喷墨打印锂离子薄膜电极和复合超电容材料的制备及电化学性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着微电子机械系统(MEMS)和超大规模集成电路技术(VLSI)的发展,对能源的微型化、集成化提出了越来越高的要求。民用电子器件如传感器、智能卡、便携式电子设备等众多领域的迅猛发展,也对化学电源的小型化、微型化和薄膜化提出了更高的要求。全固态薄膜锂离子电池因其良好的集成兼容性和电化学性能成为MEMS、VLSI、智能卡等能源微型化、集成化的最佳选择。近年来,人们一直在寻求锂离子薄膜微电池的最佳制备技术。
     超级电容器是介于传统电容器和电池之间的新型储能元件,它具有很高的功率密度、超长循环寿命以及能在低压下操作等特点。因此在大功率脉冲电源、电动车驱动电源等领域有广泛用途。另一方面,超电容虽然有非常优越的功率密度,但是最大的问题就是能量密度比较低。为了提高超电容的能量密度,负载型复合超电容材料也成为一大研究热点。
     本论文分为两大部分。第一部分,利用新颖的喷墨打印方法制备锂离子薄膜电极并对其电化学性能进行详细的表征和深入的研究。第二部分,将纳米水合钌氧化物粒子负载在介孔碳上制备出复合材料,并详细考察其作为超电容材料的电化学性能。本论文的主要研究结果如下:
     1.利用喷墨打印技术制备薄膜电极需要使用纳米尺寸的电极材料。本文利用P123嵌段共聚物表面活性剂作为结构导向剂,通过溶胶凝胶方法合成得到了用作锂离子电池正极材料的纳米单晶LiCoO_2和LiMn_2O_4、用作锂离子电池负极的SnO_2和Li_4Ti_5O_(12)纳米多晶粉体以及可用于锂二次电池正极的单晶V_2O_5。其中纳米单晶LiMn_2O_4和单晶V_2O_5是首次采用该方法合成。通过对材料的结构分析以及电化学性能测试,得出如下结论:用P123作为模板剂通过溶胶凝胶方法在750℃氧气氛下热处理20h合成了具有理想层状岩盐结构的纳米单晶LiCoO_2,首次放电比容量可达149mAh/g,50次循环后容量保持率约为80%:用P123作为模板剂通过溶胶凝胶方法在750℃热处理6h得到直径在50nm以下具有金红石四方相结构的纳米多晶SnO_2;用P123作模板剂450℃下热处理4h得到纳米TiO_2,然后用所制备的纳米TiO_2和LiOH·H_2O作为反应物、丙酮作为球磨介质湿法球磨辅助进行固相反应合成,得到了具有尖晶石结构的纳米Li_4Ti_5O_(12)粒子(氧气氛下900℃煅烧8 h),所制备的纳米Li_4Ti_5O_(12)具有非常优异的循环性能和较高的放电比容量,首次放电比容量可达155 mAh/g,首次库仑效率为98.3%。在后续的循环过程中充放电效率接近100%;首次用P123作为模板剂通过溶胶凝胶方法在750℃氧气氛下煅烧15 h,得到晶粒生长完美、粒径在100~300 nm之间的纳米单晶LiMn_2O_4,在充放电倍率分别为0.2C、1C和2C时首次放电比容量分别约为110mAh/g、103mAh/g和90mAh/g,说明所制备的纳米单晶LiMn_2O_4具有较为优良的倍率特性;首次用P123作为模板剂通过溶胶凝胶方法600℃热处理2h得到具有四方棱锥体形貌的单晶V_2O_5,在电流密度为20 mA/g、电位区间为3.5~1.5V循环时首次放电比容量约为390mAh/g。经过35次循环后放电比容量为186mAh/g。容量损失主要在前三个循环,主要是由于在深度嵌锂(放电)过程中发生了不可逆相转变。
     2.采用喷墨打印方法的关键是纳米粒子在分散体系中的稳定性。怎样使具有电化学活性的锂离子电池材料在水体系中十分均匀地稳定分散,是工艺成功的关键步骤。本文首次通过联合采用空间位阻型聚合物分散剂和湿法球磨工艺成功地解决了喷墨打印技术中的墨水制备问题,成功地制备出了可用于锂离子电池的薄膜LiCoO_2正极、薄膜SnO_2负极、薄膜Li_4Ti_5O_(12)负极,建立了方便快速的喷墨打印制备薄膜电极的方法,并对薄膜电极的形貌和电化学性能进行了深入的研究。
     3.用喷墨打印方法在商用铝箔上制备了厚度仅为1.27μm的薄膜LiCoO_2正极,在电位区间为3.0~4.2V、电流密度约为40μA/cm~2时的可逆放电容量约为15μAh/cm~2.μm,但是这种直接喷墨打印出的LiCoO_2薄膜正极的充放电稳定性较差。主要原因是由于在墨水制备的过程中球磨工艺对其晶体结构造成了一定程度的破坏,另外Co在墨水体系中的溶出以及高分子分散剂对纳米粒子的包覆也对薄膜电极的电化学性能有一定的影响。试验表明球磨过程使得原来具有理想的层状岩盐结构的LiCoO_2材料中阳离子无序度明显增加,不可逆相变加剧,而且小粒径的LiCoO_2材料受球磨影响更为严重。
     对喷墨打印在蒸金铝箔上的LiCoO_2薄膜正极进行了轻微的后续热处理(450℃,30min)可使不可逆相变减弱,明显提高材料的电化学稳定性。在电流密度为20μA/cm~2时薄膜LiCoO_2电极的首次放电容量为20.31μAh/cm~.μm(81mAh.g~(-1))。充放电过程中库仑效率先是逐渐上升,10次后其充放电效率可接近100%,第50次循环时的放电比容量为18μAh/cm~2.μm(71 mAh.g~(-1)),保持初次容量的87%。
     4.首次采用新颖的喷墨打印方法在商用铜箔上成功制备出了可用于锂离子电池负极的SnO_2薄膜电极,薄膜电极的厚度可以通过改变打印层数来进行调节。其中,单层打印电极的厚度约为770~780nm,10层打印电极在8 Mpa压延后的平均厚度约为2.3μm。打印薄膜SnO_2电极仍然具有四方相的金红石晶体结构。循环伏安曲线表明,峰电流和扫描速度呈现较好的线性关系,体现了薄层电极的重要特征。在电流密度为33μA/cm~2时,薄膜电极的首次放电比容量高达812.7mAh/g,循环性能也得到了一定程度的改善,这主要是由于薄膜化可以在一定程度上缓解由于体积膨胀收缩而造成的活性物质的失活以及高度分散的导电剂乙炔黑在薄膜中起到的“缓冲基质”的作用。薄膜电极容量衰减的主要原因是纳米SnO_2粒子的团聚以及在循环过程的体积膨胀和收缩而造成的粉化现象。
     5.首次采用新颖的喷墨打印方法成功制备出了可用于锂离子电池负极的Li_4Ti_5O_(12)薄膜电极。
     在商用铜箔基底上采用喷墨打印方法制备了薄膜厚度非常均匀一致的Li_4Ti_5O_(12)薄膜电极。在电流密度为20.8μA/cm~2时首次比容量可达172mAh/g,接近理论容量。50次循环后比容量约为107.8mAh/g,容量保持率为62.7%。在电流密度高达208μA/cm~2时的放电比容量仍可达173mAh/g,体现了薄膜电极优越的倍率特性。存在问题是薄膜电极的充放电稳定性较差。
     对打印在金片基底上的Li_4Ti_5O_(12)薄膜在550℃下热处理90 min得到热处理薄膜Li_4Ti_5O_(12)电极,试验结果表明热处理薄膜电极的充放电稳定性显著提高。循环伏安测试表明峰电流和扫描速度呈现非常好的线性关系,体现了薄层电极的特征。经过后续热处理的薄膜Li_4Ti_5O_(12)电极和热处理LiCoO_2薄膜电极一样,存在一个“活化”阶段。经过300次循环后,薄膜电极的容量保持率约为峰值比容量(172 mAh/g)的88%,显示了优越的循环稳定性。薄膜电极的高比容量可以归因于以下两个方面:纳米尺寸的Li_4Ti_5O_(12)有利于活性物质的充分利用;高比表面Li_4Ti_5O_(12)的双电层电容贡献。
     6.用介孔氧化硅分子筛(SBA-15)作为硬模板,用蔗糖作为碳源通过两遍浸渍制备了有序介孔碳(MC)。采用液相吸附的方法将低量的RuO_2.xH_2O纳米粒子以溶胶的形式首次负载在介孔碳上得到RuO_2.xH_2O/MC复合材料(载Ru量为0.9~5.4wt%)并对其电容器性能进行了详细的研究。分析表明RuO_2.xH_2O/MC复合材料不仅比电容明显增加,而且还保持了介孔碳优越的倍率特性。当扫描速度为25 mVs~(-1)、电位区间-0.2~0.8V(vs.Ag/AgCl)、在0.1M H_2SO_4水溶液电解质体系中,载钌量为3.6%的复合材料比电容从115增加到181 F/g,增加幅度约为57%。通过扣除介孔碳在复合材料中的电容贡献可估算出水合钌氧化物的比电容高达1527 F/g,表明复合材料中水合钌氧化物具有很好的利用率。负载的RuO_2.xH_2O纳米粒子在介孔碳载体上呈现的高度分散的状态以及具有无定形水合物结构是其同时表现出高比电容和高利用率的主要原因。载量为3.6%的复合材料经过1000次循环后其比电容保持率仍为97.2%,表明复合材料具有优异的循环稳定性。
With the development of microelectromechanical systems (MEMS) and very large-scale integration (VLSI), there is an increasing requirement in the miniaturization and integration of power sources. The reduction in size and power requirement of electronic devices is the major driving force behind the development of all-solid-state thin-film batteries. Applications focus on the improvement of existing consumer and medical products, such as smart cards, sensors, portable electronic devices, as well as on the integration with electronic chips and microelectromechanical systems. With better integration compatibility and electrochemical performance, thin-film lithium ion battery becomes the optimal choice for miniaturization and integration of MEMS and VLSI power.
    Electrochemical (EC) capacitors, also called supercapacitors, are a kind of new-style energy-storing sources between conventional capacitors and batteries. They can provide high power densities and unusual cycleability and therefore are urgently needed for a number of technologically important systems. These systems include acceleration power for electric vehicles, electrical regenerative braking storage for electric drive systems, power assist to hybrid vehicles, starting power for fuel cells, pulse power for mobile telecommunication and other electronic devices which require high power to operate. In addition, when EC capacitors are coupled with batteries, they can reduce the peak power requirement, prolong the lifetime and reduce the energy requirement (or the size) of the battery. On the other hand, the big problem for the current supercapacitors such as carbon materials is their low energy density. Therefore, many researchers focus on the composite supercapacitor materials such as carbon-supported RuO_2 in order to increase the energy densities.
    This thesis includes two major parts. Firstly, thin-film electrodes including LiCoO_2 cathode, SnO_2 anode and Li_4Ti_5O_(12) anode used for lithium ion batteries were successfully fabricated by a very novel and facile route of ink-jet printing technique. In addition, their structure, morphology and electrochemical performance were investigated in great detail. Secondly, RuO_2.xH_2O/MC composite materials obtained by loading small amount of amorphous hydrous ruthenium oxide nanoparticles on mesoporous carbon (MC) were fabricated and used for supercapacitors for the first time. Their electrochemical behaviors were also investigated.
    The main results are as follows.
    1. Nano-sized or single-crystalline materials including LiCoO_2, LiMn_2O_4, V_2O_5, SnO_2 and Li_4Ti_5O_(12) were synthesized by using tri-block copolymer amphiphilic surfactant (EO_(20)PO_(70)EO_(20), always abbreviated as P123) as a structure-directing agent through sol-gel process because nano-sized materials with good electrochemical activity are demanded during the subsequent ink-jet printing process. Among them, the nano-sized single-crystalline LiMn_2O_4 and single-crystalline V_2O_5 were synthesized for the first time by using this method. At the same time, the electrochemical performances of these materials were investigated.
    2. The key procedure for the ink-jet printing process is to obtain the stability of nano-sized materials in the dispersion system. The stable LiCoO_2, SnO_2 and Li_4Ti_5O_(12)"inks" containing conductive agent and binder were successfully prepared by employing both wet ball-milling technology and steric polymeric dispersant.
    3. Thin film LiCoO_2 electrode with the uniform thichness of 1.27μm was successfully prepared by using the novel facile and low-cost ink-jet printing technique onto the commercial Al substrate. The initial discharge capacity was 15μAh/cm~2.μm at charge current of 40 μA/cm~2 in the potential range of 3.0—4.2 V (vs. Li~+/Li) . CV measurements showed the obvious phase transition and obvious capacity loss was also observed with respect to the as-printed thin film LiCoO_2 electrode without any post-annealing process. The reason for the capacity loss was attributed to both the crystalline structure change during the wet ball-milling process and the polymeric dispersant coating on the surface of the nano particles. Secondly, thin film LiCoO_2 was also ink-jet printed on the gold-coated Al foil and was then followed by a slight annealing process at 450°C for 30 min in order to improve the electrochemical performance. The electrochemical performance was obviously improved after this slight heatment. The initial discharge capacity of thin film LiCoO_2 electrode at a charge current of 20μA/cm~2 in the potential range of 3.0~ 4.2 V (vs. Li~+/Li) was 20.31μAh/cm~2.μm (81 mAh.g~(-1)). The charge-discharge efficiency approached almost 100 % after 10 cycles. The discharge capacity was 18μAh /cm~2.μzm (71 mAh.g~(-1)), which is 87% of the initial capacity, after 50 charge-discharge cycles.
    Besides, the effects of three kinds of ball-milling processes on the crystalline structure and electrochemical performances of nano-sized LiCoO_2 were investigated in great detail. The ideal rock-salt structure of original nano-sized LiCoO_2 was obviously influenced by all these ball-milling processes employed in this paper. The
    structure of LiCoO_2 with smaller particle size was influenced more seriously.
