用户名: 密码: 验证码:
贴片型左手超材料的传输性能分析和构型设计优化
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文在经典物理学框架下论述了左手超材料的起源、分类和特性应用,其研究凭借日新月异的材料制备技术获得了长足的发展,尤以基于谐振机理的贴片型左手超材料为最。负折射率是左手超材料最核心的特异属性,其表征的左手传输性能是诸多电磁器件应用的基本前提。控制左手传输衰减和拓大其带宽是左手超材料广阔应用前景的需求,同时也对当前飞速发展的射频段电磁器件具有特别重要的现实意义。基于此,本文分别从理论解析和数值仿真两种途径开展了贴片型左手超材料的传输性能分析及其在尺寸、形状和拓扑等三种层次的结构优化设计研究。主要的研究内容和成果如下:
     现有贴片型左手超材料的传输性能分析。首先,给出了折射率完整的解析表达式,并介绍了磁性介质实现负折射率的三种情形。进而,研究了已有贴片构型左手超材料的左手传输性能,发现强磁谐振是开口环类构型具备大带宽优势的机理,但同时也造成其衰减高的不足;绘制了已有构型左手超材料传输性能的双轴分布图,点明了左手超材料的设计目标:低衰减的宽带传输性能。
     细圆金属棒与开口谐振环列阵电磁性能分析的修正理论模型和尺寸优化设计。(1)推导了细圆金属棒和开口同心金属环周期性列阵电磁特性分析的理论模型,修正了Drude模型中电等离子体频率和阻尼因子表达式,改进了Pendry模型中磁谐振频率的表达式;数值算例表明改良的理论模型具有更高的预测准确度。(2)研究了谐振环构型的尺寸参数对带宽性能的影响,发现最敏感的参数是外径。研究了谐振环构型的材料参数对左手传输性能的影响,发现其在低衰减性能设计方面存在较大局限。(3)基于尺寸敏度分析的结果,借助参数化建模技术和有限差分求敏度的方法提出了正多边形谐振环构型相对带宽最大化的形状-尺寸协同设计,并采用了序列二次规划法和枚举归纳法对其进行分步式求解;通过改进的磁谐振理论模型定性讨论了最优结果大间距正方形谐振环的合理性。
     超材料电磁性能仿真方法研究。(1)研究了有限元网格对超材料结构电磁性能仿真分析精度的影响,发现等效电磁参数的反演精度对散射参数准确度的依赖性非常大,特别是处在谐振频域的透射参数相位误差将导致反演的性态误差。基于该发现,提出了改进结构电磁有限元求解准确度的两步式分析方法,通过设置恰当的求解频率可获得高准确度的散射参数;数值算例表明新方法可有效且经济地提高仿真分析的准确度。(2)研究了不同周期数下结构胞元间的电磁耦合对其散射特性的影响,发现超材料胞元微结构的均匀度是其影响的关键。基于此建立了考虑结构胞元间电磁耦合影响的五层模型,通过解耦少量样本胞元结构的数值结果可以快速且较准确地预测任意有限周期胞元结构的散射参数;数值算例表明五层模型具有高性价比的求解优势。
     贴片型左手超材料改进传输性能的微结构拓扑优化设计方法。以射频段左手传输的平均衰减与其绝对带宽的比值为目标函数,以磁谐振贴片的离散化方格子材料的有无为设计变量,建立了贴片型左手超材料的微结构构型设计的拓扑模型以及基于遗传算法的优化求解流程。根据拓扑优化结果给出了三种贴片新构型;重分析结果表明新构型具有更优良的左手传输性能,进一步的电磁场分析发现半高尺寸的类U型结构是其实现低衰减宽带传输性能的核心构型。表面电流密度分布的结果对比发现磁谐振贴片传导电流的强弱分布,亦即磁谐振贴片格子的合理布置对实现低衰减的宽带传输非常关键。提出了考虑可制备性的微结构拓扑优化设计方法,类似机器人头形的新构型算例结果表明周长约束法可有效地抑制棋盘格式结构的产生。
The left-handed metamaterial origin, classifications, novel features and their applications are reviewed in the framework of classical physics. Left-handed metamaterials have developed by leaps and bounds along with the ever-changing material preparation technology, especially for the patch-typed left-handed metamaterials based on resonance mechanism. Negative refractive index is the core character of left-handed metamaterials and decides the left-handed transmission performance, which is the basic premise of various electromagnetic device applications. Wide application requirements of left-handed metamaterials are to control left-handed transmission attenuation and broaden its bandwidth. And broadband transmission with low attenuation is particularly important and practical for electromagnetic devices of rapid development in the radio frequency band. Focusing on the left-handed transmission performance, structural size, shape and topology optimization design of patch-typed left-handed metamaterials are realized in this dissertation through theoretical analysis and numerical simulation. The main contents and conclusions of this dissertation are as follows:
     Transmission performance for existing configurations of patch-typed left-handed metamaterials is analyzed. Firstly, a complete analytical expression of the refractive index is theoretically derived, and three different cases in magnetic media are introduced to generate a negative refractive index. Then left-handed transmission performance indicators for representing configurations of patch-typed left-handed metamaterials are numerically analyzed respectively. It is found that stronger magnetic resonance is internal mechanism for broader bandwidth and high attenuation of split-ring resonator-like structure configurations. Dual-axis distribution graphs of transmission performance indicators from the representing configurations are plotted, and the goal of left-handed metamaterial design is pointed out: broadband transmission with low attenuation performance.
     Corrected theoretical models are presented for structural electromagnetic performance analysis of patch-typed left-handed metamaterials with thin circle metal rods and metal split-ring resonators. Size designs for the transmission performance are also proposed for the classic patch-typed configuration.(1) The prediction models about periodic array of thin circle metal rod and the split-ring resonators are theoretically derived. The electric plasma frequency expression and the damping factor expression of Drude model are corrected. The magnetic resonance frequency expression of Pendry model is also improved. The numerical examples show that these modified theoretical prediction models have higher accuracy.(2) The left-handed bandwidth with different structural size parameters of the square split-ring resonators configuration is numerically analyzed respectively, and their results show that the outer ring radius has an overwhelmingly greater effect than other parameters. The left-handed transmission performance with different material parameters of the square split-ring resonators configuration is also numerically analyzed respectively. It is found that to achieve the goal of low attenuation has been greatly restricted.(3) Based on the above sensitivity studies, a shape-size cooperative design is proposed to maximize relative bandwidth of regular polygon split-ring resonators through an automatic parametric modeling technology and the sensitivities from the finite difference method. Sequential quadratic programming method and induction by simple enumeration are applied to solve the optimization problem in two steps. The reasonability of the optimal results, that is, square split-ring resonator with a bigger radial distance is qualitatively discussed by the improved magnetic resonance theoretical model.
     New analysis methods for structural electromagnetic performance of the metamaterials are presented.(1) Mesh-dependency in simulation results of metamaterial electromagnetic performance is analyzed based on finite element analysis. It is found that the retrieval metamaterial equivalent electromagnetic parameters have a strong dependence on the calculation accuracy of scattering parameters, especially in the resonant frequency-domain where the phase error of transmission parameters may be cause a qualitative error of the electromagnetic parameters. An improved electromagnetic simulation analysis two-step method is presented and used to obtain accurate S-parameters by determining a proper solution frequency. The numerical results show that the new method can effectively improve the accuracy of the simulation analysis through a reasonable cost.(2) The scattering performance with different periodic cells structure is numerically analyzed respectively, and their results show that a key of the electromagnetic coupling impact between those cells is the uniformity of metamaterial microstructure. So a five-layer model is established to quickly and accurately predict scattering parameters of any finite periodic cells structure by decoupling bits of numerical results of sample structure, and the electromagnetic coupling impact between structural cells is taken into consideration. The numerical examples show that the five-layer model is very cost-effective.
