LiNi_(1/3)Co_(1/3)Mn_(1/3)O_2与LiMn_2O_4共混正极材料锂离子电池的循环性与安全性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
三元正极材料LiNi_(1/3)Co_(1/3)Mn_(1/)3O_2(L333)是近年来新涌现的电池材料,由于比容量高、循环性能好、成本较LiCoO_2低等优势,有希望成为电动汽车或混合电动汽车的动力电池材料。因此,研究LiNi_(1/3)Co_(1/3)Mn_(1/)3O_2与其它正极材料共混的电池性能,对发展新型动力电池有重要意义。本论文利用LiNi_(1/3)Co_(1/3)Mn_(1/)3O_2容量高和LiMn_2O_4稳定性高的优势,将两者混合使用,系统研究了LiNi_(1/3)Co_(1/3)Mn_(1/)3O_2和LiMn_2O_4共混材料的循环性能和安全性能。
     采用AA型电池对锂离子共混正极材料进行循环性能的测试。通过实验研究表明: 91(90%L333+10%LiMn_2O_4)、82(80%L333+20%LiMn_2O_4)、73(70%L333+30%LiMn_2O_4)和55(50%L333+50%LiMn_2O_4)材料放电的比容量分别为147.9mAh/g、137.7mAh/g、134mAh/g和121mAh/g。LiNi_(1/3)Co_(1/3)Mn_(1/)3O_2和LiMn_2O_4共混材料有良好的电化学性能。在1C、2.75~4.2V的充电制度下, 82和73材料的循环性能与已经商品化的LiCoO_2相当,并且大电流放电后容量恢复率好。同时实验研究了在室温下循的LiNi_(1/3)Co_(1/3)Mn_(1/)3O_2及其共混材料电池的容量衰减主要是由于正极材料的性能恶化造成的。
     通过对共混材料的安全性研究表明,LiNi_(1/3)Co_(1/3)Mn_(1/)3O_2正极材料中添加LiMn_2O_4可使电池的安全性有很大程度的改善。MCMB/91、MCMB/82、MCMB/73和MCMB/55电池最高分别可以通过3C5V、3C10V、3C15V、3C15V的过充;LiMn_2O_4、73和55的过充稳定性较高;通过SEM和XRD的检测得出共混材料耐过充性差异是脱锂态L333正极材料不稳定性造成的;采用适当的充电模式,避免高倍率充电,是防止电池爆炸的关键;适当的正负极容量匹配可以提高电池的耐过充性。MCMB/91、MCMB/82、MCMB/73和MCMB/55电池最高分别可以通过170℃、175℃、175℃和175℃的热箱实验。同时研究发现共混材料锂离子电池在高温下发生爆炸的主要原因是正极材的料分解并参与放热反应引起的。
     不同比例共混正极材料组装的AA型锂离子电池均通过短路和穿实验。
The positive electrode material LiNi_(1/3)Co_(1/3)Mn_(1/)3O_2 is the Lithium-ion battery material which newly emerged in recent years. Because of its’high capacity, good cyclic performance, low cost compared to LiCoO_2 and so on, it hopefully come to be in the application of electric vehicles and hybrid electric vehicles. To greatly improve the performance of lithium-ion batteries, we utilize the advantages of LiNi_(1/3)Co_(1/3)Mn_(1/)3O_2 and LiMn_2O_4 and mixed them to improve the materials’integrative characteristics. The cyclic and safety performance of the mixed cathode materials are researched in the paper.
     To detect the cyclic performance, the mixed cathode materials are assembled to AA-size batteries. The results show that the discharge capacities of the mixed materials 91 (90%L333+10%LiMn_2O_4)、82(80%L333+20%LiMn_2O_4)、73 (70%L333+30%LiMn_2O_4)和55(50%L333+50%LiMn_2O_4) are 147.9mAh/g、137.7mAh/g、134mAh/g and 121mAh/g . The electric performance of 82 and 73 is close to LiCoO_2 which was already put into market. And the capacity fading mechanism of the mixed materials are caused by the deterioration of the cathode materials.