    4. SnO_2 thin film electrodes on commercial Cu foil substrate as an anode for rechargeable lithium ion batteries were also successfully fabricatd by using ink-jet printing method for the first time. The distribution of as-printed thin film SnO_2 electrodes is smooth and uniform. The thickness can be adjusted by printing different layers. The thickness of monolayer is ca. 770-780 nm and the average thickness of the 10-layer film after compression is about 2.3 μm which was used for electrochemical measurements. The linear relationship between anodic peak current and the scan rate obtained by CV technique shows the characteristics of thin-film electrodes. High initial discharge capacity about 812.7 mAh/g was obtained at a constant discharge current density of 33 μA/cm~2 over a potential range of 0.05-1.2 V vs. Li~+/Li and the cycle performance is improved because the conducting agent AB can also perform as a better matrix for nano-structured thin films. Aggregation and pulverization due to the large volume expansion/contraction during the alloy/dealloying process gives rise to capacity decay which can be concluded by comparison of SEM and TEM pictures of the thin films before and after the charge-discharge process.
    5. Thin-film Li_4Ti_5O_(12) electrode, which can be used as an anode in lithium ion batteries, was successfully fabricated also employing the ink-jet printing technique for the first time.
    Firstly, the thin-film Li_4Ti_5O_(12) electrode was ink-jet printed on commercial Cu foil without any post-annealling heat-treatment. The cross-sectional SEM image showed that the uniform thickness of monolayer ink-jet printing was about 700-800 nm. The sharp and symmetric reversible redox couples located at about 1.55V in CV curves corresponds to the spinel structure of Li_4Ti_5O_(12). High initial discharge capacity about 172 mAh/g is obtained at a constant discharge current density of 20.8 μA/cm~2 over a potential range of 1.0-2.0 V vs. Li~+/Li, which almost reaches the theoreticl capacity 175 mAh/g. Even at a very high current density of about 208 μA/cm~2, the initial discharge capacity was not decreased compared to that at the low current densities which showed the excellent rate capabilities of the thin-film electrodes. The capacity retention was about 62.7% after 50 cycles and the cycle stability was not so good.
    Secondly, thin-film Li_4Ti_5O_(12) electrode was also ink-jet printed on Au plate and then followed by a post-annealing process at 550°C for 90min in order to improve the
    electrochemical performance of thin film Li_4Ti_5O_(12) electrodes. The cross-sectional SEM image showed that the uniform thickness of 10-layer ink-jet printing process was about 1.7~1.8μm. The linear relationship between peak current and the scan rate obtained by CV technique shows the characteristics of thin-film electrodes. Excellent cycle performance was observed at a constant discharge current density of 10.4 μA/cm~2 over a potential range of 1.0-2.0 V vs. Li~+/Li. The capacity retention after 300 cycles was about 88% of the peak discharge capacity (172 mAh/g). At the same time, high discharge capacity was obtained. The high discharge capacity can be attributed to both the thin-film characteristics and the double-layer capacity due to the highly dispersed nano Li_4Ti_5O_(12).
    6. Amorphous hydrous ruthenium oxide/mesoporous carbon powders (RuO_2.xH_2O/MC) were prepared by liquid adsorption method. The mesoporous characteristics of mesoporous carbon and the high specific capacitance and highly electrochemical reversibility of RuO_2·xH_2O play a dominant role in the electrochemical properties of amorphous hydrous ruthenium oxide/mesoporous carbon (RUO2.XH2O/MC) composites.
    Electrochemical measurements showed that the RUO2.XH2O/MC composites prepared by loading small amount of RuO_2.xH_2O nanoparticles (ranged from 0.9 to 5.4 wt % Ru) on MC not only have an enhanced specific capacitance but also retain the ideal capacitive performance such as highly reversibility, excellent rate capability, and good stability of MC. The RuO_2.xH_2O/MC composite (3.6 wt.% Ru) exhibited an increase of the specific capacitance of approximately 57% (from 115 to 181 F/g) at the scan rate of 25mVs~(-1)in 0.1 M H_2SO_4 aqueous electrolyte within the potential range from -0.2 to 0.8V vs. Ag/AgCl. The specific capacitance of RuO_2.xH_2O was estimated to be 1527 F/g by subtracting the contribution from MC in the composite in case of 3.6 wt.% Ru loaded electrode at the scan rate of 25 mVs~(-1), which indicates the high utility of the active material RuO_2.xH_2O. Cycle performance tests derived by CV measurements showed that 97.2% of capacitance retention for the RuO_2.xH_2O/MC composite (3.6 wt.% Ru) was observed after 1000 cycles.
引文
[1] 吴宇平,戴晓兵,马军旗,程预江.锂离子电池—应用与实践[M].北京:化学工业出版社,2004:84-85.
    [2] M. Winter, J. O. Besenhard, P. Novak, et al., Insertion Electrode Materials for Rechargeable Lithium Batteries[J]. Adv. Mater., 1998, 10(10): 725-763.
    [3] 张建中,王保民,李昌进.微电池的最新研究动态[J].电源技术,2002,26:237-241
    [4] S. D. Jones, J. R. Adridge. Development and performance of a rechargeable thin-film solid-state microbattery[J]. J. Power Sources, 1995, 54: 63-67
    [5] 李志栓,吴孙桃,李静,郭东辉.薄膜锂电池的研究进展[J].电源技术,2004,28(5):312-317
    [6] M Duclot, J. L. Souquet Glassy materials for lithium batteries: Electrochemical properties and devices performances [J] J Power Sources, 2001, 97-98: 610-615
    [7] R. P. Raffaelle, J. D. Harris, D. Hehemann, D. Scheiman, G. Rybicki, A. F. Hepp. A facile route to thin-film solid state lithium microelectronic batteries[J]. J. Power Sources, 2000, 89: 52-55
    [8] B. Huang, C. C. Cook, S. Muli, P. P. Soo, D. H. Staelin, A. M. Mayes, D. R. Sadoway. High energy density, thin-film, rechargeable lithium batteries for marine field operations[J]. J. Power Sources, 2001, 97-98: 674-676
    [9] H. Ohtsuk, Y. Sakurai. Characteristics of Li/MoO3-x thin film batteries[J]. Solid State Ionics, 2001, 144: 59-64
    [10] S. Lee, P. Liu, C. E. Tracy, D. K. Benson. All-Solid-State Rocking Chair Lithium Battery on a Flexible Al Substrate[J]. Electrochem. Solid-State Lett., 1999, 2(9): 425-427.
    [11] S. D. Jones, J. R. Adridge. A microfabricated solid-state secondary Li battery[J]. Solid State Ionics, 1996, 86-88: 1291-1294.
    [12] Neudecker B J, Zuhr R A., Bates J B. Lithium silicon tin oxynitride (LiySiTON): high—performance anode in thin—film lithium—ion batteries for microelectronics[J]. J Power Sources, 1999, 81-82:27-32.
    [13] Y. J. Park, K. S. Park, J. G. Kim, M. K. Kim, H. G. Kim, H. T. Chung. Characterization of tin oxide/LiMn_2O_4 thin-film cell[J]. J. Power Sources, 2000, 88: 250-254.
    [14] N. Kuwata, J. Kawamura, K. Toribami, T. Hattori, N. Sata. Thin-film lithium-ion battery with amorphous solid electrolyte fabricated by pulsed laser deposition [J]. Electrochem. Comm., 2004, 6: 417-421.
    [15] P. Birke, F. Salam, S. Doring, W. Weppner. A first approach to a monolithic all solid state inorganic lithium battery[J]. Solid State Ionics, 1999, 118: 149-157.
    [16] S. Lee, H. Balk, S. Lee. An all-solid-state thin film battery using LISIPON electrolyte and Si-V negative electrode films[J]. Electrochem. Comm., 2003, 5: 32-35
    [17] 朱先军,刘韩星,胡晨,甘小燕,周健,欧阳世翕.全固态薄膜锂微电池的研究进展[J].电池,2005,35(1):72-74.
    [18] I. A. Courtney, J. R. Dahn. Electrochemical and in situ x-ray diffraction studies of the reaction of lithium with tin oxide composites[J]. J. Electrochem. Soc., 1997, 144(6): 2045-2052.
    [19] I. A. Courtney, J. R. Dahn. Key factors comtrolling the reversibility of the reaction of lithium with SnO_2 and Sn_2BPO_6 glass[J]. J. Electrochem. Soc., 1997, 144(9): 2943-2948.
    [20] M. Baba, N. Kumagai, H. Kobayashi, O. Nakano, K. Nishidate. Fabrication and electrochemical characteristics of all solid-state lithium-ion batteries using V_2O_5 thin films for both electrodes[J]. Electrochem. Solid State Lett., 1999, 2(7): 320-322.
    [21] M. Baba, N. Kumagai, N. Fujita, K. Ohta, S. Komaba, H. Groult, D. Devilliers, B. Kaplan. Fabrication and electrochemical characteristics of all-solid-state lithium-ion rechargeable batteries composed of LiMn_2O_4 positive and V_2O_5 negative electrodes [J]J. Power Sources, 2001, 97-98:798-800.
    [22] H. Nakazawa, K. Sano, M. Baba. Fabrication by using a sputtering method and charge-discharge properties of large-sized and thin-filmed lithium ion rechargeable batteries[J]. J. Power Sources, 2005, 146(1-2): 758-761
    [23] M. Baba, N. Kumagai, H. Fujita, K. Ohta, K. Nishidate, S. Komaba, B. Kaplan, H. Groult, D. Devilliers. Multi-layered Li-ion rechargeable batteries for a high-voltage and high-current solid-state power source[J]. J. Power Sources, 2003, 119-121: 914-917
    [24] 陈光华,邓金祥编著.纳米薄膜技术与应用[M].北京:化学工业出版社(材料科学与工程出版中心)
    [25] H. Shin, S. Pyun. Investigation of lithium transport through lithium cobalt dioxide thin film sputter-deposited by analysis of cyclic voltammogram, Electrochimica Acta[J] 2001, 46: 2477-248
    [26] J. Pracharova, J. Pridal, J. Bludska, I. Jakubec, V. Vorlicek, Z. Malkova, Makris Th. Dikonimos, R. Giorgi, L. Jastrabik. LiCoO_2 thin-film cathodes grown by RF sputtering, J. Power Sources, [J]2002, 108: 204-212.
    [27] Y. J. Kim, E. Lee, H. Kim, J. Cho, Y. W. C. Cho, B. Park, S. M. Oh, J. K Yoon, Changes in the Lattice Constants of Thin-Film LiCoO_2 Cathodes at the 4.2 V Charged State, J. Electrochem. Soc. [J] 2004, 151(7): A1063-A1067.
    [28] C. Liao, K. Fung. Lithium cobalt oxide cathode film prepared by ff sputtering, J. Power Sources[J] 2004, 128: 263-269.
    [29] K. Kanamura, S. Toriyama, S. Shiraishi, M. Ohashi, Z. Takehara. Studies on electrochemical oxidation of non-aqueous electrolyte on the LiCoO_2 thin film electrode [J]. J. Electroanal. Chem., 1996,419:77-84.
    