     A topology optimization design method for improving the transmission performance of patch-typed microstructure configurations is presented. A topology optimization model of microstructure configuration design of patch-typed left-handed metamaterials is established, with the objective function defined by the ratio of the mean attenuation to the absolute left-handed bandwidth and the design variables defined by the presence or absence of discrete magnetic resonance patch lattices. Based on genetic algorithm, a flow chart for the optimization problem is also given. Three new patch-typed configurations are given according to the optimization results, and their excellent transmission performance indicators are analyzed by numerical simulation. Further analysis demonstrates that a U-shaped-like structure with half unit cell height is the core configuration of broadband transmission with low attenuation. Comparing their surface current density distributions, it is found that the distribution of conduction currents of magnetic resonance patch, that is, a reasonable arrangement of magnetic resonance patch lattices is the key to the broadband transmission with low attenuation. A new topology optimization design with the perimeter constraint is proposed to solve the problem in the manufacturing process for checkerboard-typed lattices from those configurations. The new optimum configuration of robot head-shaped-like structure shows that the new strategy is very effective.
引文
[1]卡约里F.物理学史[M].桂林:广西师范大学出版社,2008.
    [2]费曼R P,莱登R B,桑兹M.费曼物理学讲义第2卷[M].上海:上海科学技术出版社,1981.
    [3]赵凯华,陈熙谋.电磁学上册[M].北京:高等教育出版社,1985.
    [4]百度百科.负数[EB/OL]. [2013,03,08] http://baike. baidu. com/view/71543. htm.
    [5]Dirac P A M. The quantum theory of the electron. Part Ⅰ [J]. PROCEEDINGS OF THE ROYAL SOCIETY OF LONDON. SERIES A,1928,117(778):610-624.
    [6]Dirac P A M. The quantum theory of the electron. Part Ⅱ [J]. PROCEEDINGS OF THE ROYAL SOCIETY OF LONDON. SERIES A,1928,118(779):351-361.
    [7]Dirac P A M. A theory of electrons and protons [J]. PROCEEDINGS OF THE ROYAL SOCIETY OF LONDON. SERIES A,1930,126(801):360-365.
    [8]Dirac P A M. Quantised singularities in the electromagnetic field [J]. PROCEEDINGS OF THE ROYAL SOCIETY OF LONDON. SERIES A,1931,133(821):60-72.
    [9]Anderson C D. Free positive electrons resulting from the impact upon atomic nuclei of the photons from TH C" [J]. SCIENCE,1933,76:238.
    [10]Bondi H. Negative mass in general relativity [J]. REVIEW OF MODERN PHYSICS,1957, 29(3):423-428.
    [11]Forward R L. Negative matter propulsion [J]. JOURNAL OF PROPULSION AND POWER,1990, 6(1):28-37.
    [12]Forward R L.稀奇的负物质[J].物理通报,1991,(1):31-32.
    [13]Dirac P A M. The theory of magnetic poles [J]. PHYSICAL REVIEW,1948,74(7):817-830.
    [14]杨建邺.反物质和磁单极子[J].自然杂志,1990,13(8):524-528.
    [15]杨建强.回望寻找磁单极子的漫漫迷路[J].物理通报,2010,(7):88-90.
    [16]张静,刘彩霞,徐元英,等.磁单极子的魅影[J].现代物理知识,2010,22(4):35-37.
    [17]Trimble V.Existence and nature of dark matter in the universe [J].ANNUAL REVIEW OF ASTRONOMY AND ASTROPHYSICS,1987,25:425-472.
    [18]许槑.暗物质与暗能量[J].物理通报,2004,(2):1-3.
    [19]俞允强.宇宙中的暗物质[J].物理通报,2005,(1):12-21.
    [20]俞允强.关于宇宙中的暗能量[J].物理通报,2006,(10):1-5.
    [21]孙祖尧.暗能量相关问题的研究[D].上海:上海天文台,2007.
    [22]陈学雷,黄峰.暗物质研究的进展兼谈科学中的整体统一方法[J].自然杂志,2008,30(5):267-279.
    [23]蔡荣根,周宇峰.暗物质与暗能量研究新进展[J].中国基础科学,2010,(3):3-9.
    [24]张一方.负物质的基本定律和其作为暗物质的理论检验[J].信阳师范学院学报:自然科学版,2012,25(3):299-304.
    [25]百度百科.暗物质[EB/OL]. [2013,03,16] http://baike.baidu.com/view/763.htm.
    [26]百度百科.暗能量[EB/OL]. [2013,03,20] http://baike.baidu.com/view/50517.htm.
    [27]Veselago V G. The electrodynamics of substances with simultaneously negative values of ε and μ [J]. USPEKHI FIZICHESKIKH NAUK,1967,92(3):517-526.(俄文版)
    [28]Veselago V G. The electrodynamics of substances with simultaneously negative values of ε and μ [J]. SOVIET PHYSICS USPEKHI,1968,10(4):509-514.(英文版)
    [29]Pendry J B, Holden A J, Stewart W J, et al. Extremely low frequency plasmons in metal lie mesostructures [J]. PHYSICAL REVIEW LETTERS,1996,76(25):4773-4776.
    [30]Pendry J B, Holden A J, Robbins D J, et al. Magnetism from conductors and enhanced nonlinear phenomena [J]. IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES,1999, 47(11):2075-2084.
    [31]Smith D R, Padilla W J, Vier D C, et al. Composite medium with simultaneously negative permeability and permittivity [J]. PHYSICAL REVIEW LETTERS,2000,84(18):4184-4187.
    [32]Shelby R A,Smith D R, Schultz S. Experimental verification of a negative index of refraction [J]. SCIENCE,2001,292(5514):77-79.
    [33]Valanju P M, Walser R M, Valanju A P. Wave refraction in negative-index media:always positive and very inhomogeneous [J]. PHYSICAL REVIEW LETTERS,2002,88(18): 7401-7404.
    [34]Pendry J B, Smith D R. Comment on "Wave refraction in negative-index media:always positive and very inhomogeneous" [J]. PHYSICAL REVIEW LETTERS,2003,90(2):9703.
    [35]Shelby R A, Smith D R, Nemat-Nasser S C, et al. Microwave transmission through a two-dimensional, isotropic, left-handed metamaterial [J]. APPLIED PHYSICS LETTERS, 2001,78(4):489-491.
    [36]Gay-Balmaz P, Martin 0 J F. Efficient isotropic magnetic resonators [J]. APPLIED PHYSICS LETTERS,2002,81(5):939-941.
    [37]Yen T J, Padilla W J, Fang N, et al. Terahertz magnetic response from artificial materials [J]. SCIENCE,2004,303(5663):1494-1496.
    [38]Linden S, Enkrich C, Wegener M, et al. Magnetic response in metamaterials at 100 THz [J]. SCIENCE,2004,306(5700):1351-1353.
    [39]Zhang S, Fan W J, Panoiu N C, et al. Experimental demonstration of near-infrared negative-index metamaterials[J]. PHYSICAL REVIEW LETTERS,2005,95(13):7404-7407.
    [40]Enkrich C, Perez-Willard F, Gerthsen D, et al. Focused-ion-beam nanofabrication of near-infrared magnetic metamaterials [J]. ADVANCED MATERIALS,2005,17(21): 2547-2549.
    [41]龚伯仪,周欣,赵晓鹏.光频三维各向同性左手超材料结构单元模型的仿真设计[J].物理学报,2011,60(4):4101-4105.