     The addition of LiMn_2O_4 into LiNi_(1/3)Co_(1/3)Mn_(1/)3O_2 cathode material can improve the safety performance in a deep degree. The overcharge-resistance performance of lithium-ion batteries was detected by overcharging batteries assembled with different cathode materials. MCMB/91、MCMB/82、MCMB/73和MCMB/55 batteries respectively can pass the over-charging at 3C5V、3C10V、3C15V、3C15V, and among them73 and 55 present higher overcharge stability. The major reason for batteries explosion on overcharging was explained by the thermal stability of different delithiation degrees of different cathode materials.
     Studies on oven experiment indicate that the addition of LiMn_2O_4 to LiNi_(1/3)Co_(1/3)Mn_(1/)3O_2 can improve the thermal stability of the batteries. The main reason for the batteries explosion was the exothermic reaction caused by L333 at high temperatures.
     In addition, short-circuit and nail penetration performances of AA-size batteries with different cathode materials show different safety. And the mixed cathode materials are also proved to be safe.
引文
1. Adschiri T, Hakuta Y, Kanamura K, et al. Continuous production of LiCoO2 fine crystals for lithium batteries by hydrothermal synthesis under supercritical condition[J].High Pressure Research, 2001, 20(1~6):373~384.
    2. 杨晓西,王铁军,丁静,等。锂离子电池及其材料的发展近况[J]。华南理工大学学报,1999,27(5):52~58
    3. 郭炳焜, 徐徽, 王先友等. 锂离子电池[M].长沙: 中南大学出版社, 2002. 34~36
    4. Doron Aurbach, Yair Ein-Eli, Orit Chusid. The correlation between the surface chemistry and the performanceof Li/carbon intercalation anodes for rechargeable “Rocking-chair” type batteries, J. Electrochem. Soc., 1994,141(3): 603~611
    5. 钟俊辉. 锂离子电池及其材料,电池,1996,26(2): 91~95.
    6. 王凤. 掺杂型尖晶石 LiMn2O4 的试验研究与合成[D]. 2005. 昆明理工大学. 昆明:4~5
    7. 禹筱元. 层状 LiCo1/3Mn1/3Ni1/3O2 与改性尖晶石 LiMn2O4 的研究开发—锂离子电池正极材料的深度研发之一[D]. 2005. 中南大学. 长沙:8
    8. Wang zhixing, Li Xinhai, Chen Qiyuan, et al. Study on diffusion of Hydrogen in AB5 Non-stoichiometric Hydrogen Absorbing Alloys[J]. Journal of rare earths, 2003, 21(6):657-659
    9. Koksbang R, Rarker J, Shi H, et a1.Cathode materials for lithium rocking chair batteries[J]. Solid State Ionics, 1996,84:11~21.
    10. Vander V A, Aydinol M K, Ceder G. First-Principles investigation of phase stability in LixCoO2 [J]. Physical Review B, 1998,58 (6):2975~2987.
    11. S. R. S. Prabaharan, Tou. Yong, Ahmad Fauzi, et al. soft-combustition synthesis of a new cathode-active material, LiVWO6, for lithium-ion batteries [J]. J. Power Sources, 2001, 97-98: 535-540
    12. Shoufeng Yang, Yanning Song, Katana Ngala, et al. Performance of LiFePO4 as lithium battery cathode and comparison with manganese and vanadium oxides [J]. J. Power Sources, 2003, 119-121:239-246
    13. NiDupre, J. Ganbicher, T. lemercier, et al. Positive electrode materials for lithium batteries based on VoPo4 [J]. Solid State Ionics, 2001, 140:209-221
    14. Mizushima K. LixCoO2(0    15. R. Alcantara, P. lavela, J. L. Tirado, et al. SPES, LiMAS NMR, and Ni3+ EPR evidence for the formation of Co2+-containing spinel phases in LiCoO2 cycled electrode materials[J]. J. Electroanalyticalchemistry, 1998, 454:178-181
    16. Zhao xinbing, Cao Gaoshao, Zhang Lijuan, et al. Electrochemical properties of some cobalt antimonides for lithium-ion batteries[J]. Rare metals, 2003, 22(4):298-303
    17. Randolph A. Leising,Marcus J. Palazzo et al. Abuse testing of lithium-ion batteries Characterization of the overcharge reaction of LiCoO2/ graphite cells[J], Journal of the Electrochemical Society, 2001, 148(8): A838-A844
    18. Delmas C, et al. Lithium batteries: a new tool in solid state chemistry[J]. International Journal of Inorganic materials, 1999, (1):11~19.