    [30] P.Birke, W.F.Chu, W.Weppner. Materials for lithium thin-film batteries for application in silicon technology [J]. Solid State Ionics,1997,93:l-15
    
    [31] H.Benqlilou-Moudden, GBlondiaux, P.Vinatier, A.Levasseur. Amorphous lithium cobalt and nickel oxides thin films:preparation and characterization by RBS and PIGE [J].Thin Solid Films, 1998,333:16-19.
    
    [32] C.N. P. Fonseca, J. Davalos, M. Kleink, M.C.A. Fantini, A. Gorenstein. Studies of LiCoO_2 thin film cathodes produced by r.f. sputtering [J]. J. Power Sources,1999,81-82:575-580.
    
    [33]J. B. Bates,a, N. J. Dudney, B. J. Neudecker, F. X. Hart, H. P. Jun, S. A. Hackney. Preferred Orientation of Polycrystalline LiCoO_2 Films [J]. J. Electrochem. Soc.,2000, 147 (1): 59-70.
    
    
    [34] J.B. Bates, N.J. Dudney, B. Neudecker, A. Ueda, C.D. Evans. Thin-film lithium and lithium-ion batteries [J]. Solid State Ionics,2000,135 :33-45.
    
    [35]Kiyoshi Kanamura ,Takao Umegaki, Masahiro Ohashi, Shigetaka Toriyama,Soshi Shiraishi, Zen-ichiro Takehara. Oxidation of propylene carbonate containing LiBF4 or LiPF_6 on LiCoO_2 thin film electrode for lithium batteries [J]. Electrochimica Acta,2001, 47 :433-439.
    
    [36] J. F. Whitacre, W. C. West, E. Brandon, B. V. Ratnakumar. Crystallographically Oriented Thin-Film Nanocrystalline Cathode Layers Prepared Without Exceeding 300℃ [J]. J. The Electrochem. Soc, 2001,148 (10): A1078-A1084.
    
    [37] Y. Rang, H. Lee, S.Park, P. S. Lee, J. Lee. Plasma Treatments for the Low Temperature Crystallization of LiCoO_2 Thin Films [J]. J. Electrochem. Soc, 2001,148 (11): A1254-A1259 .
    
    [38] S.Pyun, H.Shin. The kinetics of lithium transport through Li_(1-d)CoO_2 thin film electrode by theoretical analysis of current transient and cyclic voltammogram [J]. J.Power Sources, 2001,97-98:277-281.
    
    [39] J.F. Whitacre, W.C. West, B.V. Ratnakumar. The influence of target history and deposition geometry on RF magnetron sputtered LiCoO_2 thin films [J]. J. Power Sources,2001,103: 134-139
    
    [40] J.C. Dupin, D. Gonbeau, H. Benqlilou-Moudden, Ph. Vinatier, A. Levasseur. XPS analysis of new lithium cobalt oxide thin-films before and after lithium deintercalation [J]. Thin Solid Films,2001,384:23-32.
    
    [41] M. Martin, F.Faverjon. A multilayer semi-industrial vacuum deposition equipment for producing ultrathin batteries [J]. Thin Solid Films ,2001,398 -399:572-574.
    
    [42] P.J. Bouwman, B.A. Boukamp, H.J. M. Bouwmeester, P.H. L. Notten. Influence of Diffusion Plane Orientation on Electrochemical Properties of Thin Film LiCoO_2 Electrodes [J]. J. Electrochem. Soc.,2002,149(6): A699-A709.
    [43] Y.J. Kim, T. Kim, J. W. Shin, B.Park, J.Chob. The Effect of Al_2O_3 Coating on the Cycle Life Performance in Thin-Film LiCoO_2 Cathodes [J].J. Electrochem.Soc.,2002,149(10): A1337-A1341
    
    [44] S. Lee, H. Baik, S. Lee. An all-solid-state thin film battery using LISIPON electrolyte and Si-V negative electrode films [J]. Electrochem. Comm.2003,5 :32-35.
    
    [45] K.-F. Chiu, F. C. Hsu, G S. Chen, M. K. Wu. Texture and Microstructure Development of RF Sputter-Deposited Polycrystalline Lithium Transition Metal Oxide Thin Films [J]. J.Electrochem. Soc., 2003,150 (4): A503-A507.
    
    [46]N. J. Dudney, Y. Jang. Analysis of thin-film lithium batteries with cathodes of 50 nm to 4 mm thick LiCoO_2 [J]. J. Power Sources ,2003,119-121:300-304.
    
    [47]W. Kim. Characteristics of LiCoO_2 thin film cathodes according.to the annealing ambient for the post-annealing process [J]. J.Power Sources,2004,134:103-109.
    
    [48] Y. J. Park, K. S. Park, J. G Kama, M. K. Kim, H. G Kim, H. T. Chung, Characterization of tin oxide/LiMn2O4 thin-film cell. J. Power Sources,2000, 88: 250-254.
    
    [49] S. C. Nam, Y. S. Yoon , W. I. Cho, B. W. Cho, H. S. Chun, K. S. Yun, Enhancement of thin film tin oxide negative electrodes for lithium batteries. Electrochem. Commun.2001,3 :6-10.
    
    [50] S. C. Nam, Y. S. Yoon, W. I. Cho, B. W. Cho, H. S. Chun, K. S. Yun, Reduction of Irreversibility in the First Charge of Tin Oxide Thin Film Negative Electrodes. J. Electrochem. Soc.2001, 148 :A220-223.
    
    [51] C. Branci, N. Benjelloun, J. Sarradin, M. Ribes. Vitreous tin oxide-based thin film electrodes for Li-ion micro-batteries [J]. Solid State Ionics,2000,135:169-174
    
    [52] S. H. Choi, J. S. Kim, Y.S.Yoon. Fabrication and characterization of SnO_2-RuO_2 composite anode thinfilm for lithium ion batteries [J]. Electrochimica Acta,2004,50:547-552.
    
    [53] C.-L. Wang, Y. C. Liao, F. C. Hsu, N. H. Tai, M. K. Wu, Preparation and Characterization of Thin Film Li_4Ti_5O_(12) Electrodes by Magnetron Sputtering [J]. J. Electrochem. Soc.,2005, 152 (4): A653-A657.
    
    [54] J.D.Perkins, C.S.Bahn, P.A.Parilla, J.M.McGraw, M.L.Fu, M.Duncan, H.Yu, D.S.Ginley . LiCoO_2 and LCo_(1-x)Al_xxO_2thin film cathodes grown by pulsed laser ablation, J. Power Sources [J] 1999, 81-82:675-679.
    
    [55] J. M. McGraw, C. S. Bahn, PA. Parill, J. D. Perkins, D. W. Readey, D.S. Ginley. Li ion diffusion measurements in V_2O_5 and Li(Co_(1-x)Al_x)O_2 thin-film battery cathodes [J]. Electrochimica Acta ,1999,45:187-196.
    
    [56] J. D. Perkins, C. S. Bahn, J. M. McGraw, P. A. Parilla, D. S. Ginley. Pulsed Laser Deposition and Characterization of Crystalline Lithium Cobalt Dioxide .LiCoO_2 Thin Films [J]. J. Electrochem. Soc.,2001,148 (12): A1302-A1312 .
    [57] Y Iriyama, M.Inaba, T. Abe, Z. Ogumi. Preparation of c-axis oriented thin films of LiCOO_2 by pulsed laser deposition and their electrochemical propertiesv [J]. J. Power Sources,2001, 94: 175-182.
    
    [58] C. Julien, M.A. Camacho-Lopez, L. Escobar-Alarcon, E. Haro-Poniatowski. Fabrication of LiCoO_2 thin-film cathodes for rechargeable lithium microbatteries [J]. Mater. Chem. Phys.,2001, 68:210-216.
    
    [59] Y.Iriyama, H. Kurita, I. Yamada, T. Abe, Z. Ogumi. Effects of surface modification by MgO on interfacial reactions of lithium cobalt oxide thin film electrode [J]. J.Power Sources,2004,137 : 111-116
    
    [60] F. Ding, Z. Fu, M. zhou, Q. Qin, Tin-Based Composite Oxide Thin-Film electrodes Prepared by Pulsed Laser Deposition [J]. J. Electrochem. Soc. 1999,146 :3554-3559.
    
    [61] Z.W. Chen, J.K.L. Lai, C.H. Shek. High-resolution transmission electron microscopy investigation of nanostructures in SnO_2 thin films prepared by pulsed laser deposition [J]. J.Solid State Chem.2005,178: 892-896.
    
    [62] CH.Chen, A.A.J.Buysman, E.M.Kelder, J.Schoonman, Fabrication of LiCoO_2 thin film cathodes for rechargeable lithium battery by electrostatic spray pyrolysis [J], Solid State Ionics,1995,80:1-4.
    
    [63]C.H. Chen, E.M.Kelder, M.J.G.Jak, J.Schoonman. Electrostatic spray deposition of thin layers of cathode materials for lithium battery[J], Solid State Ionics 1996,86-88:1301-1306.
    [64] W.Yoon, S.Ban, K.Lee, K.Kim, M. G Kim, J. M.Lee. Electrochemical characterization of layered LiCoO_2 films prepared by electrostatic spray deposition [J]. J. Power Sources. 2001, 97-98: 282-286.
    
    [65] C.H.Chen,A.A.J.Buysman,E.M.Kelder,J.Schoonman.Fabrication of LiCoO_2 thin film cathodes for rechargeable lithium battery by electrostatic spray pyrolysis [J]. Solid State Ionics,1995,80:l-4
    
    [66] C.H.Chen, E.M.Kelder, M.J.G Jak, J.Schoonman. Electrostatic spray deposition of thin layers of cathode materials for lithium battery [J].Solid State Ionics, 1996,86-88:1301-1306
    [67] C.Chen, E.M. Kelder, J. Schoonman. Functional Ceramic Films with Reticular Structures Prepared by Electrostatic Spray Deposition Technique [J]. J.Electrochem. soc, 1997,144 (11) L289-291
    