    [42]Tang J W, He S L. A novel structure for double negative NIMs towards UV spectrum with high FOM [J]. OPTICS EXPRESS,2010,18(24):25256-25263.
    [43]Shi Z C, Fan R H, Zhang Z D, et al. Random composites of nickel networks supported by porous alumina toward double negative materials [J]. ADVANCED MATERIALS,2012, 24(17):2349-2352.
    [44]Simovski C R, He S L. Frequency range and explicit expressions for negative permittivity and permeability for an isotropic medium formed by a lattice of perfectly conducting Ω particles [J]. PHYSICS LETTERS A,2003,311(3):254-263.
    [45]Huangfu J T, Ran L X, Chen H S, et al. Experimental confirmation of negative refractive index of a metamaterial composed of Ω-like metallic patterns [J]. APPLIED PHYSICS LETTERS,2004,84(9):1537-1539.
    [46]Chen H S, Ran L X, Huangfu J T, et al. Left-handed materials composed of only S-shaped resonators [J]. PHYSICAL REVIEW E,2004,70(5):7605-7608.
    [47]Chen H S, Ran L X, Huangfu J T, et al. Negative refraction of a combined double S-shaped metamaterial [J]. APPLIED PHYSICS LETTERS,2005,86(15):1909-1911.
    [48]Baena J D, Marque's R, Medina F. Artificial magnetic metamaterial design by using spiral resonators [J]. PHYSICAL REVIEW B,2004,69(1):4402-4406.
    [49]杜波,周济,郝立峰,等.基于多层陶瓷结构的超材料的制备与性能[J].四川大学学报(自然科学版),2005,42(2):473-476.
    [50]Zhou J F, Koschny Th, Zhang L, et al. Experimental demonstration of negative index of refraction [J]. APPLIED PHYSICS LETTERS,2006,88(22):1103-1105.
    [51]Zhou J F, Zhang L, Tuttle G, et al. Negative index materials using simple short wire pairs [J]. PHYSICAL REVIEW B,2006,73(4):1101-1104.
    [52]Cai X B, Hu G K. Pat-shape left-handed material and relative band-width of analogous metamaterials [C].THE INTERNATIONAL SYMPOSIUM ON BIOPHOTONICS, NANOPHOTONIC AND METAMATERIALS, Hangzhou,2006.
    [53]Liu R P, Degiron A, Mock J J. Negative index material composed by electric and magnetic resonators [J]. APPLIED PHYSICS LETTERS,2007,90(26):3504-3506.
    [54]刘亚红,罗春荣,赵晓鹏.同时实现介电常数和磁导率为负的H型结构单元左手材料[J].物理学报,2007,56(10):5883-5889.
    [55]黄勇,赵晓鹏,王连胜,等.全向左手材料树枝模型及其通带的可调谐性[J].自然科学进展,2008,18(6):716-720.
    [56]Liu B Q, Zhao X P, Zhu W R, et al. Multiple pass-band optical left-handed metamaterials based on random dendritic cells [J]. ADVANCED FUNCTIONAL MATERIALS,2008,18(21): 3523-3528.
    [57]Zhu W R, Zhao X P, Gong B Y. Left-handed metamaterials based on a leaf-shaped configuration [J]. JOURNAL OF APPLIED PHYSICS,2011,109(9):3504-3508.
    [58]Zhou X, Liu Y H, Zhao X P. Low losses left-handed materials with optimized electric and magnetic resonance [J]. APPLIED PHYSICS A,2010,98(3):643-649.
    [59]王甲富,屈绍波,徐卓,等.磁谐振和电谐振结构构成的左手材料设计[J].物理学报,2008,57(8):5015-5019.
    [60]陈春晖,屈绍波,徐卓,等.基于单面金属结构的二维宽带左手材料[J].物理学报,2011,60(2):4101-4105.
    [61]Wang J F, Qu S B, Xu Z, et al.Broadband planar left-handed metamaterials using split-ring resonator pairs [J]. PHOTONICS AND NANOSTRUCTURES-FUNDAMENTALS AND APPLICATIONS,2009,7(2):108-113.
    [62]杨一鸣,屈绍波,王甲富,等.由同时具有磁谐振和电谐振结构组成的左手材料[J].物理学报,2009,58(2):1031-1035.
    [63]王甲富,屈绍波,徐卓,等.基于金属结构单元间耦合的左手材料的设计及实验验证[J].物理学报,2010,59(6):4018-4022.
    [64]Yan C C, Cui Y P, Wang Q, et al. Superwide-band negative refraction of a symmetrical E-shaped metamaterial with two electromagnetic resonances[J]. PHYSICAL REVIEW E, 2008,77(5):6604-6609.
    [65]Lu W B, Ji Z F, Dong Z G, et al. Left handed transmission properties of planar metamaterials based on complementary double-ring resonators [J]. JOURNAL OF APPLIED PHYSICS,2010,108(3):3717-3721.
    [66]Lv J H, Yan B R, Liu M H, et al. Numerical studies of a low-loss and broad-pass-band single-sided-structure left-handed metamaterial[J]. PHYSICAL REVIEW E,2009,79(1): 7601-7604.
    [67]Lv J H, Hu X W, Liu M H, et al. Negative refraction of a double L-shaped metamaterial [J]. JOURNAL OF OPTICS A-PURE AND APPLIED OPTICS,2009,11(8):5101-5105.
    [68]郭云胜,张雪峰.一种结构简单的二维左手材料设计及仿真研究[J].物理学报,2010,59(12):8584-8590.
    [69]Ourir A, Ouslimani H H. Negative refractive index in symmetric cut-wire pair metamaterial [J]. APPLIED PHYSICS LETTERS,2011,98(11):3505-3507.
    [70]Ourir A, Abdeddaim R, de Rosny J. Double-T metamaterial for parallel and normal transverse electric incident waves [J]. OPTICS LETTERS.36(9):1527-1529.
    [71]王海侠,杨晨,吕英华,等.工字开口环型左手单元结构设计与分析[J].滨州学院学报,2010,26(6):52-55.
    [72]王海侠,吕英华,张洪欣,等.基于双Z形金属条的双入射型左手材料研究[J].物理学报,2011,60(3):034101.
    [73]张洪欣,李珊,张金玲,等.基于蘑菇型结构的双入射超宽带复合媒质材料设计与分析[J].物理学报,2012,61(5):054101.
    [74]张洪欣,吕英华,王海侠.基于蘑菇型磁谐振环结构的左手材料设计与分析[J].电波科学学报,2011,26(6):1113-1117.
    [75]杨晨,张洪欣,王海侠,等.十字环型左手单元结构设计与仿真[J].物理学报,2012,61(16):164101.
    [76]陈亮.等效异向介质的特性与结构研究[D].西安:西安电子科技大学,2008.
    [77]Zhu C, Liang C H, Li L. Broadband negative index metamaterials with low-loss [J]. AEU-INTERNATIONAL JOURNAL OF ELECTRONICS AND COMMUNICATIONS,2011,65(9):724-727.
    [78]Dong Z G, Ni P G, Zhu J, et al. Toroidal dipole response in a multifold double-ring metamaterial [J]. OPTICS EXPRESS,2012,20(12):13065-13070.
    [79]Xu W K, Liu S T, Dong Y Z. Design of structural left-handed material based on topology optimization [J]. JOURNAL OF WUHAN UNIVERSITY OF TECHNOLOGY-MATERIALS SCIENCE EDITION,2010,25(2):282-286.
    [80]Schurig D, Mock J J, Justice B J, et al. Metamaterial electromagnetic cloak at microwave frequencies [J]. SCIENCE,2006,314(5801):977-980.
    [81]Science Magazine. Previous Issues of Science [EB/OL]. [2003/2006/2010] http://www.sciencemag.org/content/by/year.
