecular junctions. Appl. Phys. Lett.,2005,86(15):153105
    [119]Zhang Z H, Yang Z, Yuan J H. First-principles investigation on electronics char-acteristics of benzene derivatives with different side groups. J. Chem. Phys.,2008, 129(9):094702
    [120]Karzazi Y, Crispin X, Kwon O. Influence of contact geometry and molecular derivatization on the interfacial interactions between gold and conjugated wires. Chem. Phys. Lett.,2004,387(4):502-508
    [121]Li Y W, Yin G, Yao J, et al. First-principles study of substituents effect on molecular junctions:Towards molecular rectification. Comp. Mater. Sci.,2008, 42(4):638-642
    [122]Andreon W, Curioni A, Gronbeck H. Density Functional Theory Approach to Thiols and Disulfides on Gold:Au(111) Surface and Clusters. Int. J. Quantum Chem.,2000,80(4):589-608
    [123]Delaney P, Greer J C. Correlated Electron Transport in Molecular Electronics. Phys. Rev. Lett.,2004,93(3):036805
    [124]Usama A A, Rylan F, Bob J, et al. A Photocontrolled Molecular Switch Regulates Paralysis in a Living Organism. J. Am. Chem. Soc.,2009,131(15):15966-15967
    [125]Emberly E G, Kirczenow G. Models of electron transport through organic molecu-lar monolayers self-assembled on nanoscale metallic contacts. Phys. Rev. B,2001, 64(23):235412
    [126]Yan Q, Wu J, Zhou G, et al. Ab initio study of transport properties of multiwalled carbon nanotubes. Phys. Rev. B,2005,72(15):155425
    [127]Long M Q, Chen K Q, Wang L L, et al. Negative differential resistance induced by intermolecular interaction in a bimolecular device. Appl. Phys. Lett.,2007, 91(23):233512
    [128]Zhang C, Du M H, Cheng H P, etal. Coherent Electron Transport through an Azobenzene Molecule:A Light-Driven Molecular Switch. Phys. ReV. Lett,2004, 92(15):158301
    [129]Wang L L, Cheng H P. Density functional study of the adsorption of a C60 mono-layer on Ag(111) and Au(111) surfaces. Phys. Rev. B,2004,69(16):165417
    [130]Geng H, Yin S, Chen K Q, et al. Effects of Intermolecular Interaction and Molecule-Electrode Couplings on Molecular Electronic Conductance. J. Phys. Chem. B,2005,109(25):12304-12308
    [131]Li Z, Qian H, Wu J, et al. Role of Symmetry in the Transport Properties of Graphene Nanoribbons under Bias. Phys. Rev. Lett.,2008,100(20):206802
    [132]Takano Y, Taniguchi T, Isobe H, et al. Hybrid Density Functional Theory Studies on the Magnetic Interactions and the Weak Covalent Bonding for the Phenalenyl Radical Dimeric Pair. J. Am. Chem. Soc.,2002,124(11):11122-11130
    [133]Huang R C, Kertesz M. Intermolecular Covalent π-π Bonding Interaction Indicated by Bond Distances, Energy Bands, and Magnetism in Biphenalenyl Biradicaloid Molecular Crystal. J. Am. Chem. Soc.,2007,129(6):1634-1643
    [134]Haddon R C, Sarkar A, Pal S K, et al. Localization of Spin and Charge in Phenalenyl-Based Neutral Radical Conductors. J. Am. Chem. Soc.,2008, 130(41):13683-13690
    [135]Tagami K, Wang L, Tsukada M. Interface Sensitivity in Quantum Transport through Single Molecules. Nano Lett.,2004,4(2):209-212
    [136]Li X F, Chen K Q, Wang L L, et al. Effect of length and size of heterojunction on the transport properties of carbon-nanotube devices. Appl. Phys. Lett.,2007, 91(13):133511
    [137]Zhang C, He Y, Cheng H P, etal. Current-voltage characteristics through a single light-sensitive molecule. Phys. Rev. B,2006,73(125445):1-5
    [138]Jeffrey M M, Giuseppina P, Mark E, etal. Azobenzenes as Light-Controlled Molec-ular Electronic Switches in Nanoscale Metal-Molecule-Metal Junctions. J. Am. Chem. Soc.,2008,130:9192-9193
    [139]Xue Y Q, Ratner M A. Microscopic study of electrical transport through individ-ual molecules with metallic contacts. I. Band lineup, voltage drop, and high-field transport. Phys. Rev. B,2003,68(11):115406
    [140]Lawson J W, Bauschlicher C W. Transport in molecular junctions with different metallic contacts. Phys. Rev. B,2006,74(12):125401
    [141]Toher C, Sanvito S. Effects of self-interaction corrections on the transport proper-ties of phenyl-based molecular junctions. Phys. Rev. B,2008,77(15):155402
    [142]Rogero C, Pascual J I, Baro A M, et al. Resolution of site-specific bonding proper-ties of C60 adsorbed on Au(111). J. Chem. Phys.,2002,116(2):832-836
    [143]Kaun C C, Jorn R, Seideman T. Spontaneous oscillation of current in fullerene molecular junctions. Phys. Rev. B,2006,74(04):045415
    [144]Zhang X J, Long M Q, Chen K Q, et al. Electronic transport properties in doped C60 molecular devices. Appl. Phys. Lett.,2009,94(07):073503
    [145]Gutierrez R, Fagas G, Cuniberti G, et al. Theory of an all-carbon molecular switch. Phys. Rev. B,2002,65(11):113410
    [146]Gutierrez R, Fagas G, Richter K, et al. Conductance of a molecular junction medi-ated by unconventional metal-induced gap states. Europhys. Lett.,2003,62:90-96
    [147]袁峰,张长水,胡伟,等.中心掺杂对CNT-C60-CNT分子结电子输运性质影响的第一性原理研究.江西师范大学学报(自然科学版),2003,32(6):714-719

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700