    [68] W.S.Yoon, S.Ban, K.Lee, K.Kim, M.G Kim, J.M.Lee. Electrochemical characterization of layered LiCoO_2 films prepared by electrostatic spray deposition [J]. J.Power Sources ,2001, 97-98: 282-286
    [69] Y. Yu, J.L. Shui, C.H. Chen. Electrostatic spray deposition of spinel Li_4Ti_5O_(12) thin films for rechargeable lithium batteries[J]. Solid State Comm., 2005, 135: 485-489.
    [70] M. Mohamedi, Seo-Jae Lee, D. Takahashi, M. Nishizawa, T. ltoh, I. Uchida, Amorphous tin oxide films: preparation and characterization as an anode active material for lithium ion batteries. Electrochim. Acta 46(2001) 1161-1168.
    [71] S. C. Nam, C. H. Paik, W. I. Cho, B. W. Cho, H. S. Chun, K. S. Yun, Electrochemical characterization of various tin-based oxides as negative electrodes for rechargeable lithium batteries[J]. J. Power Sources, 1999, 84: 24-31.
    [72] Y. -I. Kim, C. S. Yoon, J. W. Park, Microstructural Evolution of Electrochemically Cycled Si-Doped SnO_2 Lithium Thin-Film Battery[J]. J. Solid State Chemistry, 2001, 160: 388.
    [73] Y. Nuli, S. Zhao, Q. Qin, Nanocrystalline Tin Oxides and Nickel Oxide Film Anodes for Li-ion batteries [J]. J. Power Sources, 2003, 114: 113-120.
    [74] N. Li, C. R. Martin, A High-Rate, High-Capacity, Nanostructured Sn-Based Anode Prepared Using Sol-Gel Template Synthesis[J]. J. Electrochem. Soc., 2001, 148: A164.
    [75] T. Brousse, O. Crosnier, X. Devaux, P. Fragnaud, P. Paillard, J. Santos-Pen, D. M. Schleich, Advanced oxide and metal powders for negative electrodes in lithium-ion batteries[J]. Powder Technology, 2002, 128: 124-130.
    [76] P. Frangnaud, R. Nagarajan, D. M. Schleich, D. Vujic. Thin-film cathodes for secondary lithium batteries[J], J. Power Sources 1995, 54: 362-366.
    [77] P. Fragnaud, D. M. Schleich. Thin film components for solid state lithium batteries[J], Sensors and actuators, 1995, A5: 21-23.
    [78] S. Cho, S. Yoon. Characterization of LiCoO_2 Thin Film Cathodes Deposited by Liquid-Delivery Metallorganic Chemical Vapor Deposition for Rechargeable Lithium Batteries[J]. J. Electrochem. Soc., 2002, 149(12): A1584-A1588.
    [79] W. Choi, S. Yoon. Structural and electrical properties of LiCoO_2 thin-film cathodes deposited on planar and trench structures by liquid-delivery metalorganic chemical vapour deposition [J], J.Power Sources, 2004, 125: 236-241.
    [80] M. Kim, H. Chung, Y. Park, J. Kim, J. Son, K. Park, H. Kim. Fabrication of LiCoO_2 thin films by sol-gel method and characterization as positive electrodes for Li/LiCoO_2 cells[J], J. Power Sources, 2001, 99: 34-40.
    [81] Y. H. Rho, K. Kanamura, T. Umegaki. LiCoO_2 and LiMn_2O_4 Thin-Film Electrodes for Rechargeable Lithium Batteries [J], J. Electrochem. Soc., 2003, 150(1): A107-A111.
    [82] J. P. Maranchi, A. F. Hepp, P. N. Kumta., LiCoO_2 and SnO_2 thin film electrodes for lithium-ion battery applications[J], Mater. Sci. Engi., 2005, B116: 327-340.
    [83] K. Kushida, K. Kuriyama. Sol-gel growth of LiCoO_2 films on Si substrates by a spin-coating method[J]. J. Crys. Growth, 2002, 237-239: 612-615.
    [84] Mun-Kyu Kim, Kyu-Sung Park, Jong-Tae Son, Jin-Gyun Kim, Hoon-Taek Chung, Ho-Gi Kim. The electrochemical properties of thin-film LiCoO_2 cathode prepared by sol-gel process[J]. Solid State Ionics, 2002, 152-153: 267-272.
    [85] Young Ho Rho, Kiyoshi Kanamura, Minori Fujisaki, Jun-ichi Hamagami, Sei-ichi Suda, Takao Umegaki. Preparation of Li_4Ti_5O_(12) and LiCoO_2 thin film electrodes from precursors obtained by sol-gel method[J]. Solid State Ionics, 2002, 151: 151-157.
    [86] Young Ho Rho, Kiyoshi Kanamura. Li(?)-Ion Diffusion in LiCoO_2 Thin Film Prepared by the Poly. vinylpyrrolidone. Sol-Gel Method[J]. J. Electrochem. Soc., 2004, 151(9): A1406-A1411.
    [87] T. Brousse, R. Retouxf. U. Herterich, D. M. Schleich, Thin-Film Crystalline 5nO_2-Lithium Electrodes. J. Electrochem. Soc. 145(1998)1.
    [88] J. P. Maranchi, A. F. Hepp, P. N. Kumta, LiCoO_2 and SnO_2 thin film electrodes for lithium-ion battery applications. Mater. Sci. Eng. B116 (2005) 327-340
    [89] Y. H. Rho, K. Kanamura, M. Fujisaki, J. Hamagami, S. Suda, T. Umegaki. Preparation of Li_4Ti_5O_(12) and LiCoO_2 thin film electrodes from precursors obtained by sol-gel method[J]. Solid State Ionics, 2002, 151: 151-157. (No. 17)
    [90] Y. H. Rho, K. Kanamura. Fabrication of thin film electrodes for all solid state rechargeable lithium batteries[J]. J. Electroanaly. Chem., 2003, 559: 69-75.
    [91] Y. H. Rho, K. Kanamura. Preparation of Li_(4/3)Ti_(5/3)O_4 Thin Film Electrodes by a PVP Sol-Gel Coating Method and Their Electrochemical Properties[J]. J. Electrochem.. Soc., 2004, 151: A106-A110.
    [92] A. Singhal, G. Skandan, G. Amatucci, F. Badway, N. Ye, A. Manthiram, H. Ye, J. J. Xu. Nanostructured electrodes for next generation rechargeable electrochemical devices[J]. J. Power Sources, 2004, 129: 38-44
    [93] K. Hoshina, K. Dokko, K. Kanamura, Investigation on Electrochemical Interface between Li_4Ti_5O_(12) and Li_(1+x)Al_xTi_(2-x)(PO_4)_3 NASICON-Type Solid Electrolyte [J]. J. Electrochem. Soc., 2005, 152(11): A2138-A2142.
    [94] K. Han, S. Song, T. Watanabe, M. Yoshimura. Simultaneous and Direct Fabrication of Lithium Cobalt Oxide Film and Powder Using Soft Solution Processing at 100℃, Electrochem. Solid-State Lett. [J] 1999, 2(2): 63-66.
    [95] Y. Tao, Z. Chen, B. Zhu, W. Huang. Preparation of preferred oriented LiCoO_2 thin films by soft solution processing, Solid State Ionics[J] 2003, 161: 187-192.
    [96] 陶颖,陈振华,黄尉庄.软溶胶—凝胶法制备LiCoO_2薄膜,材料科学与工程,[J]2001,19(4):29-41.
    [97] S. Song, K. Han, I. Sasagawa, T. Watanabe, M. Yoshimura. Effect of LiOH concentration change on simultaneous preparation of LiCoO_2 film and powder by hydrothermal method, Solid State Ionics[J] 2000, 135: 277-281.
    [98] 陶颖,陈振华,祝宝军.水热电化学法制备LiCoO_2薄膜和粉末,材料科学与工程学报.[J]2005,23(2):177-180.
    [99] J. R, WILLIAMS. Marking Electronics Products and Packages-CHOOSING THE RIGHT METHOD [J]. ADV. PACKAGING. 2005, 21-22.
    [100] S. B. Fuller, E. J. Wilhelm, J. M. Jacobson. Ink-Jet Printed Nanoparticle Microelectromechanical Systems[J]. J. Microelectromech. Sys., 2002, 11(1): 54-59.
    [101] B. de Gans, P. C. Duineveld, U. S. Schubert. Inkjet Printing of Polymers: State of the Art and Future Developments[J]. Adv. mater., 2004, 16(3): 203-213.
    [102] P. Calvert. Inkjet Printing for Materials and Devices[J]. Chem. Mater. 2001, 13: 3299-3305.
    [103] B. A. Ridley, B. Nivi, J. M. Jacobson. All-Inorganic Field Effect Transistors Fabricated by Printing[J]. Science, 1999, 286: 746-749.
    [104] H. Sirringhaus, T. Kawase, R. H. friend, T. Shimoda, M. Inbasekaran, W. Wu, E. P. Woo. High-Resolution Inkjet Printing of All-polymer Transistor Circuits[J]. Sci., 2000, 290: 2123-2126.
    [105] R. F. Service. Printable Electronics That Stick Around [J]. Sci., 2004, 304: 675
    [106] J. Z. Wang, Z. H. Zheng, H. W. Li, W. T. S. Huck, H. Sirringhaus. Dewetting of conducting polymer inkjet droplets on patterned surfaces[J]. Nature Mater., 2004, 3: 171-176.
    [107] A. Y. Natori, C. D. Canestraro, L. S. Roman, A. M. Ceschin. Modification of the sheet resistance of ink jet printed polymer conducting films by changing the plastic substrate[J]. Mater. Sci. Engi. B, 2005, 122: 231-235.
    [108] M. Heule, S. Vuillemin, L. J. Gauckler. Powder-Based Ceramic Meso- and Microscale Fabrication Processes[J]. Adv. Mater., 2003, 15: 1237-1245.
    [109] C. E. Slade, J. R. G. Evans. Freeforming ceramics using a thermal jet printer[J]. J. Mater. Sci. Lett.,1998, 17: 1669-1671.
    [110] N. Ramachandran, E. Hainsworth, B. Bhullar, S. Eisenstein, B. Rosen, A. Y. Lau, J. C. Walter, J. LaBaer. Self-Assembling Protein Microarrays[J]. Sci., 2004, 305: 86-90.
    [111] G. MacBeath, S. L. Schreiber. Printing Proteins as Microarrays for High-Throughput Function Determination[J]. Sci., 2000, 289: 1760-1763.
    [112] W. C. Wilson, J. R. Boland. Cell and Organ Printing 1: Protein and Cell Printers[J]. Anatom. Rec. Part A, 2003, 272A: 491-496.
    [113] T. Xu, S. Petridou, E. H. Lee, E. A. Roth, N. R. Vyavahare, J. J. Hickman, T. Boland. Construction of High-Density Bacterial Colony Arrays and Patterns by the Ink-Jet Method [J]. Biotech. Bioengi., 2004, 85(1): 29-33.
    [114] E. Tekin, B. de Gans, U. S. Schubert. Ink-jet printing of polymers-from single dots to thin film libraries[J]. J. Mater. Chem., 2004, 14, 2627-2632
    [115] 王世敏,许祖勋,傅晶。纳米材料制备技术[M].北京:化学工业出版社,2001.
    [116] Q. Wu, W. Li, Y. Cheng, Z. Jiang. Homogenous LiCoO_2 nanoparticles prepared using surfactant P123 as template and its application to manufacturing ultra-thin-film electrode[J]. Mater. Chem. Phys., 2005, 91: 463-467
    [117] T. Wang, Z. Ma, F. Xu, Z. Jiang. The one-step preparation and electrochemical characteristics of tin dioxide nanocrystalline materials[J]. Electrochem. Comm., 2003, 5: 599-602
    [118] 任俊,沈健,卢寿慈.颗粒分散科学与技术[M]北京:化学工业出版社,2005.
    [119] 刘宣勇,苏文强,钱端芬,谢建国.陶瓷粉料在液体介质中分散的稳定机制[J].1999,33(1):52-56.
    [120] 张清岑,黄苏萍.水性体系分散剂应用新进展[J].2000,6(4):32-35.
    [121] 马文有,田秋,曹茂盛,高正娟,陈玉金,朱静.纳米颗粒分散技术研究进展[J].中国粉体技术,2002,8(3):28-31.
    [122] J. L. Ortega-Vinuesa, A. Martin-Rodri'Gues, R. Hidalgo-A' Lvarez. Colloidal Stability of Polymer Colloids with Different Interfacial Properties: Mechanisms[J]. J. Colloid Interface Sci., 1996, 184: 259-267.
    [123] J. Davies, J. G. P. Binner. The role of ammonium polyacrylate in dispersing concentrated alumina suspensions[J]. J. Eur. Ceram. Soc., 2000, 20: 1539-1553.
    [124] 唐聪明,李新利.水性体系分散剂的研究进展[J].四川化工,2005,8(3):26-28.
    [125] 李凯奇,曾玉风,王万祥,冯建明.一种新型分散剂的性能及分散机理[J].1999,5(22):30-31
    [126] John D. Schofield. Extending the boundaries of dispersant technology[J]. Progress in Organic Coatings 45(2002)249-257.
    [127] 张光敏,阎康平,严季新.用导电聚合物电极的超电容器研究概况[J].电子元件与材料,1999,18(5):42-45.
    [128] 王晓峰,孔祥华,刘庆国,解晶莹.氧化镍超电容器的研究[J].电子元件与材料,2000,19(5):26-30.
    [129] 王晓峰,解晶莹,孔祥华,刘庆国.“超电容”电化学电容器研究进展[J].电源技术2001,25(supply:166-170.
    [130] J. M. Miller, B. Dunn, T. D. Tran, R. W. Pekala. Deposition of Ruthenium Nanoparticles on Carbon Aerogels for High Energy Density Supercapacitor Electrodes[J]. J. Electrochem. Soc.,1997, 144(12): L309-L311.
    [131] B. E. Conway, V. Birss, J. Wojtowicz. The role and utilization of pseudocapacitance for energy storage by supercapacitors[J]. J. Power Sources, 1997, 66: 1-14.
    [132] 张莉,邹积岩,薛洪发.大功率超级电容器的实验研究[J].电子元件与材料,2002,21(7):11-12.
    [133] 苗小丽,邓正华.电化学超级电容器电极材料的研究进展[J].合成化学,2002,10(2):106-109.
    [134] M. D. Ingram, A. J. Pappin, F. Delalande, D. Poupard, G. Terzulli. Development of electrochemical capacitors incorporating processable polymer gel electrolytes [J]. Electrochimi. Acta, 1998, 43(10-11): 1601-1605.
    [135] W. G. Pell, B. E. Conway, N. Marincic. Analysis of non-uniform charge: discharge and rate effects in porous carbon capacitors containing sub-optimal electrolyte concentrations[J]. J. Electroanal. Chem., 2000, 491: 9-21.
    [136] H. Teng, Y. Chang, C. Hsieh. Performance of electric double-layer capacitors using carbons prepared from phenol-formaldehyde resins by KOH etching[J]. Carbon, 2001, 39: 1981-1987
    [137] T. Weng, H. Teng. Characterization of High Porosity Carbon Electrodes Derived from Mesophase Pitch for Electric Double-Layer Capacitors[J]. J. Electrochem. Soc., 2001, 148(4): A368-A373.
    [138] K. Kierzek, E. Frackowiak, G. Lota, G. Gryglewicz, J. Machnikowski. Electrochemical capacitors based on highly porous carbons prepared by KOH activation[J]. Electrochimi. Acta, 2004, 49: 515-523.
    [139] J. H. Jang, S. M. Oh. Complex Capacitance Analysis of Porous Carbon Electrodes for Electric Double-Layer Capacitors[J]. J. Electrochem. Soc., 2004, 151(4): A571-A577.
    [140] M. Nakamura, M. Nakanishi, K. Yamamoto. Influence of physical properties of activated carbons on characteristics of electric double-layer capacitors[J]. J. Power Sources, 1996, 60: 225-231.
    [141] J. P. Zheng, T. R. Jow. The Effect of Salt Concentration in Electrolytes on the Maximum Energy Storage for Double Layer Capacitors[J]. J. Electrochem. Soc., 1997, 144(7): 2417-2420.
    [142] D. Qu, H. Shi. Studies of activated carbons used in double-layer capacitors [J]. J. Power Sources,1998, 74: 99-107.
    [143] L. Bonnefoi, P. Simon, J. F. Fauvarque, C. Sarrazin, J. F. Sarrau, P. Lailler. Multi electrode prismatic power prototype carbonrcarbon Supercapacitors[J]. J. Power Sources, 1999, 83: 162-169.
    [144] H. Gu, J. Kim , H. Song , G. Park, B. Park. Electrochemical properties of carbon composite electrode with polymer electrolyte for electric double-layer capacitor [J]. Electrochimi. Acta, 2000, 45: 1533-1536.
    [145] G. Salitra, A. Softer, L. Eliad, Y. Cohen, D. Aurbach. Carbon Electrodes for Double-Layer Capacitors I. Relations Between Ion and Pore Dimensions [J]. J. Electrochem. Soc., 2000, 147 (7) :2486-2493.
    