    [82]Wikipedia. Metamaterials [EB/OL]. [2013,03,19] http://en.wikipedia.org/wiki/Metamaterials.
    [83]白洋,周济,孙瑜,等.铁性双复介质甚高频共振特性的研究[J].四川大学学报(自然科学版),2005,42(2):326-330.
    [84]郑奎松,葛德彪.周期性分层介质高反射区范围的分析与估计[J].物理学报,2006,55(6):2789-2793.
    [85]Popa B I, Cummer S A. Compact dielectric particles as a building block for low-loss magnetic metamaterials [J]. PHYSICAL REVIEW LETTERS,2008,100(20):7401-7404.
    [86]Ahmadi A, Mosallaei H. Physical configuration and performance modeling of all-dielectric metamaterials [J]. PHYSICAL REVIEW B,2008,77(4):5104-5114.
    [87]Lepetit T, Akmansoy E, Ganne J P, et al. Resonance continuum coupling in high-permittivity dielectric metamaterials [J]. PHYSICAL REVIEW B,2010,82(19): 5307-5318.
    [88]Ginn J C, Brener I, Peters D W, et al. Realizing optical magnetism from dielectric metamaterials [J]. PHYSICAL REVIEW LETTERS,2012,108(9):7402-7406.
    [89]Mendoza C I, Adrian R J. Metamaterial features in a dielectric fiber with an inserted thin cylindrical shell [J]. APPLIED PHYSICS LETTERS,2012,101(14):3508-3511.
    [90]Pendry J B. A chiral route to negative refraction [J]. SCIENCE,2004,306(5700): 1353-1355.
    [91]Xiong X, Sun W H, Bao Y J, et al. Construction of a chiral metamaterial with a U-shaped resonator assembly [J]. PHYSICAL REVIEW B,2010,81(7):5119-5124.
    [92]Zhou J F, Chowdhury D R, Zhao R K, et al. Terahertz chiral metamaterials with giant and dynamically tunable optical activity [J]. PHYSICAL REVIEW B,2012,86(3): 5448-5453.
    [93]Li Z F, Mutlu M, Ozbay E. Chiral metamaterials:from optical activity and negative refractive index to asymmetric transmission [J]. JOURNAL OF OPTICS,2013,15(2): 3001-3013.
    [94]Ziolkowski R W. Propagation in and scattering from a matched metamaterial having a zero index of refraction [J]. PHYSICAL REVIEW E,2004,70(4):6608-6619.
    [95]Engheta N, Alu A, Silveirinha M G, et al. DNG, SNG, ENZ, and MNZ metamaterials and their potential applications [C].2006 IEEE MEDITERRANEAN ELECTROTECHNICAL CONFERENCE, Malaga,2006.
    [96]Liu R P, Cheng Q, Hand T, et al. Experimental demonstration of electromagnetic tunneling through an epsilon-near-zero metamaterial at microwave frequencies [J]. PHYSICAL REVIEW LETTERS,2008,100(2):3903-3906.
    [97]Park J Y, Ryu Y G, Lee J H. Mu-zero resonance antenna [J]. IEEE TRANSACTIONS ON ANTENNAS AND PROPAGATION,2010,58(6):1865-1875.
    [98]Sun L, Yu K W. Strategy for designing broadband epsilon-near-zero metamaterial with loss compensation by gain media [J]. APPLIED PHYSICS LETTERS,2012,100(26): 1903-1906.
    [99]Li J, Chan C T. Double-negative acoustic metamaterial [J]. PHYSICAL REVIEW E,2004, 70(5):5602-5605.
    [100]Fang N, Xi D J, Xu J Y, et al. Ultrasonic metamaterials with negative modulus [J]. NATURE MATERIALS,2006,5 (6):452-456.
    [101]Ding Y Q, Liu Z Y, Qiu C Y, et al. Metamaterial with simultaneously negative bulk modulus and mass density [J]. PHYSICAL REVIEW LETTERS,2007,99(9):3904-3907.
    [102]Zhou X M, Hu G K. Superlensing effect of an anisotropic metamaterial slab with near-zero dynamic mass [J]. APPLIED PHYSICS LETTERS,2011,98(26):3510-3512.
    [103]Liang Z X, Li J S. Extreme acoustic metamaterial by coiling up space [J]. PHYSICAL REVIEW LETTERS,2012,108(11):4301-4304.
    [104]沈平,梅军,刘正猷,等.动态质量密度和声学超常介质[J].物理,2007,36(1):1-6.
    [105]丁昌林,赵晓鹏.可听声频段的声学超材料[J].物理学报,2009,58(9):6351-6355.
    [106]孙宏伟,林国昌,杜星文,等.一种新型声学超材料平板对机械波吸收性能的模拟与实验研究[J].物理学报,2012,61(15):154302.
    [107]Smith, D R, Dalichaouch R; Kroll N, et al. Photonic band structure and defects in one and two dimensions [J]. JOURNAL OF THE OPTICAL SOCIETY OF AMERICA B-OPTICAL PHYSICS,1993,10(2):314-321.
    [108]O'Brien S, Pendry J B. Photonic band-gap effects and magnetic activity in dielectric composites [J]. JOURNAL OF PHYSICS-CONDENSED MATTER,2002,14(15):4035-4044.
    [109]Khavasi A, Rezaei M, Miri M, et al. Circuit model for efficient analysis and design of photonic crystal devices [J]. JOURNAL OF OPTICS,2012,14(12):5502-5508.
    [110]肖三水.光子晶体计算方法和设计的研究[D].杭州:浙江大学,2004.
    [111]付云起.微波光子晶体及其应用研究[D].长沙:国防科技大学,2004.
    [112]石鹏.宽禁带光子晶体设计及光子晶体负折射应用[D].合肥:中国科技大学,2012.
    [113]Liao Z Q, Wang T, Nie Y, et al. Numerical study on a designable linear-resonant multiband single-layer fractal frequency-selective surface [J]. PHYSICAL REVIEW E, 2010,82(1):6603-6608.
    [114]Goussetis G, Feresidis A P. Perturbed frequency selective surfaces for multiband high impedance surfaces [J]. IET MICROWAVES ANTENNAS & PROPAGATION,2010,4(8):1105-1110.
    [115]方维海,徐善驾.由左手媒质构成的新的频率选择表面[J].红外毫米波报,2007,26(2):121-124.
    [116]吴翔,裴志斌,屈绍波,等.具有极化选择特性的超材料频率选择表面的设计[J].物理学报,2011,60(11):114201.
    [117]Nicolaou Z G, Motter A E. Mechanical metamaterials with negative compressibility transitions [J]. NATURE MATERIALS,2012,11(7):608-613.
    [118]Eleftheriades G V, Iyer A K, Kremer P C. Planar negative refractive index media using periodically L-C loaded transmission lines [J]. IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES,2002,50(12):2702-2712.
    [119]Iyer A K, Kremer P C, Eleftheriades G V. Experimental and theoretical verification of focusing in a large, periodically loaded transmission line negative refractive index metamaterial [J]. OPTICS EXPRESS,2003,11(7):696-708.
    [120]Eleftheriades G V, Antoniades M A, Grbic A, et al. Electromagnetic applications of negative-refractive-index transmission-line metamaterials [C].27TH ESA ANTENNA TECHNOLOGY WORKSHOP INNOVATIVE PERIODIC ANTENNAS, Santiago de Compostela,2004.
    [121]Gil I, Bonache J, Garcia-Garcia J, et al. Tunable split rings resonators for reconfigurable metamaterial transmission lines [C].35TH EUROPEAN MICROWAVE CONFERENCE, Paris,2005.