    19. Ohzuku T, Ueda A. Nagayama M. Electrochemisty and structural chemistry of LiNiO2(R3m) for 4 volt secondary lithium cells[J]. J. Electrochem. Soc., 1993,140(7):1862~1870.
    20. Yingke Zhou,Jier Huang,Chengmin Shen,etal.Synthesis of highly ordered LiNiO2 nanowire arrays in AAO templates and their structural properties [J]. Materials Science and Engineering, 2002, A335: 260-267
    21. 田彦文,翟秀静,高虹,等。锂离子电池正极材料 LiNiO2 的制备和性能研究[J]。无机材料学报,1999, 14(3): 483-486
    22. 袁荣忠,翟美臻,于作龙。锂离子电池镍系正极材料的热稳定性研究进展[J]。无机材料学报,2003,18(5): 973~978
    23. Thackery M M. Structural considerations of layered and spinel lithium oxides for lithium-ion battery[J]. J. Electrochem. Soc., 1995, 142(8): 2558~2560.
    24. 万新华. 锂离子电池的高温和安全性能研究[D]. 北京科技大学, 2004:15
    25. 陈彦彬. 锂离子蓄电池正极材料 LiMn2O4 的研究进展[J].电源技术, 2000, 24(4): 238~241
    26. 李智敏, 仇卫华, 曹全喜等. LiMn2O4 正极材料高温电化学性能的研究[J]. 硅酸盐学报, 2004, 32(1):10~14
    27. Masaya T, Shin-ichi T, Koji T. Reaction behavior of LiFePO4 as a cathode material for rechargeable lithium batteries[J]. Solid State Ionics, 2002, 148(3-4): 283~289.
    28. Takahashi M, Tobishima S, Takei K, et al. Characterization of LiFePO4 as the cathode material for rechargeable lithium batteries[J]. Journal of Power Sources, 2001, 97-8: 508-511.
    29. 卢俊彪,张中太,唐子龙等.一种新型的锂离子电池正极材料 LiFePO4[J].稀有金属材料与工程, 2004,33(7): 679~683.
    30. 禹筱元, 胡国荣, 彭忠东等. 层状 LiCo1/3Mn1/3Ni1/3O2 正极材料合成及电化学性能[J]. 电源技术, 2003, 29(10): 641~644
    31. Zh.L. Liu, A.Sh. Yu, Y. J. Lee. Synthesis and characterization of LiNixCoyMn1-x-yO2 as the cathode materials of secondary lithium batteries [J]. J. Power sources, 1999, 81-82: 416~4I9
    32. M. Yoshio, H. Noguchi, J.I. Iton, et al. Preparation and properties of LiNixCoyMn1-x-yO2 as a cathode for lithium ion batteries[J]. J. Power sources, 2000, 90:176~181
    33. Tsutomu Ohzuku, Yoshinari Makimara. Layered lithium Insertion Material of LiCo1/3Mn1/3Ni1/3O2 for Lithium-Ion Batteries [J]. Chemistry Letters, 2001, 642~643
    34. Y.Koyama, I.Tanaka, H.Adachi, et a1. Crystal and electronic structures of superstructural LiCo1/3Mn1/3Ni1/3O2 [J]. J.Power Sources, 2003, 119-121:644~648
    35. B.J.Hwang, Y.W.Tsai, D.Curlier, et al. A combined computational experimental study on LiCo1/3Mn1/3Ni1/3O2 [J]. Chem.Mater., 2003,15: 3676~3682
    36. K. M. Shaju, G. V. Subba Rao, B.V. R. Chowdari. Performance of Layered LiCo1/3Mn1/3Ni1/3O2 for Li-ion batteries [J]. Electrochimica Acta, 2002, 48: 145~151
    37. Obrovac M.N., Mao O., Dahn J.R. Structure and electrochemistry of LiMO2 (M=Ti, Mn, Fe, Co, Ni) prepared by mechanochemical synthesis, Solid State Ionics, 1998, 112(1-2): 9~19
    38. A.D.Landa,C.C.Chang,P.N.Kumta, et a1. Phase stability of Li(Mnl-xCox)02 oxide:an ab initio study[J].Solid State Ionics,2002,149:209~215
    39. H.Park , C.S.Yoon, S.G.Kang, H.S.Kim, S.I. Moon,Y.K. Sun. Synthesis and structural characterization of layered LiCo1/3Ni1/3Mn1/3O2 cathode material by ultrasonic spray pyrolysis method, Electrchimica Acta 2004 (49): 557~563