    [146] J.Gamby,P.L.Taberna, P.Simon, J.F.Fauvarque, M.Chesneau.Studies and characterizations of various activated carbons used for carbon/carbon supercapaxitors [J].J. Power Sources ,2001, 101:109-116.
    
    [147] S.B. Lyubchik , R. Benoit, F. Be guin. Influence of chemical modification of anthracite on the porosity of the resulting activated carbons [J]. Carbon, 2002,40 :1287-1294.
    
    [148] Y. Nian, H. Teng. Nitric Acid Modification of Activated Carbon Electrodes for Improvement of Electrochemical Capacitance [J]. J. Electrochem. Soc.,2002,149 (8): A1008-A1014.
    
    [149] D. Qu. Studies of the activated carbons used in double-layer Supercapacitors [J]. J. Power Sources,2002,109 :403-411.
    
    [150] D. Lozano-Castello, D. Cazorla-Amoros , A. Linares-Solano, S. Shiraishi, H. Kurihara , A. Oya. Influence of pore structure and surface chemistry on electric double layer capacitance in non-aqueous electrolyte [J]. Carbon,2003, 41:1765-1775.
    
    [151] F. Wu, R. Tseng, C. Hu, C. Wang. Physical and electrochemical characterization of activated carbons prepared from firwoods for supercapacitors [J]. J. Power Sources,2004,138:351-359.
    
    [152] G Gryglewicz, J. Machnikowski, E. Lorenc-Grabowska,G Lota, E. Frackowiak. Effect of pore size distribution of coal-based activated carbons on double layer capacitance [J]. Electrochimi. Acta,2005,50:1197-1206.
    
    [153] O. Barbieri, M. Hahn, A. Herzog, R. Kotz. Capacitance limits of high surface area activated carbons for double layer capacitors [J]. Carbon,2005,43 :1303-1310.
    
    [154]T. Momma, X. Liu , T. Osaka , Y. Ushio , Y. Sawada. Electrochemical modification of active carbon fiber electrode and its application to double-layer capacitor [J]. J. Power Sources,1996, 60 : 249-253.
    
    [155] M.Ishikawa, A. Sakamoto , M. Morita , Y. Matsuda ,K.Ishida. Effect of treatment of activated carbon fiber cloth electrodes with cold plasma upon performance of electric double-layer capacitors [J]. J. Power Sources,1996, 60:233-238.
    
    [156] H. Nakagawa, A. Shudo, K.Miura. High-Capacity Electric Double-Layer Capacitor with High-Density-Activated Carbon Fiber Electrodes [J]. J. Electrochem. Soc., 2000,147 (1) :38-42 .
    
    [157] M. Endo, T. Maeda, T. Takeda, Y. J. Kim, K. Koshiba, H. Hara, M. S. Dresselhaus. Capacitance and Pore-Size Distribution in Aqueous and Nonaqueous Electrolytes Using Various Activated Carbon Electrodes [J]. J. Electrochem. Soc, 2001,148 (8): A910-A914.
    
    [158] C. Hsieh, H. Teng. Influence of oxygen treatment on electric double-layer capacitance of activated carbon fabrics [J]. Carbon, 2002, 40 :667-674.( E96)
    
    [159] M. Toyoda,Y. Tani ,Y. Soneda. Exfoliated carbon fibers as an electrode for electric double layer capacitors in al mol/dm~3 H_2SO_4 electrolyte [J]. Carbon,2004,42:2833-2837.
    
    [160] S. Yoon, S. Lin, Y. Song, Y.Ota, W. Qiao, A. Tanaka, I. Mochida. KOH activation of carbon nanofibers [J]. Carbon,2004,42 :1723-1729.
    
    [161] S. Kim, K. Lee. Carbon nanofiber composites for the electrodes of electrochemical capacitors [J]. Chem. Phys.Lett.,2004,400:253-257.
    
    [162] C. Kim,J. Kim, S. Kim, W. Lee, K. Yang. Supercapacitors Prepared from Carbon Nanofibers Electrospun from Polybenzimidazol [J].J.Electrochem.Soc.,2004,151(5): A769-A773
    
    [163] K. Babel, K. Jurewicz. KOH activated carbon fabrics as supercapacitor material [J]. J. Phys. Chem. Solids ,2004,65:275-280.
    
    [164] Y. Soneda, M. Toyoda, Y. Tani, J. Yamashita, M. Kodama, H. Hatori, M. Inagaki. Electrochemical behavior of exfoliated carbon fibers in H_2SO_4 electrolyte with different concentrations [J]. J.Phys. Chem. Solids,2004,65:219-222.
    
    [165] C. Kim. Electrochemical characterization of electrospun activated carbon nanofibres as an electrode in supercapacitors [J]. J.Power Sources ,2005,142:382-388.
    
    [166]J. M. Miller, B. Dunn, T. D. Tran,R. W. Pekala. Deposition of Ruthenium Nanoparticles on Carbon Aerogels for High Energy Density Supercapacitor Electrodes [J]. J. Electrochem. Soc., 1997,144, (12):L309-L311.
    
    [167] R.Z. Ma, J. Liang, B.Q. Wei, B. Zhang, C.L. Xu, D.H. Wu. Study of electrochemical capacitors utilizing carbon nanotube electrodes [J]. J.Power Sources,1999,84:126-129.
    
    [168] J. N. Barisci, G G. Wallace, Ray H. Baughman. Electrochemical Characterization of Single-Walled Carbon Nanotube Electrodes [J]. J.Electrochem. Soc., 2000,147 (12) :4580-4583.
    
    [169]B. Zhang, J. Liang.C.L. Xu, B.Q. Wei, D.B. Ruan, D.H. Wu. Electric double-layer capacitors using carbon nanotube electrodes and organic electrolyte [J]. Mater. Lett. ,2001,51: 539-542.
    
    [170] E. Frackowiak, F. Beguin. Electrochemical storage of energy in carbon nanotubes and nanostructured carbons [J]. Carbon,2002, 40:1775-1787.
    
    [171] J.H. Chen, W.Z. Li, D.Z. Wang, S.X. Yang, J.G Wen, Z.F. Ren. Electrochemical characterization of carbon nanotubes as electrode in electrochemical double-layer capacitors [J]. Carbon,2002, 40 :1193-1197
    
    [172] E. Frackowiak , S. Delpeux , K. Jurewicz , K. Szostak , D. Cazorla-Amoros , F. Beguin. Enhanced capacitance of carbon nanotubes through chemical activation [J]. Chem. Phys. Lett.,2002,361:35-41.
    
    [173] E. Frackowiak, K. Jurewicz , K. Szostak ,S. Delpeux, F. Be'guin. Nanotubular materials as electrodes for supercapacitors [J]. Fuel Processing Tech.,2002, 77-78 : 213-219.
    
    [174] Q. Jiang, M.Z. Qu, GM. Zhou, B.L. Zhang, Z.L. Yu. A study of activated carbon nanotubes as electrochemical supercapacitors electrode materials [J]. Mater. Lett. ,2002, 57:988-991
    
    [175] J. Y. Lee, K. H. An, J. K. Heo, Y. H. Lee. Fabrication of Supercapacitor Electrodes Using Fluorinated Single-Walled Carbon Nanotubes [J]. J. Phys. Chem. B, 2003,107: 8812-8815.
    
    [176] Ch. Emmenegger, Ph. Mauron, P. Sudan , P. Wenger , V. Hermann, R. Gallay , A. Zuttel. Investigation of electrochemical double-layer (ECDL) capacitors electrodes based on carbon nanotubes and activated carbon materials [J]. J. Power Sources,2003,124:321-329.
    
    [177] Q. Chen, K. Xue, W. Shen, F. Tao, S. Yin, W. Xu. Fabrication and electrochemical properties of carbon nanotube array electrode for supercapacitors [J]. Electrochimica Acta, 2004, 49 :4157-4161
    
    [178] F. Pico, J. M. Rojo, M. L. Sanjua'n, A. Anson, A. M. Benito, M. A. Callejas, W. K. Maser, M. T. Martinez. Single-Walled Carbon Nanotubes as Electrodes in Supercapacitors [J]. J. Electrochem. Soc., 2004,151 (6):A831-A837.
    
    [179] C. Li, D. Wang, T. Liang, X. Wang, L. Ji. A study of activated carbon nanotubes as double-layercapacitors electrode materials [J]. Mater.Lett.,2004,58:3774- 3777.
    
    [180] C. Li, D. Wang, T.Liang, X. Wang, J. Wu, X. Hu, J. Liang. Oxidation of multiwalled carbon nanotubes by air: benefits for electric double layer capacitors [J]. Powder Tech.,2004,142 :175- 179
    
    [181] S.Yoon, J. Lee, T. Hyeon, S.M. Oh. Electric Double-Layer Capacitor Performance of a New Mesoporous Carbon [J]. J.Electrochem. Soc, 2000,147 (7):2507-2512.
    
    [182] H. Zhou, S.Zhu, M. Hibino, I. Honma. Electrochemical capacitance of self-ordered mesoporous carbon [J]. J. Power Sources,2003,122: 219-223.
    
    [183] J.Lee, J.Kim, Y. Lee, S.Yoon, S. M. Oh, T. Hyeon. Simple Synthesis of Uniform Mesoporous Carbons with Diverse Structures from Mesostructured Polymer/Silica Nanocomposites [J]. Chem. Mater., 2004,16 (17):3323-3329.
    
    [184] K. Jurewicz, C. Vix-Guterl, E. Frackowiak, S. Saadallah, M. Reda, J. Parmentier, Capacitance properties of ordered porous carbon materials prepared by a templating procedure [J]. J. Phys. Chem. Solids ,2004,65 :287-293.
    
    [185] A.B. Fuertes, F. Pico, J. M. Rojo. Influence of pore structure on electric double-layer capacitance of template mesoporous carbons [J]. J. Power Sources,2004,133 :329-336.
    
    [186] C. Vix-Guterl, S. Saadallah, K. Jurewicz, E. Frackowiak, M. Reda,J. Parmentier, J. Patarin, F. Beguin. Supercapacitor electrodes from new ordered porous carbon materials obtained by a templating procedure [J]. Mater. Sci. .Engi.,2004, B108: 148-155.
    