    [122]Eleftheriades G V. EM transmission-line metamaterials [J]. MATERIALS TODAY,2009, 12(3):30-41.
    [123]Fathelbab W M, Jaradat HM. Studying the nature of electromagnetic interaction between a pair of left-handed transmission lines [C].37TH EUROPEAN MICROWAVE CONFERENCE, Rome,2009.
    [124]Jiang T, Chang K H, Si L M, et al. Active microwave negative-index metamaterial transmission line with gain [J]. PHYSICAL REVIEW LETTERS,2011,107 (20): 5503-5507.
    [125]Chshelokova A V, Kapitanova P V, Poddubny A N, et al. Hyperbolic transmission-line metamaterials [J]. JOURNAL OF APPLIED PHYSICS,2012,112(7):3116-3120.
    [126]牛家晓.谐振式左手传输线结构及其应用研究[D].上海:上海交通大学.2007.
    [127]张辉.超常介质的电磁特性及其应用研究[D].长沙:国防科技大学,2009.
    [128]Dewar G. Candidates for mu< 0, epsilon< 0 nanostructures [J]. INTERNATIONAL JOURNAL OF MODERN PHYSICS B,2001,15(24-25):3258-3265.
    [129]Dewar G. The applicability of ferrimagnetic hosts to nanostructured negative index of refraction (left-handed) materials [C]. PROCEEDINGS OF THE SOCIETY OF PHOTO-OPTICAL INSTRUMENTATION ENGINEERS (SPIE), Seattle,2002.
    [130]Dewar G. Negative phase velocity composites employing magnetic hosts [C]. PROCEEDINGS OF THE SOCIETY OF PHOTO-OPTICAL INSTRUMENTATION ENGINEERS (SPIE), San Diego,2003.
    [131]Wu R X, Zhang X K, Lin Z F, et al. Possible existence of left-handed materials in metallic magnetic thin films [J]. JOURNAL OF MAGNETISM AND MAGNETIC MATERIALS,2004, 271(2-3):180-183.
    [132]Wu R X. Effective negative refraction index in periodic metal-ferrite-metal film composite [J]. JOURNAL OF APPLIED PHYSICS,2005,97(7):6105-6107.
    [133]Cai X B, Zhou X M, Hu G K. Numerical study on left-handed materials made of ferrite and metallic wires [J]. CHINESE PHYSICS LETTERS,2006,23(2):348-351.
    [134]Mikhaylovskiy R V, Hendry E, Kruglyak V V. Negative permeability due to exchange spin-wave resonances in thin magnetic films with surface pinning [J]. PHYSICAL REVIEW B,2010,82(19):5446-5455.
    [135]Liu C H, Behdad N. Tunneling and filtering characteristics of cascaded epsilon-negative metamaterial layers sandwiched by double-positive layers [J]. JOURNAL OF APPLIED PHYSICS,2012,111(1):4906-4914.
    [136]王燕.基于周期性薄膜结构的负折射率材料[D].南京:南京师范大学,2011.
    [137]Chui ST, Hu LB. Theoretical investigation on the possibility of preparing left-handed materials in metallic magnetic granular composites [J]. PHYSICAL REVIEW B,2002, 65(14):4407-4412.
    [138]Elezzabi A Y, Chau K J, Maraghechi P, et al. Terahertz plasmonic random metamaterial [C].2008 33RD INTERNATIONAL CONFERENCE ON INFRARED, MILLIMETER AND TERAHERTZ WAVES, Pasadena,2008.
    [139]Cai X B, Zhu R, Hu G K. Experimental study for metamaterials based on dielectric resonators and wire frame [J]. METAMATERIALS,2008, (2):220-226.
    [140]Holloway C L, Kabos P, Mohamed M A, et al. Realisation of a controllable metaf ilm-metasurface composed of resonant magnetodielectric particles:measurements and theory [J]. IET MICROWAVES ANTENNAS & PROPAGATION,2010,4(8):1111-1122.
    [141]赵乾,康雷,杜波,等.基于BST_MgO介质Mie谐振的各向同性负磁导率复合材料[J].科学通报,2008,53(17):2016-2020.
    [142]李佳玉,宣益民,李强.颗粒球复合材料负折射象影响因素分析[J].中国科学,2012,42(6):649-654.
    [143]Moser H 0, Rockstuhl C.3D THz metamaterials from micro-nanomanufacturing [J]. LASER & PHOTONICS REVIEWS,2012,6(2):219-244.
    [144]Zhang S, Fan W J, Malloy K J, et al. Near-infrared double negative metamaterials [J]. OPTICS EXPRESS,2005,13(13):4922-4930.
    [145]Valentine J, Zhang S, Zentgraf T, et al. Three-dimensional optical metamaterial with a negative refractive index [J]. NATURE,2008,455(7211):376-380.
    [146]汤世伟,朱卫仁,赵晓鹏.光波段多频负折射率超材料[J].物理学报,2009,58(5):3220-3223.
    [147]Xiao S M, Drachev V P, Kildishev A V, et al. Loss-free and active optical negative-index metamaterials [J]. NATURE,2010,466(7307):735-740.
    [148]Lodewijks K, Verellen N, Van Roy W, et al. Self-assembled hexagonal double fishnets as negative index materials [J]. APPLIED PHYSICS LETTERS,2011,98(9):1101-1103.
    [149]赵延,相建凯,李飒,等.基于双鱼网结构的可见光波段超材料[J].物理学报,2011,60(5):4211-4215.
    [150]Shen N H, Koschny Th, Kafesaki M, et al. Optical metamaterials with different metals [J]. PHYSICAL REVIEW B,2012,85(7):5120-5124.
    [151]Navarro-Cia M, Garcia-Meca C, Beruete M, et al. Dual-band double-negative-index fishnet metamaterial at millimeter-waves [J]. OPTICS LETTERS,2011,36(21): 4245-4247.
    [152]Tao H, Amsden J J, Strikwerda A C, et al. Metamaterial silk composites at terahertz frequencies [J]. ADVANCED MATERIALS,2010,22(32):3527-3521.
    [153]周济.Metamaterials(超材料)与天然材料的融合[J].功能材料信息,2012,9(1):10-13.
    [154]Smith D R, Schurig D, Pendry J B. Negative refraction of modulated electromagnetic waves [J]. APPLIED PHYSICS LETTERS,2002,81(15):2713-2715.
    [155]Parazzoli C G, Greegor R B, Li K, et al. Experimental verification and simulation of negative index of refraction using Snell's law [J]. PHYSICAL REVIEW LETTERS,2003, 90(10):7401-7404.
    [156]Dong Z G, Xu M X, Lei S Y, et al. Negative refraction with magnetic resonance in a metallic double-ring metamaterial [J]. APPLIED PHYSICS LETTERS,2008,92(6): 4101-4103.
    [157]Verhagen E, Waele R, Kuipers L, et al. Three-dimensional negative index of refraction at optical frequencies by coupling plasmonic waveguides [J]. PHYSICAL REVIEW LETTERS, 2010,105(22):3901-3904.
    [158]Costa J T, Silveirinha M G, Alu A. Poynting vector in negative-index metamaterials [J]. PHYSICAL REVIEW B,2011,83(16):5120-5127.
    [159]Pendry J B. Negative Refraction [J]. CONTEMPORARY PHYSICS,2004,45(3):191-202.
    [160]Pendry J B. Negative Refraction Makes a Perfect Lens [J]. PHYSICAL REVIEW LETTERS, 2000,85(18):3966-3969.
    [161]陈龙,何赛灵,沈林放.含负折射率介质的多层结构中倏逝波传播及隧道效应的分析[J].物理学报,2003,52(10):2386-2392.