    40. G.Vitins, K.West. Lithium intercalation into layered LiMnO2 [J]. J. Electrochem Soc, 1997,144: 2587~2592.
    41. I. Belharouak, Y.-K. Sun, J. Liu, K. Amine, LiCo1/3Ni1/3Mn1/3O2 as a suitable cathode for high power applications, Journal of Power Sources, 2003 (123) 247~252
    42. Naoaki Yabuuchi, Tsutomu Ohzuku, Novel lithium insertion material of LiCo1/3Ni1/3Mn1/3O2 for advanced lithium-ion batteries, Journal of Power Sources, 2003 (119-121): 171~174
    43. T. H. Cho , S. M. Park , M. Yoshio , T. Hirai , Y. Hideshima, Effect of synthesis condition on the structural and electrochemical properties of Li[Co1/3Ni1/3Mn1/3]O2 prepared by carbonate co-precipitation method, Journal of Power Sources, 2005 (142) 306~312
    44. 王鸿麟, 马丈计, 周晓军. 锂离子电池组安全性能分析[J].无线电工程. 2001,5:31
    45. 何平.锂离子电池用层状锰酸锉正极材料的制备及性能研究[D].南京航空航天大学.2006: 5~12
    46. 刘小虹, 余兰. 锂离子电池电解液与安全性能[J]. 电池, 2004, 12: 404~405
    47. 曹笃盟, 李志友, 周科朝.锂离子电池正极材料热稳定研究进展性[J]. 材料导报, 2003,9: 51~53
    48. R.Spotnitz and J.Franklin. Abuse behavior of high-power, lithium-ion cells [J], J. Power Sources, 2003, 113: 81~100
    49. Shin-ichi Tobishima, Koji Takei, Yoji Sakurai. Lithium-ion batteries safety [J], J. Power Sources, 2000, 90(2): 188~195
    50. Shin-ichi Tobishima and Jun-ichi Yamaki. A consideration of lithium cell safety [J], J. Power Sources, 1999, 81-82: 882~886
    51. Rosa Isla Díaz, Dolores Días Cabrera. Safety climate and attitude as evaluation measures of organizational safety,Accid. Anal. and Prev. . 1997,29(5) : 643~650
    52. P.W.Krehl,M.F.Pyszczek.Discharge and safety characteristics of improved low magnetic signature lithium cells [J]. Journal of Power Sources, 1997, 65:117~119
    53. 王 静, 余仲宝, 初旭光等. 锂离子电池安全性研究进展[J]. 电池,2003,12:388~91
    54. 唐致远, 管道安, 张娜等. 锂离子动力电池的安全性研究进展[J]. 化工进展,2005,(10):1098
    55. Randolph A.Leising,Marcus J.Palazzo Esther sans Takeuchi.Abuse testing of lithium-ion batteries Characterization of the overcharge reaction of LiCoO2/graphite cells [J]. Journal of the Electrochemical Society, 2001, 148(8) :A838~A844.
    56. Shin-ichi Tobishima, Jun-ichi Yamaki. A consideration of lithium cell safety [J]. Power Sources,1999, (9):882~886.
    57. Y. Saito, K. Takano, A. Negishi, Thermal bahaviors of lithium-ion cell during overcharge [J]. Power Sources, 2001, (7): 693~696.