    [187] S. Yoon, J.H. Jang, B. H. Ka, S. M. Oh. Complex capacitance analysis on rate capability of electric-double layer capacitor (EDLC) electrodes of different thickness [J]. Electrochim. Acta, 2005, 50: 2255-2262.
    [188] A. B. Fuertes, G. Iota, T. A. Centenob, E. Frackowiak. Templated mesoporous carbons for supercapacitor application[J]. Electrochimi. Acta, 2005, 50: 2799-2805.
    [189] H. Liu, K. Wang, H. Teng. A simplified preparation of mesoporous carbon and the examination of the carbon accessibility for electric double layer formation[J]. Carbon, 2005, 43: 559-566.
    [190] C Vix-Guter, E Frackowiak, K Jurewicz, M Friebe, J Parmentier, F Beguin. Electrochemical energy storage in ordered porous carbon materials[J]. Carbon 2005, 43: 1293-1302.
    [191] P. Chang, Z. Fan, D. Wang, W. Tseng, W. Chiou, J. Hong, J. G. Lu, ZnO Nanowires Synthesized by Vapor Trapping CVD Method[J]. Chem. Mater., 2004, 16(24): 5133-5137.
    [192] S. Y. Mar, C. S. Chen, Y. S. Huang, K. K. Tiong. Characterization of RuO_2 thin films by Raman spectroscopy[J]. Appl. Surf. Sci., 1995, 90: 497-504.
    [193] J. P. Zheng, T. R. Jow, Q. X. Jia, X. D. Wu. Proton Insertion Ruthenium Oxide Film Preapred by Pulsed Laser deposition [J]. J. Electrochem. Soc.,1996, 143(3): 1068-1070.
    [194] P. C. Liao, S. Y. Mar, W. S. Ho, Y. S. Huang, K. K. Tiong. Characterization of RuO2 thin films deposited on Si by metal-organic chemical vapor deposition[J]. Thin Solid Films, 1996, 287: 74-79.
    [195] T. Liu, W. G. Pell, B. E. Conway. Self-discharge and potential recovery phenomena at thermally and electrochemically prepared RuO2 supercapacitor electrodes[J]. Electrochimi. Acta, 1997, 42(23-24): 3541-3552.
    [196] J. P. Zheng and T. R. Jow, A new charge storage mechanism for electrochemical capacitaors[J]. J. Electrochem. Soc., 1995, 142(1): L6-L8.
    [197] J. Jiang, A. Kucernak, Electrochemical supercapacitor material based on manganese oxide preparation an dcharacterization [J]. Electrochim. Acta, 2002, 47(15): 2381-2386.
    [198] 闪星,董国君,景晓燕,张密林.新型超大容量电容器电极材料—纳米水合MnO_2的研究[J].无机化学学报,2001,17(5):669-674.
    [199] V. Sdnivasan, J. W. Weidner, An electrochemical route for making porous nickel oxide electrochemical capacitors[J]. J. Electrochem. Soc., 1997, 144(8): L210-L213.
    [200] K. Nam, W. Yoon, K. Kim. X-ray absorption spectroscopy studies of nickel oxide thin film electrodes for supercapacitors[J]. Electrochim. Acta 2002, 47, 3201-3209.
    [201] L. Cao, L. Kong, Y. Liang, H. Li. Preparation of novel nanocomposite Ni(OH)_2/USYmaterial and its application for electrochemical capacitance storage[J]. Chem. Commun. 2004
    [202] K. W. Nam, K. Kim, Astudy of the preparation of NiO_x electrode via electrochemical route for supercapacitor application and their charge storage mechanism[J]. J. Electrochem. Soc. 2002, 149(3), A346-A354.
    [203] H. Kim, T. Seong, J. Lim, W. I. Cho, Y. S. Yoon, Electrochemial and structural properties of radio frequency sputtered cobalt oxide electrodes for thin film supercapariots[J]. J. Power Sources 2001, 102, 167-171.
    [204] C. Lin, J. A. Ritter, Branko N. Popov, Characterization of Sol-Gel-Derived Cobalt Oxide Xerogels as Electrochemical Capacitors[J]. J. Electrochem. Soc., 1998, 145(12): 4097-4103.
    [205] A. R. de Souza, E. A rashiro, H. Golveia, T. A. F. Lassali, Pseudocapacitive behavior of Ti/RhO_(x+)Co_3O_4 electrodes in acidic medium: application to supercapacitor development[J]. Electrochimica Acta 2004, 49, 2015-2023.
    [206] A. Celzard, F. Collas, J. F. Mareche, G. Furdin, I. Rey. Porous electrodes-based double-layer supercapacitors-pore structure versus series resistance[J]. J. Power Sources, 2002, 108: 153-162.
    [207] K. R. Prasad, N. Miura. Electrochemical synthesis and characterization of nanostructured tin oxide for electrochemical redox supercapacitors[J]. Electrochem. Comm., 2004, 6: 849-852.
    [208] C. Arbizzani, M. Catellani, M. Mastragostino, C. Mingazaini. N- and p-doped polydithieno [3,4-B:3',4'-D] thiophene: A narrow band gap polymer for redox supercapacitors[J]. Electrochimi. Acta, 1995, 40(12): 1871-1876.
    [209] F. Fusalba, P. Gouerec, D. Villers, D. Belanger. Electrochemical Characterization of Polyaniline in Nonaqueous Electrolyte and Its Evaluation as Electrode Material for Electrochemical Supercapacitors[J]. J. Electrochem. Soc., 2001, 148(1): A1-A6.
    [210] M. Mastragostino, C. Arbizzani, F. Soavi. Conducting polymers as electrode materials in supercapacitors[J]. Solid State Ionics, 2002, 148: 493-498.
    [211] D. Villers, D. Jobin, C. Soucy, D. Cossement, R. Chahine, L. Breau, D. Be'langera. The Influence of the Range of Electroactivity and Capacitanceof Conducting Polymers on the Performance of Carbon Conducting Polymer Hybrid Supercapacitor[J]. J. Electrochem. Soc., 2003, 150(6): A747-A752.
    [212] F. Fusalba, P. Gouerec, D. Villers, D. Belanger. Electrochemical Characterization of Polyaniline in Nonaqueous Electrolyte and Its Evaluation as Electrode Material for Electrochemical Supercapacitors[J]. J. Electrochem. Soc., 2001, 148(1): A1-A6.
    [213] J. H. Park, O Ok Park. Hybrid electrochemical capacitors based on polyaniline and activated carbon electrodes[J]. J. Power Sources, 2002, 111: 185-190.
    [214] W. Chen, T. Wen, H. Teng. Polyaniline-deposited porous carbon electrode for supercapacitor[J]. Electrochimica Acta, 2003, 48: 641-649.
    [215] 江齐,翟美臻,张伯兰,于作龙.电化学超级电容器电极材料的研究进展[J].无机材料学报,2002,17(4):649-656.
    [216] M. Mastragostino, Catia Arbizzani, F. Soavi. Polymer-based supercapacitors[J]. J. Power Sources, 2001,97-98:812-815.
    
    [217] M. Mastragostino, R. Paraventi, A. Zanelli. Supercapacitors. Based on Composite Polymer Electrodes [J]. J. Electrochem. Soc., 2000,147 (9): 3167-3170.
    
    [218] K.Jurewicz, S. Delpeux, V. Bertagna, F.Beguin, E. Frackowiak. Supercapacitors from nanotubes/polypyrrole composites [J]. Chem. Phys. Lett., 2001,347:36-40.
    
    [219] A. Di Fabio, A. Giorgi, M. Mastragostino, F. Soavi. Carbon/ Poly.3-methylthiophene. Hybrid Supercapacitors [J]. J. Electrochem. Soc., 2001,148 (8): A845-A850.
    
    [220] K. H. An, K.K. Jeon, J. K. Heo, S.C. Lim, D. J. Bae, Y. H. Lee. High-Capacitance Supercapacitor Using a Nanocomposite Electrode of Single-Walled Carbon Nanotube and Polypyrrole [J]. J.Electrochem.Soc., 2002,149 (8): A1058-A1062.
    
    [221] J. H. Park, J. M. Ko, O. Ok Park, D. Kim. Capacitance properties of graphite/polypyrrole composite electrode prepared by chemical polymerization of pyrrole on graphite fiber [J]. J. Power Sources,2002,105:20-25.
    
    [222] Q. Xiao , X. Zhou. The study of multiwalled carbon nanotube deposited with conducting polymer for supercapacitor [J]. Electrochim. Acta,2003, 48 :575-580.
    
    [223] Y. Lin, H. Teng. A novel method for carbon modification with minute polyaniline deposition to enhance the capacitance of porous carbon electrodes [J]. Carbon,2003,41:2865-2871.
    
    [224] W. Chen, T.Wen. Electrochemical and capacitive properties of polyaniline-implanted porous carbon electrode for supercapacitors [J]. J.Power Sources,2003,117 :273-282.
    
    [225] J.M. Ko, R.Y. Song, HJ. Yu, J.W. Yoon, B.G Min, D.W. Kim. Capacitive performance of the composite electrodes consisted of polyaniline and activated carbons powder in a solid-like acid gel electrolyte [J]. Electrochim. Acta,2004,50 :873-876.
    
    [226] Y. Zhou, B. He, W. Zhou, J.r Huang, X. Li, B. Wu, H. Li. Electrochemical capacitance of well-coated single-walled carbon nanotube with polyaniline composites [J]. Electrochimi. Acta , 2004,49: 257-262.
    
    [227] GA. Snook, GZ. Chen, D.J. Fray , M. Hughes,Milo Shaffer. Studies of deposition of and charge storage in polypyrrole-chloride and polypyrrole-carbon nanotube composites with an electrochemical quartz crystal microbalance [J]. J. Electroanal. Chem.,2004,568:135-142.
    
    [228] Y. Zhou, B.He, W. Zhou, H. Li. Preparation and Electrochemistry of SWNT/PANI Composite Films for Electrochemical Capacitors[J].J.Electrochem.Soc.,2004,151(7): A1052 -A1057
    
    [229] K. Lota, V. Khomenko, E. Frackowiak.Capacitance properties of poly (3,4-ethylenedioxythiophene)/carbon nanotubes composites [J]. J. Phys. Chem. Solids,2004, 65:295-301
    [230] Q. Zhang, X. Zhou, H. Yang. Capacitance properties of composite electrodes prepared by electrochemical polymerization of pyrrole on carbon foam in aqueous solution[J]. J. Power Sources, 2004, 125: 141-147.
    [231] C. Hu, W. Li, J. Lin. The capacitive characteristics of supercapacitors consisting of activated carbon fabric-polyaniline composites in NaNO_3[J]. J. Power Sources, 2004, 137: 152-157.
    [232] V. Khomenko, E. Frackowiak, F. B'eguin. Determination of the specific capacitance of conducting polymer/nanotubes composite electrodes using different cell configurations[J]. Electrochimi. Acta, 2005, 50: 2499-2506.
    [233] C. Zhou, S. Kumar, C. D. Doyle, J. M. Tour. Functionalized Single Wall Carbon Nanotubes Treated with Pyrrole for Electrochemical Supercapacitor Membranes[J]. Chem. Mater. 2005, 17: 1997-2002.
    [234] Wang, Xiao-Feng, Ruan Dian-bo, Wang Da-zhi, Liang Ji. Hybrid Electrochemical supercapacitors based on polyaniline and activated carbon electrodes[J]. Acta Phys. Chim. Sin., 2005, 21(3): 261-266.
    [235] 陈巧玲,薛宽宏,陶菲菲,沈伟,尹寿银,徐雯.多壁碳纳米管阵列及其聚吡咯复合电极的电容性能研究[J].南京师范大学学报(工程技术版),2002,2(4):18-20.
    [236] M. Wu, G. A. Snook, G. Z. Chen, D. J. Fray. Redox deposition of manganese oxide on graphite for supercapacitors[J]. Electrochem. Com., 2004, 6: 499-504.
    [237] J. Y. Lee, K. Liang, K. Hyeok An, Y. H. Lee. Nickel oxide/carbon nanotubes nanocomposite for electrochemical capacitance[J]. Syn. Metals, 2005, 150: 153-157.
    [238] J. Zhang, D. Jiang, B. Chen, J. Zhu, L. Jiang, H. Fang. Preparation and Electrochemistry of Hydrous Ruthenium Oxide/Active Carbon Electrode Materials for Supercapacitor[J]. J. Electrochem. Soc., 2001, 148(12): A1362-A1367.
    [239] M. Ramani, B. S. Haran, R. E. White, B. N. Popov. Synthesis and Characterization of Hydrous Ruthenium Oxide-Carbon Supercapacitors[J]. J. Electrochem. Soc., 2001, 148(4): A374-A380.
    [240] C. Hu, W. Chen. Effects of substrates on the capacitive performance of RuO_x·nH_2O and activated carbon-RuO_x electrodes for supercapacitors[J]. Electrochim. Acta, 2004, 49: 3469-3477.
    [241] C. Hu, W. Chen, K. Chang. How to Achieve Maximum Utilization of Hydrous Ruthenium Oxide for Supercapacitors[J]. J. Electrochem. Soc., 2004, 151(2): A281-A290.
    [242] W. Chen, C. Hu, C. Wang, C. Min. Electrochemical characterization of activated carbon-ruthenium oxide nanoparticles composites for supercapacitors[J] J. Power Sources, 2004, 125: 292-298.
    [243] C. Lin, B. N. Popov, H. J. Ploehnz. Modeling the Effects of Electrode Composition and Pore Structure on the Performance of Electrochemical Capacitors[J]. J. Electrochem. Soc., 2002, 149(2): A167-A175.
    [244] H. Kim, Branko N. Popov. Characterization of hydrous ruthenium oxide/carbon nanocomposite supercapacitors prepared by a colloidal method[J]. J. Power Sources, 2002, 104: 52-61.
    [245] M. Min, K. Machida, J. Hyun Jang, K. Naoiz. Hydrous RuO_2/Carbon Black Nanocomposites with 3D Porous Structure by Novel Incipient Wetness Method for Supercapacitors[J]. J. Electrochem. Soc., 2006, 153(2): A334-A338.
    [246] G. Arabale, D. Wagh, M. Kulkarni, I. S. MuUa, S. P. Vemekar, K. Vijayamohanan, A. M. Rao. Enhanced supercapacitance of multiwalled carbon nanotubes ftmctionalized with ruthenium oxide [J]. Chem. Phys. Lett., 2003, 376: 207-213.
    [247] I. Kim, J. Kim, K. Kim. Electrochemical Characterization of Electrochemically Prepared Ruthenium Oxide/Carbon Nanotube Electrode for Supercapacitor Application[J]. Electrochem. Solid-State Lett., 2005, 8(7): A369-A372.
    [248] J. H. Park, J. M. Ko, O. Ok Park. Carbon Nanotube/RuO_2 Nanocomposite Electrodes for Supercapacitors[J]. J. Electrochem. Soc., 2003, 150(7): A864-A867.
    [249] J. D. Kim, B. S. Kang, T. W. Noh, J. Yoon, S. I. Baik, Y. -W. Kim. Controlling the Nanostructure of RuO_2/Carbon Nanotube Composites by Gas Annealing[J]. J. Electrochem. So., 2005, 152(2): D23-D25.
    1.查全性等著,电极过程动力学导论(第三版)[M].北京:科学出版社
    2.柳厚田,徐品弟等译,周伟舫校.电化学中的仪器方法[M]上海:复旦大学出版社.
    3.张祖训,汪尔康.电化学的原理方法[M].北京:科学出版社
    4.何金兰,杨克让,李小戈.仪器分析原理[M].北京:科学出版社
    5.周玉,武高辉.材料分析测试技术[M].哈尔滨:哈尔滨工业大学出版社,1998:102
    6.邵原华,朱果逸,董献堆,张柏林译,[美]阿伦J.巴德,拉里.R.福克纳著.电化学方法原理和应用[M].北京:化学工业出版社,2005:166
    7.尚世铉,袁树忠,吕福云.近代物理技术[M].北京:高等教育出版社,1993:43
    8.王世中.现代材料研究方法[M].北京:北京航空航天大学出版社,1991:103.
    [1] Q. Wu, W. Li, Y. Cheng, Z. Jiang. Homogenous LiCoO_2 nanoparticles prepared using surfactant P123 as template and its application to manufacturing ultra-thin-film electrode [J]. Mater. Chem. Phys.,2005,91:463-467.
    