    [162]Fang N, Zhang X. Imaging properties of a metamaterial superlens [J]. APPLIED PHYSICS LETTERS,2003,82(2):161-163.
    [163]Smith D R, Pendry J B, Wiltshire M C K. Metamaterials and negative refractive index [J]. SCIENCE,2004,305(5685):788-792.
    [164]Pendry J B. Perfect cylindrical lenses [J]. OPTICS EXPRESS,2003,11(7):755-760.
    [165]Veselago V G. Superlens as matching device [DB/OL]. [2005,01,04] http://arxiv.org/abs/cond-mat/0501438.
    [166]Zhang J, Cheung S W, Yuk T I. Design of n-bit phase shifters with high power-handling capability inspired by composite right-left-handed transmission line unit cells [J]. IET MICROWAVES ANTENNAS & PROPAGATION,2010,4(8):991-999.
    [167]Nguyen A B, Lee J W. A K-band CMOS phase shifter mmic based on a tunable composite metamaterial [J]. IEEE MICROWAVE AND WIRELESS COMPONENTS LETTERS,2011,21(6): 311-313.
    [168]Pendry J B, Schurig D, Smith D R. Controlling electromagnetic fields [J]. SCIENCE, 2006,312(5781):1780-1782.
    [169]Schurig D, Mock J J, Justice B J, et al. Metamaterial electromagnetic cloak at microwave frequencies [J]. SCIENCE,2006,314(5801):977-980.
    [170]Jiang W X, Chin J Y, Cui T J. Anisotropic metamaterial devices [J]. MATERIALS TODAY, 2009,12(12):26-33.
    [171]Ma H F, Cui T J. Three-dimensional broadband ground-plane cloak made of metamaterials [J]. NATURE COMMUNICATIONS,2010,1(3):21-33.
    [172]Landy N, Smith D R. A full-parameter unidirectional metamaterial cloak for microwaves [J]. NATURE MATERIALS,2012,12(1):25-28.
    [173]Liu R, Ji C, Mock J J, et al. Broadband ground-plane cloak [J]. SCIENCE,2009,323 (5912):366-369.
    [174]Valentine J, Li J, Zentgraf T, et al. An optical cloak made of dielectrics [J]. NATURE MATERIALS,2009,8(7):568-571.
    [175]Ergin T, Stenger N, Brenner P, et al. Three-dimensional invisibility cloak at optical wavelengths [J]. SCIENCE,2010,328(5976):337-339.
    [176]Ergin T, Fischer J, Wegener M. Optical phase cloaking of 700 nm light waves in the far field by a three-dimensional carpet cloak [J]. PHYSICAL REVIEW LETTERS,2011, 107(17):3901-3904.
    [177]Yang F, Mei Z L, Jin T Y, et al. DC electric invisibility cloak [J]. PHYSICAL REVIEW LETTERS,2012,109(5):3902-3906.
    [178]Mei Z L, Liu Y S, Yang F, et al. A dc carpet cloak based on resistor networks [J]. OPTICS EXPRESS,2012,20(23):25758-25765.
    [179]杨成福,黄铭,杨晶晶,等.基于超材料的正多边形电磁波聚焦器设计[J].电子与信息学报,2010,82(10): 2485-2489.
    [180]Chen H Y, Chan C T, Sheng P. Transformation optics and metamaterials [J]. NATURE MATERIALS,2010,9(5):387-396.
    [181]Wang H W, Chen L W. A cylindrical optical black hole using graded index photonic crystals [J]. JOURNAL OF APPLIED PHYSICS,2011,109(10):3104-3108.
    [182]Ghasemi R, Dubrovina N, Tichit P H, et al. Transformation optics and infrared metamaterials for optical devices [J]. APPLIED PHYSICS A-MATERIALS SCIENCE & PROCESSING,2012,109(4):819-823.
    [183]Hunt J, Tyler T, Dhar S, et al. Planar, flattened Luneburg lens at infrared wavelengths [J]. OPTICS EXPRESS,2012,20(2):1706-1713.
    [184]Pendry J B, Aubry A, Smith D R, et al. Transformation Optics and Subwavelength Control of Light [J]. SCIENCE,2012,337(6094):549-552.
    [185]Seddon N, Bearpark T. Observation of the inverse Doppler effect [J]. SCIENCE,2003, 302(5650):1537-1540.
    [186]Luo C, Ibanescu M, Johnson S G, et al. Cerenkov radiation in photonic crystals [J]. SCIENCE,2003,299(5605):368-371.
    [187]Ziolkowski R W. Pulsed and CW Gaussian beam interactions with double negative metamaterial slabs [J]. OPTICS EXPRESS,2003,11(7):662-681.
    [188]费曼RP,莱登R B,桑兹M.费曼物理学讲义第1卷[M].上海:上海科学技术出版社,2005.
    [189]Mookiah P, Dandekar K R. Metamaterial-substrate antenna array for MIMO communication system [J]. IEEE TRANSACTIONS ON ANTENNAS AND PROPAGATION,2009,57(10):3283-3292.
    [190]Lim S, Park W Y, Kwak S I. Two-dimensional interdigital capacitive small antenna resonating at enhanced left-handed modes [J]. IET MICROWAVES ANTENNAS & PROPAGATION, 2010,4(10):1475-1480.
    [191]Ziolkowski R W, Jin P, Lin Ch Ch. Metamaterial-inspired engineering of antennas [J]. PROCEEDINGS OF THE IEEE,2011,99(10:1720-1731.
    [192]Booket M R, Jafargholi A, Kamyab M, et al. Compact multi-band printed dipole antenna loaded with single-cell metamaterial [J]. IET MICROWAVES ANTENNAS & PROPAGATION,2011, 6(1):17-23.
    [193]Mirzaei H, Eleftheriades G V. A compact frequency-reconfigurable metamaterial-inspired antenna [J]. IEEE ANTENNAS AND WIRELESS PROPAGATION LETTERS, 2011,10:1154-1157.
    [194]代黎明.超材料在微带天线小型化设计中的应用研究[D].西安:西安交通大学,2012.
    [195]Chen X, Ma H F, Zou X Y, et al. Three-dimensional broadband and high-directivity lens antenna made of metamaterials [J]. JOURNAL OF APPLIED PHYSICS,2011,110(4): 4904-4911.
    [196]Minh T L, Quoc C N, Thi T V, et al. Design of an directive antenna for "free-flow" system application [C].2011 INTERNATIONAL CONFERENCE ON ADVANCED TECHNOLOGIES FOR COMMUNICATIONS (ATC 2011), Da Nang,2011.
    [197]纪宁,赵晓鹏.C波段超材料基板高增益微带天线[J].现代雷达,2010,32(1):70-73.
    [198]Li L W, Li Y N, Yeo T S, et al. A broadband and high-gain metamaterial microstrip antenna [J]. APPLIED PHYSICS LETTERS,2011,96(16):4101-4105.
    [199]Yang X, Yu Z, Shi Q, et al. Design of novel ultra-wideband antenna with individual SRR [J]. ELECTRONICS LETTERS,2008,44(19):1109-1110.
    [200]Turkmen 0, Ekmekci E, Turhan-Sayan G. Nested U-ring resonators:a novel multi-band metamaterial design in microwave region [J]. IET MICROWAVES ANTENNAS & PROPAGATION, 2012,6(10):1102-1108.
    [201]Jiang T, Wang Z Y, Li D, et al. Low-DC voltage-controlled steering-antenna radome utilizing tunable active metamaterial [J]. IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES,2012,60(1):170-178.
    [202]Wiltshire M C K, Pendry J B, Young, I R, et al. Microstructured magnetic materials for rf flux guides in magnetic resonance imaging [J]. SCIENCE,2001,291(5505): 849-851.