    58. 胡广侠,解晶莹.影响锂离子电池安全性的因素[J].电化学, 2002, 8: 245~251
    59. 胡杨,李艳,连芳,钟盛文,刘庆国. 锂离子电池耐过充性研究进展 [J]. 电池, 2005,6:36
    60. MacNeil D D, Larcher D, Dahn J R. J . Safety of carbon Materials for lithium-ion batteries [J]. Electrochem. Soc.,1999 ,146 (10) : 3596~3602
    61. Yuichi Sato, et al. Particle-size effect of carbon powders on the discharge capacity of lithium ion batteries [J].Journal of Power Sources. 1998, 75:271~277.
    62. 徐仲榆, 郑洪河. 锂离子蓄电池碳负极/电解液相容性研究进展 I 碳电极界面化学与碳负极/电解液的相容性[J]. 电源技术.2000 .6: 47~53
    63. Maleki Hossein.Thermal stability studies of Li-ion cells and component [J]. J Electrochem Soc, 1999, 146(9):3224~3229.
    64. Richard M N. Accelerating rate calorimetry study on thermalstability of lithium intercalated graphite in electrolyte [J]. J. Electrochem Soc, 1999, 146(6): 2068~2077.
    65. Biensan Ph, et a1. On safety of lithium-ion cells[J].Journal of Power Sources, 1999.81-82:906~912
    66. D.Fouchard, L. Xie,W. Ebner, S.A. Megahed, Rechargeable lithium and lithium ion (RCT) batteries, in S.A. Megahed (Ed.), Electrochemical Society PV 94-28, Miami Beach, Florida, October 1994.
    67. Kensnin kitoh, Hiroshi Nemoto.100Wh Large Size Li-ion batteries and Safety tests [J]. Power Sources,1999,(9):887~890.
    68. 庞静,卢世刚. 高功率圆柱形锂离子动力蓄电池的研制[J].电源技术, 2005, (9):419.
    69. Ph. Biensan, B. Simon, J.P. Peres, A. de Guibert, M. Broussely, J.M. Bodet, F. Perton, [J]. Power Sources, 1999(9): 906~912.
    70. J.R. Dahn, Lithium-Ion Battery Tutorial and Update [J]: Power 2001, Anaheim, CA, Sep. 30 2001.
    71. H. Maleki, S.A. Hallaj, J.R. Selman et al. .Thermal properties of lithium-ion battery and components [J]. J.Electrochem. Soc. 1999,146 (3): 947~954.
    72. 李鹏, 韩恩山, 徐宁. LiCo1/3Mn1/3Ni1/3O_2的合成与性能[J]. 电源技术, 2005, 29(8):511~513
    73. K. M. Shaju, G. V. Subba Rao, B.V. R. Chowdari. Performance of Layered LiCo1/3Mn1/3Ni1/3O_2 for Li-ion batteries [J]. Electrochimica Acta, 2002, 48: 145~151
    74. Ohzuku T, Ueda A. Nagayama M. Electrochemisty and structural chemistry of LiNiO_2 (R3m) for 4 volt secondary lithium cells [J]. J. Electrochem. Soc., 1993,140(7):1862~1870
    75. Jeong E D, Won M S, Shim Y B. Cathodic properties of a lithium-ion secondary battery using LiCoO_2 prepared by a complex formation reaction. J. Power Sources,1998,70(1) : 70~77.
    76. Saito Y, Takano K, Negishi A. Termal behavior of lithium-ion cell during overcharge[J].J.Power Sources, 2001, 97-98: 693~696
    77. S. Venkatraman, Y. Shin, A. Manthiram. Phase relationship and structural and chemical stabilities of charged Li1-xCoO_2-and Li1-xNi0.85Co0.15O_2 cathodes [J]. Electrochem. Solid-State Lett., 2003, 6(1): A9~A12
    78. 李培植. 不同锂配比Li[Ni1/3Co1/3Mn1/3]O_2正极材料和合成与性能研究[D]. 江西理工大学. 2006: 58
    79. 王静. 锂离子电池的高温和安全性能研究[D]. 北京科技大学. 2004: 20~45

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700