    [2] T. Wang, Z. Ma, F. Xu, Z. Jiang. The one-step preparation and electrochemical characteristics of tin dioxide nanocrystalline materials [J]. Electrochem.Comm., 2003,5:599-602.
    
    [3] Zhao, D.; Huo, Q.; Feng, J.; Chmelka, B. F.; Stucky, G D. Nonionic triblock and star diblock copolymer and oligomeric surfactant synthese of highly ordered, hydrothermally stable, mesoporous silica structures [J]. J. Am. Chem. Soc, 1998,120 (25): 6024-6036.
    
    [4] B. Han, X. Liu, C. Yu, F. Gao, Q. Luo, S. Xie, B. Tu and D. Zhao, Microwave assisted template removal of siliceous porous materials [J]. Chem. Commun., 2002,(ll):1186-1187.
    
    [5] S. I.Nikitenko, Yu.Koltypin, I.Felner, I. Yeshurun, A. I.Shames,J. Z. Jiang, V.Markovich, GGorodetsky, A.Gedanken, Tailoring the Properties of Fe-Fe_3C Nanocrystalline Particles Prepared by Sonochemistry [J].J. Phys. Chem. B., 2004,108(23):7620-7626.
    
    [6] Yang, P.; Deng, T.; Zhao, D.; Feng, P.; Pine, D.; Chmelka, B. F.; Whitesides, G M.; Stucky, G D. Hierarchically Ordered Oxides [J]. Science, 1998,252(5352) :2244-2246.
    
    [7] Zhao, D.; Yang, P.; Margolese, D. I.; Chmelka, B. F.; Stucky, G D. Synthesis of continuous mesoporous silica thin films with three-dimensional accessible pore structures [J]. Chem. Commun., 1998,(22):2499-2501.
    
    [8] Zhao, D.; Yang, P.; Melosh, N.; Feng, J.; Chmelka, B. F.; Stucky, G D. Continuous mesoporous silica films with highly ordered large pore structures [J]. Adv. Mater.,1998, 10(16):1380-1385.
    
    [9] E. Endo, T. Yasuda, A. Kita, K.Yamaura, K.Sekaia. A LiCoO_2 Cathode Modified by Plasma Chemical Vapor Deposition for Higher Voltage Performance, J. Electrochem. Soc. [J] 2000, 147 (4): 1291-1294.
    
    [10]S. Choi, A. Manthiram. Factors Influencing the Layered to Spinel-like Phase Transition in Layered Oxide Cathodes [J] . J. Electrochem.Soc, 2002,149(9): A1157-A1163.
    
    [11] M. Winter, J. O. Besenhard, M. E. Spahr, P. Novμk. Insertion Electrode Materials for Rechargeable Lithium Batteries [J]. Adv. Mater. 1998,10(10):725-763.
    
    [12] Ermete Antolini. Lithium loss from lithium cobalt oxide: hexagonal Li_(0.5)Co_(0.5) O to cubic Li_(0.065) C_(0.935) O phase transition [J] . International J. Inorg. Mater.2001, 3 : 721-726..
    
    [13] A. Lundblad, B. Bergman. Synthesis of LiCoO, starting from carbonate precursors I. The reaction mechanisms [J]. Solid State Ionics. 1997, (96): 173-181
    [14] Y. Li, C. Wan, Y. Wu, C. Jiang, Y. Zhu. Synthesis and characterization of ultrafine LiCoO powders by a spray-drying method[J]. J. Power Sources. 2000, (85): 294-298.
    [15] 李阳兴,姜长印,万春荣,朱永赡.无机材料学报.1999,(14):657
    [16] Frangini, S. Scaccia, M. Carewska. Suppression of Phase Transitions in Li-rich Lithium Cobaltite Cathodes Observed by Microparticle Cyclic Voltammetry[J]. Electrochem. Solid-State Lett., 2002, 5(10): A209-A212.
    [17] Jose L Tirado, Inorganic materials for the negative electrode of lithium-ion batteries: state-of-the-art and future prospects [J]. Materials science and engineering 2003, R40, 103-136.
    [18] Q. F. Dong, C. Z. Wu, M. G.. Jin, Z. C. Huang, M. S. Zheng, J. K. You, Z. G. Lin, Preparation and performance of nickel-tin alloys used as anodes for lithium-ion battery[J]. Solid State Ionics 2004, 167, 49-54.
    [19] M. Winter and J. O. Besenhard, Electrochemical lithiation of tin and tin-based intermetallics and composites [J]. Electrochim. Acta 1999, 5, 31-50.
    [20] G. X. Wang, J. H. Ahm, M. J. Lindray, L. Sun, D. H. Bradhurst, S. X. Don, and H. K. Liu, Graphite-Tin composites as anode materials for lithium-ion batteries[J]. J. Power Sources, 2001, 97-98(0): 211.
    [21] Y. Wang, J. Y. Lee, B. Chen, Microemulsion syntheses of Sn and SnO_2-graphite nanocomposite anodes for Li-ion batteries[J] J. Electrochem. Soc., 2004, 151(4): A 563-A 570.
    [22] J. K. Lee, D. H. Ryu, J. B. Ju, Y. G. Shul, B. W. Cho, and D. Park, Electrochemical characteristics of graphite coated with tin-oxide and copper by fluidised-bed chemical vapour deposition[J]. J. Power Sources, 2002, 107(1): 90-97.
    [23] J. Y. Lee, R. F. Zhang, and Z. L. Liu, Lithium Intercalation and Deintercalation Reactions in Synthetic Graphite Containing a High Dispersion of SnO[J]. Electrochem. Solid-State Lett., 2000, 3(4): 167-170.
    [24] T. Brousse, O. Crosnier, X. Devaux, P. Fragnaud, P. Paillard, J. Santos-Pen, D. M. Schleich, Advanced oxide and metal powders for negative electrodes in lithium-ion batteries. Powder Technology 128(2002)124-130.
    [25] R. S. Niranjan, K. R. Patil, S. R. Sainkar, I. S. Mulla. High H2S-sensitive copper-doped tin oxide thin film[J]. Mater. Chem. and Phys. 80(2003): 250-256
    [26] G. Korotcenkov, A. Comet, E. Rossinyol, J. Arbiol, V. Brinzari, Y. Blinov. Faceting characterization of tin dioxide nanocrystals deposited by spray pyrolysis from stannic choride water solution[J]. Thin Solid Films 471(2005): 310-319.
    [27] T. Brousse, S. M. Lee, L. Pasquereau, D. Derives, D. M. Schleich. Composite negative electrodes for lithium ion cells[J]. Solid State Ionics, 1998, 113-115: 51-56.
    [28] M. Winter, J. O. Besenhard, Electrochemical lithiation of tin and tin-based intermetallics and composites. Electrochim. Acta 45(1999)31.
    [29] Wachtler, Mario; Besenhard Jurgen O.; Winter Martin, Tin and tin based intermetallics as new anode materials for lithium ion cells[J]. J. Power Sources 2001, 94(2), 189-193.
    [30] lan A. Courtney and J. R. Dahn, Electrochemical and in situ x-ray diffraction studies of the reaction of lithium with tin oxide composites[J]. J. Electrochem. Soc. 1997, 44, 2045-2052.
    [31] M. Mohamedi, S. Lee, D. Takahashi, M. Nishizawa, T. Itoh, I. Uchida, Amorphous tin oxide films: preparation and characterization as an anode active material for lithium ion batteries[J]. Electrochim. Acta 2001, 46, 1161-1168.
    [32] Y. Hao, Q. Lai , D. Liu, Z. Xu, X. Ji. Synthesis by citric acid sol-gel method and electrochemical properties of Li_4Ti_5O_(12) anode material for lithium-ion battery [J]. Mater. Chem. and Phys., 2005, 94: 382-387.
    [33] T. Nukuda, T. Inamasu, A. Fujii, D. Endo, H. Nakagawa, S. Kozono, T. lguchi, J. Kuratomi, K. Kohno, S. Izuchi, M. Oshitani. Development of a lithium ion battery using a new cathode material [J]. J. Power Sources, 2005, 146: 611-616.
    [34] 吴宇平,戴晓兵,马军旗,程预江编著.锂离子电池—应用与实践[M].北京:化学工业出版社,2004:191.
    [35] J. M. Tarascon, E. Wang, F. K. Shokochi, W. R. Mckinnon, S. Colson, J. Electrochem. Soc, 1991, 138: 2859.
    [36] 王双才,李元坤,刘述平.锂离子电池正极材料研究动态[J].中国锰业.2004,22(3):31-34.
    [37] L. C. Ferracin, F. A. Amaral, N. Bocchi. Characterization and electrochemical performance of the spinel LiMn_2O_4 prepared from e-MnO_2[J]. Solid State Ionics, 2000, 130: 215-219.
    [38] 陈昌国,刘渝萍,李兰.锂离子电池中钒氧化物电极材料的研究线状[J].无机材料学报.2004,19(6):1225-1230.
    [39] 李志栓,吴孙桃,李静,郭东辉.磁控溅射制备五氧化二钒薄膜的研究[J].功能材料,2005,36(2):285-287.
    [40] C. Navone, R. Baddour-Hadjean, J. P. Pereira-Ramos, R. Salot. High-Performance Oriented V_2O_5 Thin Films Prepared by DC Sputtering for Rechargeable Lithium Microbatteries[J]. J. Electrochem. Soc., 2005, 152(9): A1790-A1796.
    [41] A. Mantoux, H. Groult, E. Balnois, P. Doppelt, L. Gueroudjib. Vanadium Oxide Films Synthesized by CVD and Used as Positive Electrodes in Secondary Lithium Batteries[J]. J. Electrochem. Soc., 2004, 151(3): A368-A373.
    [42] Y. S. Cohen, D. Aurbach. Surface films phenomena on vanadium-pentoxide cathodes for Li and Li-ion batteries: in situ AFM imaging[J]. Electrochem. Comm., 2004, 6: 536-542.
    [1] E. Endo, T. Yasuda, A. Kita, K. Yamaura, K. Sekaia. A LiCoO_2 Cathode Modified by Plasma Chemical Vapor Deposition for Higher Voltage Performance, J. Electrochem. Soc. [J] 2000, 1474): 1291-1294.
    [2] M. Martin, F. Faverjon. A multilayer semi-industrial vacuum deposition equipment for producing ultrathin batteries, Thin Solid Films[J] 2001, 398-399: 572-574.
    [3] P. Frangnaud, R. Nagarajan, D. M. Schleich, D. Vujic. Thin-film cathodes for secondary lithium batteries, J. Power Sources[J] 1995, 54: 362-366.
    [4] P. Fragnaud, D. M. Schleich. Thin film components for solid state lithium batteries, Sensors and actuators[J] 1995, A5: 21-23.
    [5] H. Shin, S. Pyun. Investigation of lithium transport through lithium cobalt dioxide thin film sputter-deposited by analysis of cyclic voltammogram, Electrochimica Acta[J] 2001, 46: 2477-248
    [6] J. Pracharova, J. Pridal, J. Bludska, I. Jakubec, V. Vorlicek, Z. Malkova, Makris Th. Dikonimos, R. Giorgi, L. Jastrabik. LiCoO_2 thin-film cathodes grown by RF sputtering, J. Power Sources, [J] 2002, 108: 204-212.
    [7] Y. J. Kim, E. Lee, H. Kim, J. Cho, Y. W. C. Cho, B. Park, S. M. Oh, J. K Yoon, Changes in the Lattice Constants of Thin-Film LiCoO_2 Cathodes at the 4.2 V Charged State, J. Electrochem. Soc. [J] 2004, 151(7): A1063-A1067.
    [8] C. Liao, K. Fung. Lithium cobalt oxide cathode film prepared by rf sputtering, J. Power Sources[J] 2004, 128: 263-269.
    [9] K. Kanamura, S. Toriyama, S. Shiraishi, M. Ohashi, Z. Takehara. Studies on electrochemical oxidation of non-aqueous electrolyte on the LiCoO_2 thin film electrode[J]. J. Electroanal. Chem., 1996, 419: 77-84.
    [10] P. Birke, W. F. Chu, W. Weppner. Materials for lithium thin-film batteries for application in silicon technology[J]. Solid State Ionics, 1997, 93: 1-15
    [11] H. Benqlilou-Moudden, G. Blondiaux, P. Vinatier, A. Levasseur. Amorphous lithium cobalt and nickel oxides thin films: preparation and characterization by RBS and PIGE[J]. Thin Solid Films, 1998, 333: 16-19.
    [12] C. N. Polo da Fonseca, J. Davalos, M. Kleink, M. C. A. Fantini, A. Gorenstein. Studies of LiCoO_2 thin film cathodes produced by r. f. sputtering[J]. J. Power Sources, 1999, 81-82: 575-580.
    [13] J. B. Bates, a, N. J. Dudney, B. J. Neudecker, F. X. Hart, H. P. Jun, S. A. Hackney. Preferred Orientation of Polycrystalline LiCoO_2 Films[J]. J. Electrochem. Soc., 2000, 147(1): 59-70
    [14] J.B. Bates, N.J. Dudney, B. Neudecker, A. Ueda, C.D. Evans. Thin-film lithium and lithium-ion batteries [J]. Solid State Ionics,2000,135 :33-45.
    