    [203]谢易宏.新型人工电磁介质在磁共振成像中的应用研究[D].杭州:浙江大学,2012.
    [204]Schuessler M, Mandel C, Puentes M, et al. Metamaterial inspired microwave sensors [J]. IEEE MICROWAVE MAGAZINE,2012,13(2):57-68.
    [205]张振辉.基于Metamaterials的吸波体与滤波器理论研究[D].哈尔滨:哈尔滨工程大学,2011.
    [206]Sun J B, Liu L Y, Dong G Y, et al. An extremely broad band metamaterial absorber based on destructive interference [J]. OPTICS EXPRESS,2011,19(22):21155-21162.
    [207]Ding F, Cui Y X, Ge X C, et al. Ultra-broadband microwave metamaterial absorber [J]. APPLIED PHYSICS LETTERS,2012,100(10):3506-3509.
    [208]Chen S Q, Cheng H, Yang H F, et al. Polarization insensitive and omnidirectional broadband near perfect planar metamaterial absorber in the near infrared regime [J]. APPLIED PHYSICS LETTERS,2011,99(25):3104-3106.
    [209]顾超,屈绍波,裴志斌,等.基于平行金属线的太赫兹准全向超材料吸波体[J].中国科学,2011,41(3):280-285.
    [210]Yang K Y, Giannini V, Bak A 0, et al. Subwavelength imaging with quantum metamaterials [J]. PHYSICAL REVIEW B,2012,86(7):5309-5313.
    [211]Chen H T, Yang H, Singh R J, et al. Tuning the resonance in high-temperature superconducting terahertz metamaterials [J]. PHYSICAL REVIEW LETTERS,2010,105(24): 7402-7405.
    [212]武立华.电磁超材料非线性特性理论研究[D].哈尔滨:哈尔滨工业大学,2010.
    [213]Rose A, Huang Da, Smith D R. Nonlinear interference and unidirectional wave mixing in metamaterials [J]. PHYSICAL REVIEW LETTERS,2013,110(6):3901-3905.
    [214]邓淋彦,韦锋.超材料试产线落户高新区谋产业升级[N].南都都市报,2011,11,19.
    [215]王总,朱文君,唐玲.超材料技术发展概览[J].军民两用技术与产品,2012,(7):27-29.
    [216]Sersic I, Tuambilangana C, Kampfrath T, et al. Magnetoelectric point scattering theory for metamaterial scatterers [J]. PHYSICAL REVIEW B,2011,83(24):5102-5113.
    [217]李智慧,唐靖宇,张伦.有限积分理论(FIT)及其在腔体计算中的应用[J].强激光与粒子束,2002,14(1):156-160.
    [218]Zedler M, Eleftheriades G V. Hybridisation of 2D frequency domain TLM with the MoM-discretised 2D-EFIE [C].40TH EUROPEAN MICROWAVE CONFERENCE, Paris,2010.
    [219]Pendry J B, Bell P M. Transfer matrix techniques for electromagnetic waves [J]. NATO ADVANCED SCIENCE INSTITUTES SERIES, SERIES E, APPLIED SCIENCES,1996,315:203-228.
    [220]Zhao Y, Belov P, Hao Y. Accurate modelling of left-handed metamaterials using a finite-difference time-domain method with spatial averaging at the boundaries [J]. JOURNAL OF OPTICS A-PURE AND APPLIED OPTICS,2007,9 (9):468-475.
    [221]Fietz C, Urzhumov Y, Shvets G. Complex k band diagrams of 3D metamaterial or photonic crystals [J]. OPTICS EXPRESS,2011,19(20):19027-19041.
    [222]陈红胜.异向介质等效电路理论及实验的研究[D].浙江:浙江大学,2005.
    [223]付佳辉,吴群.微波EDA电磁仿真软件应用[C].2003全国微波毫米波会议论文集,上海,2003.
    [224]孔金瓯.电磁波理论[M].北京:电子工业出版社,2003.
    [225]Toll J S. Causality and the Dispersion Relation:Logical Foundations [J]. PHYSICAL REVIEW,1956,104(6):1760-1770.
    [226]百度百科.汉字的特点[EB/OL]. [2012,09,25] http://baike. baidu. com/view/1712. htm
    [227]Smith D R, Vier D C, Koschny Th, et al. Electromagnetic parameter retrieval from inhomogeneous metamaterials [J]. PHYSICAL REVIEW E,2005,71(3):6617-6627.
    [228]高仁璨,史鹏飞,刘书田,等.左手材料微结构构型的传输线比拟模型[J].物理学报,2010,59(12):8566-8573.
    [229]白冬萍,张洁婷,邓晖.E型左手材料[J].微波学报,2012,28(2):71-74.
    [230]Wang W, Xu W K, Hai H. An effective method for designing new structural left-handed material based on topology optimisation [J]. THE EUROPEAN PHYSICAL JOURNAL APPLIED PHYSICS,2011,53(2):401-405.
    [231]Wang J F, Qu S B, Xu Z, et al. A candidate three-dimensional GHz left-handed metamaterial composed of coplanar magnetic and electric resonators [J]. PHOTONICS AND NANOSTRUCTURES-FUNDAMENTALS AND APPLICATIONS,2008,6(3):183-187.
    [232]龚建强,褚庆昕.Ansoft HFSS在周期性异向介质研究中的仿真方法[C].2008年Ansoft优秀论文集,[会址不详],2008.
    [233]Markos P, Soukoulis C M. Transmission properties and effective electromagnetic parameters of double negative metamaterials [J]. OPTICS EXPRESS,2003,11(7): 649-661.
    [234]孟繁义,吴群,金博识,等.二维各向同性异向介质负折射特性仿真研究[J].物理学报,2006,55(9):4514-4519.
    [235]Bilotti F, Toscano A, Vegni L. Design of spiral and multiple split-ring resonators for the realization of miniaturized metamaterial samples [J]. IEEE TRANSACTIONS ON ANTENNAS AND PROPAGATION,2007,55 (8):2258-2267.
    [236]张淳民,孙明昭,袁志林,等.基于三角谐振环的新型六边形谐振环金属线复合周期结构左手材料性质研究[J].物理学报,2009,58(3):1758-1764.
    [237]王甲富,屈绍波,徐卓,等.基于双环开口谐振环对的平面周期结构左手超材料[J].物理学报,2009,58(5):3224-3229.
    [238]孙明昭,张淳民,宋晓平.新型八边形谐振环金属线复合周期结构左手材料奇异性质研究[J].物理学报,2010,59(8):5444-5449.
    [239]Abdeddaim R, Ourir A, Rosny J. Realizing a negative index metamaterial by controlling hybridization of trapped modes [J]. PHYSICAL REVIEW B,2011,83(3):3101-3104.
    [240]Nicholson K J, Rowe W S T, Ghorbani K. Design and demonstration of a metamaterial with electronically tunable negative refraction across the C microwave band [J]. IET MICROWAVES ANTENNAS & PROPAGATION,2011,5(6):631-636.
    [241]Sarychev A K, Shalaev V M. Comment on paper "Extremely Low Frequency Plasmons in Metallic Mesostructures" [DB/OL]. [2001,03,06] http://arxiv.org/abs/cond-mat/0103145
    [242]Maslovski S I, Tretyakov S A, Belov P A. Wire media with negative effective permittivity:A quasi-static model [J]. MICROWAVE AND OPTICAL TECHNOLOGY LETTERS, 2002,35(1):47-51.
    [243]Tretyakov S. Analytical Modeling in Applied Electromagnetics [M]. London:Artech House,2003.
    [244]Pendry J B, Holden A J, Robbins D J, et al. Low Frequency Plasmons in Thin Wire Structures [J]. JOURNAL OF PHYSICS-CONDENSED MATTER,1998,10(22):4785-4809.
    [245]Sauviac B, Simovski C R, Tretyakov S A. Double Split-Ring Resonators:Analytical Modeling and Numerical Simulations [J]. ELECTROMAGNETICS,2004,24(5):317-338.
    [246]Khan M F, Mughal M J. Effective permeability of inner ring shorted split ring resonator [J]. MICROWAVE AND OPTICAL TECHNOLOGY LETTERS,2008,50(3):624-627.
    [247]Sydoruk 0, Tatartschuk E, Shamonina E, et al. Analytical formulation for the resonant frequency of split rings [J]. JOURNAL OF APPLIED PHYSICS,2009,105(1):4903-4906.
    [248]Kafesaki M, Koschny Th, Penciu R S, et al. Left-handed metamaterials detailed numerical studies of the transmission properties [J]. JOURNAL OF OPTICS A:PURE AND APPLIED OPTICS,2005,7 (2):12-22.
    [249]Vijay R. HFSS-MATLAB-Scripting-API v0.12 [EB/OL]. [2005,05,30] https://www.cresis.ku.edu/~rvc/projects/hfssapi/doc/hfss-matlab-api.html
    [250]Aksun M I, Alparslan A, Karabulut E P, et al. Determining the effective constitutive parameters of finite periodic structures:Photonic crystals and metamaterials [J]. IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES,2008,56(6):1423-1434.
    [251]Li Z F, Aydin K, Ozbay E. Determination of the effective constitutive parameters of bianisotropic metamaterials from reflection and transmission coefficients [J]. PHYSICAL REVIEW E,2009,79(2):026610.
    [252]Boksiner J. Obtaining effective metamaterial parameters through modal analysis [J]. APPLIED PHYSICS A,2011,103(3):555-559.
    [253]Smith D R, Pendry J B. Homogenization of metamaterials by field averaging [J]. JOURNAL OF THE OPTICAL SOCIETY OF AMERICA B-OPTICAL PHYSICS,2006,23 (3):391-403.
    [254]Silveirinha M G. Time domain homogenization of metamaterials [J]. PHYSICAL REVIEW B,2011,83(16):165104.
    [255]Kyriazidou C A, Contopanagos H F, Merrill W M, et al. Artificial versus natural crystals:effective wave impedance of printed photonic bandgap materials [J]. IEEE TRANSACTIONS ON ANTENNAS AND PROPAGATION,2000,48(1):95-106.
    [256]Chen X D, Grzegorczyk T M, Kong J A. Optimization approach to the retrieval of the constitutive parameters of a slab of general bianisotropic medium [J]. PROGRESS IN ELECTROMAGNETICS RESEARCH,2006,60:1-18.
    [257]Nicolson A M, Ross G F. Measurement of the intrinsic properties of materials by time-domain techniques [J]. IEEE TRANSACTIONS ON INSTRUMENTATION AND MEASUREMENT, 1970,19(4):377-382.
    [258]William B W. Automatic measurement of complex dielectric constant and permeability at microwave frequencies [J]. PROCEEDINGS OF THE IEEE,1974,62(1):33-36.
    [259]Jarvis J B, Vanzura E J and Kissick W. Improved technique for determining complex permittivity with the transmission/reflection method [J]. IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES,1990,38(8):1096-1103.
    [260]Chen X D, Tomasz M G, Wu B I, et al. Robust method to retrieve the constitutive effective parameters of metamaterials [J]. PHYSICAL REVIEW E,2004,70(1):016608.
    [261]Varadan V V, Ro R. Unique retrieval of complex permittivity and permeability of dispersive materials from reflection and transmitted fields by enforcing causality [J]. IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES,2007,55(10):2224-2230.
    [262]Zsolt S, Park G H, Ravi H, et al. A unique extraction of metamaterial parameters based on kramers-kronig relationship [J]. IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES,2010,58(10):2646-2653.
    [263]Starr A F, Rye P M, Mock J J, et al. Angle resolved microwave spectrometer for metamaterial studies [J]. REVIEW OF SCIENTIFIC INSTRUMENTS,2004,75(4):820-825.
    [264]何光华,伍瑞新,陈平,等.金属线对结构中左手材料特性的实验验证[J].微波学报,2010,26(3):44-47.
    [265]Zhou J F, Koschny Th, Kafesaki M, et al. Size dependence and convergence of the retrieval parameters of metamaterials [J]. PHOTONICS AND NANOSTRUCTURES-FUNDAMENTALS AND APPLICATIONS,2008,6(1):96-101.
    [266]Hou L L, Chin J Y, Yang X M, et al. Advanced parameter retrievals for metamaterial slabs using an inhomogeneous model [J]. JOURNAL OF APPLIED PHYSICS,2008,103(6): 4904-4909.
    [267]Rockstuhl C, Menzel C, Paul T, et al. Bulk properties of metamaterials[C]. CONFERENCE ON METAMATERIALS Ⅲ, Strasbourg,2008.
    [268]Simovski C R. Material parameters of metamaterials [J]. OPTICS AND SPECTROSCOPY,2009, 107(5):726-753.
    [269]Freitas G M F, Rego S L, Vasconcelos C F L. Design of metamaterials using artificial neural networks [C].2012 INTERNATIONAL CONFERENCE ON COMPUTING, COMMUNICATION AND APPLICATIONS, Dindigul,2012.
    [270]Zhao Y X, Chen F, Shen Q, et al. Optimizing low loss negative index metamaterial for visible spectrum using differential evolution [J]. OPTICS EXPRESS,2011,19(12): 11605-11614.
    [271]Mumcu G, Valerio M, Sertel K, et al. Applications of the finite element method to designing composite metamaterials [C].2007 INTERNATIONAL CONFERENCE ON ELECTROMAGNETICS IN ADVANCED APPLICATIONS, Torino,2007.
    [272]Yamasaki S, Nomura T, Sato K, et al. Level set based topology optimization method for metamaterial design problem [C].6TH CHINA-JAPAN-KOREA JOINT SYMPOSIUM ON OPTIMIZATION OF STRUCTURAL AND MECHANICAL SYSTEMS, Kyoto,2010.
    [273]Bossard J A, Yun S, Werner D H, et al. Synthesizing low loss negative index metamaterial stacks for the mid-infrared using genetic algorithms [J]. OPTICS EXPRESS,2009, 17(17):14771-14779.
    [274]Ouedraogo R O, Rothwell E J, Diaz A, et al. In situ optimization of metamaterial-inspired loop antennas [J]. IEEE ANTENNAS AND WIRELESS PROPAGATION LETTERS,2010,9():75-78.
    [275]Chen P Y, Chen C H, Wang H, et al. Synthesis design of artificial magnetic metamaterials using a genetic algorithm [J]. OPTICS EXPRESS,2008,16(17): 12806-12818.
    [276]Diaz A R, Sigmund 0. A topology optimization method for design of negative permeability metamaterials [J]. STRUCTURAL AND MULTIDISCIPLINARY OPTIMIZATION,2009, 41(2):163-177.
    [277]Zhou S W, Li W, Chen Y H, et al. Topology optimization for negative permeability metamaterials using level-set algorithm [J]. ACTA MATERIALIA,2011,59(7): 2624-2636.
    [278]许卫锴.左手材料微结构构型设计优化[D].大连:大连理工大学,2010
    [279]Haber R B, Jog C S, Bends(?)e M P. A new approach to variable-topology shape design using a constraint on perimeter [J]. STRUCTURAL AND MULTIDISCRIPLINARY OPTIMIZATION, 1996,11(1):1-12.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700