    [15] K. Kanamura, T. Umegaki, M. Ohashi, S. Toriyama, S. Shiraishi, Z. Takehara. Oxidation of propylene carbonate containing LiBF4 or LiPF6 on LiCoO_2 thin film electrode for lithium batteries [J]. Electrochimica Acta,2001,47 :433-439.
    
    [16] J. F. Whitacre, W. C. West, E. Brandon, B. V. Ratnakumar. Crystallographically Oriented Thin-Film Nanocrystalline Cathode Layers Prepared Without Exceeding 300℃ [J]. J. The Electrochem. Soc, 2001,148 (10): A1078-A1084.
    
    [17]Y. Kang, H. Lee, S. Park, P. S. Lee, J. Lee. Plasma Treatments for the Low Temperature Crystallization of LiCoO_2 Thin Films [J]. J. Electrochem. Soc, 2001,148 (11):A1254-A1259 .
    
    [18]S.Pyun, H.Shin. The kinetics of lithium transport through Li_(1-d)CoO_2 thin film electrode by theoretical analysis of current transient and cyclic voltammogram [J].J.Power Sources,2001,97-98:277-281.
    
    [19] J.F. Whitacre, W.C. West, B.V. Ratnakumar. The influence of target history and deposition geometry on RF magnetron sputtered LiCoO_2 thin films [J]. J. Power Sources,2001, 103:134-139.
    
    [20] J.C. Dupin, D. Gonbeau, H. Benqlilou-Moudden, Ph. Vinatier, A. Levasseur. XPS analysis of new lithium cobalt oxide thin-films before and after lithium deintercalation [J]. Thin Solid Films,2001, 384:23-32.
    
    [21] Michel Martin, Frederic Faverion. A multilayer semi-industrial vacuum deposition equipment for producing ultrathin batteries [J]. Thin Solid Films ,2001,398 -399:572-574.
    
    [22] P. J. Bouwman, B. A. Boukamp, H. J. M. Bouwmeester, P. H. L. Notten. Influence of Diffusion Plane Orientation on Electrochemical Properties of Thin Film LiCoO_2 Electrodes [J]. J. Electrochem. Soc.,2002,149(6): A699-A709.
    
    [23]Y. J. Kim, T.Kim, J. W. Shin, B. Park, J. Chob. The Effect of Al_2O_3 Coating on the Cycle Life Performance in Thin-Film LiCoO_2 Cathodes [J]. J. Electrochem. Soc.,2002, 1 49 (10): A1337-A1341.
    
    [24] S. Lee, H. Baik, S. Lee. An all-solid-state thin film battery using LISIPON electrolyte and Si-V negative electrode films [J]. Electrochem. Comm.2003, 5 :32-35.
    
    [25] K.-F. Chiu,a,z F. C. Hsu,b G. S. Chen,a and M. K. Wu. Texture and Microstructure Development of RF Sputter-Deposited Polycrystalline Lithium Transition Metal Oxide Thin Films [J]. J.Electrochem. Soc, 2003,150 (4): A503-A507.
    
    [26] Nancy J. Dudney, Young-Il Jang. Analysis of thin-film lithium batteries with cathodes of 50 nm to 4 mm thick LiCoO_2 [J]. J. Power Sources ,2003, 119-121:300-304.
    
    [27] W. Kim. Characteristics of LiCoO_2 thin film cathodes according to the annealing ambient for the post-annealing process [J]. J.Power Sources,2004,134 :103-109.
    
    [28] C.H.Chen, A.A.J.Buysman, E.M.Kelder, J.Schoonman, Fabrication of LiCoO_2 thin film cathodes for rechargeable lithium battery by electrostatic spray pyrolysis, Solid State Ionics [J] 1995.80:1-4.
    
    [29] C.H. Chen, E.M.Kelder, M.J.GJak, J.Schoonman. Electrostatic spray deposition of thin layers of cathode materials for lithium battery, Solid State Ionics [J] 1996,86-88:1301-1306.
    
    [30] W.S. Yoon, S.Ban, K.Lee, K.Kim, M. G Kim, J. M.Lee. Electrochemical characterization of layered LiCoO_2 films prepared by electrostatic spray deposition [J]. J. Power Sources. 2001,97-98: 282-286.
    
    [31] C.H.ChenAA.J.Buysman,E.M.Kelder,J.Schoonman. Fabrication of LiCoO_2 thin film cathodes for rechargeable lithium battery by electrostatic spray pyrolysis [J]. Solid State Ionics,1995,80:l-4.
    
    [32] .H.Chen,E.M.Kelder,M.J.G Jak, J.Schoonman.Electrostatic spray deposition of thin layers of cathode materials for lithium battery [J].Solid State Ionics, 1996,86-88:1301-1306.
    [33]C. Chen, E. M. Kelder, J. Schoonman. Functional Ceramic Films with Reticular Structures Prepared by Electrostatic Spray Deposition Technique [J]. J.Electrochem. soc., 1997,144(11) L289-291.
    
    [34] K. A.Sfriebel, C. Z.Deng, S. J.Wen, E. J.Cairns. Electrochemical Behavior of LiMn_2O_4 and LiCoO_2 Thin Films Produced with Pulsed Laser Deposition, J. Electrochem. Soc., 1996, 143(6):1821-1827.
    
    [ 35 ] J.D.Perkins, C.S.Bahn, P.A.Parilla, J.M.McGraw, M.L.Fu, M.Duncan, H.Yu, D.S.Ginley . LiCoO_2 and LiCo_(1-x) Al_XO_2 thin film cathodes grown by pulsed laser ablation, J. Power Sources [J] 1999, 81-82:675-679.
    
    [36] J.M. McGraw, C. S. Bahn, P. A. Parill, J. D. Perkins, D. W. Readey, D.S. Ginley. Li ion diffusion measurements in V_2O_5 and Li(Co_(1-x)Al_x)O_2 thin-film battery cathodes [J]. Electrochimica Acta ,1999,45:187-196.
    
    [37] J. D. Perkins, C. S. Bahn, J. M. McGraw, P. A. Parilla, D. S. Ginley. Pulsed Laser Deposition and Characterization of Crystalline Lithium Cobalt Dioxide .LiCoO_2 Thin Films [J]. J. Electrochem. Soc.,2001,148 (12): A1302-A1312.
    
    [38] Y. Iriyama, M. Inaba, T. Abe, Z. Ogumi. Preparation of c-axis oriented thin films of LiCoO_2 by pulsed laser deposition and their electrochemical properties [J]. J. Power Sources,2001, 94: 175-182.
    
    [39] C. Julien, M.A. Camacho-Lopez, L. Escobar-Alarcon, E. Haro-Poniatowski. Fabrication of LiCoO_2 thin-film cathodes for rechargeable lithium microbatteries [J]. Mater. Chem. Phys.,2001, 68: 210-216.
    [40] Y. Iriyama, H. Kurita, I. Yamada, T. Abe, Z. Ogumi. Effects of surface modification by MgO on interfacial reactions of lithium cobalt oxide thin film electrode[J]. J.Power Sources, 2004, 137: 111-116.
    [41] K. Han, S. Song, T. Watanabe, M. Yoshimura. Simultaneous and Direct Fabrication of Lithium Cobalt Oxide Film and Powder Using Soft Solution Processing at 100℃, Electrochem. Solid-State Left. [J] 1999, 2(2): 63-66.
    [42] Y. Tao, Z. Chert, B. Zhu, W. Huang. Preparation of preferred oriented LiCoO_2 thin films by soft solution processing, Solid State Ionics[J] 2003, 161: 187-192.
    [43] 陶颖,陈振华,黄尉庄.软溶胶—凝胶法制备LiCoO2薄膜,材料科学与工程,[J]2001,19(4):29-41.
    [44] S. Song, K. Hart, I. Sasagawa, T. Watanabe, M. Yoshimura. Effect of LiOH concentration change on simultaneous preparation of LiCoO_2 film and powder by hydrothermal method, Solid State Ionics[J] 2000, 135: 277-281.
    [45] 陶颖,陈振华,祝宝军.水热电化学法制备LiCoO2薄膜和粉末,材料科学与工程学报.[J]2005,23(2):177-180.
    [46] M. Kim, H. Chung, Y. Park, J. Kim, J. Son, K. Park, H. Kim. Fabrication of LiCoO_2 thin films by sol-gel method and characterization as positive electrodes for Li/LiCoO_2 cells, J. Power Sources[J] 2001, 99: 34-40.
    [47] Y. H. Rho, K. Kanamura, T.Umegaki. LiCoO_2 and LiMn_2O_4 Thin-Film Electrodes for Rechargeable Lithium Batteries, J. Electrochem. Soc. [J] 2003, 150(1): A107-A111.
    [48] J. P. Maranchi, A. F. Hepp, P. N. Kumta., LiCoO_2 and SnO_2 thin film electrodes for lithium-ion battery applications, Mater. Sci. Engi. [J] 2005, B 116: 327-340.
    [49] K. Kushida, K. Kuriyama. Sol-gel growth of LiCoO_2 films on Si substrates by a spin-coating method[J]. J. Crys. Growth, 2002, 237-239: 612-615.
    [50] M. Kim, K. Park, J. Son, J. Kim, H. Chung, H. Kim. The electrochemical properties of thin-film LiCoO_2 cathode prepared by sol-gel process[J]. Solid State Ionics, 2002, 152-153: 267-272.
    [51] Y. H. Rho, K. Kanamura, M. Fujisaki, J. Hamagami, S. Suda, T. Umegaki. Preparation of Li_4Ti_5O_(12) and LiCoO_2 thin film electrodes from precursors obtained by sol-gel method[J]. Solid State Ionics, 2002, 151: 151-157.
    [52] Y. H. Rho, K. Kanamura. Li(?)-Ion Diffusion in LiCoO_2 Thin Film Prepared by the Poly. vinylpyrrolidone. Sol-Gel Method [J]. J. Electrochem. Soc., 2004, 151(9): A1406-A1411.
    [53] S. Cho, S. Yoon. Characterization of LiCoO_2 Thin Film Cathodes Deposited by Liquid-Delivery Metallorganic Chemical Vapor Deposition for Rechargeable Lithium Batteries, J. Electrochem. Soc. [J] 2002, 149(12): A1584-A1588.
    [54] W. Choi, S. Yoon. Structural and electrical properties of LiCoO_2 thin-film cathodes deposited on planar and trench structures by liquid-delivery metalorganic chemical vapour deposition, J. Power Sources[J] 2004, 125: 236-241.
    [55] J. Cho, C. Kim, S. Yoo. Improvement of Structural Stability of LiCoO_2 Cathode during Electrochemical Cycling by Sol-Gel Coating of SnO_2, Electrochem. Solid-State Lett. [J] 2000, 3(8): 362-365.
    [56] M. N. Obrovac, O. Mao, J. R. Dahn. Structure and electrochemistry of LiMO_2 (M=Ti, Mn, Fe, Co, Ni) prepared by mechanochemical synthesis[J]. Solid State Ionics 112(1998)9-19.
    [57] W. Rajewskia, W. Majchrzycki, M. Jurczyk. High energy ball milling of (Zr, La)(V,Ni) under hydrogen[J]. J. Alloys and Compounds, 1999, 289: L6-L9.
    [58] S. Choi, A. Manthiram. Factors Influencing the Layered to Spinel-like Phase Transition in Layered Oxide Cathodes[J]. J. Electrochem. Soc., 2002, 149(9): A1157-A1163.
    [59] Michael C. Tucker, Jeffrey A. Reimer, Elton J. Cairns. 7Li NMR Studies of Chemically-Delithiated Li_(1-x)CoO_2[J]. J. Phys. Chem. B 2002, 106: 3842-3847.
    [60] 王双才,李元坤,刘述平.锂离子电池正极材料研究动态[J].中国锰业.2004,22(3):31-34.
    [61] J. Cho, C. Kim, S. Yoob. Improvement of Structural Stability of LiCoO_2 Cathode during Electrochemical Cycling by Sol-Gel Coating of SnO_2[J] Electrochem. Solid-State Lett.,_2000, 3(8): 362-365.
    [62] S. Pyun, Y. Choi. Electrochemical lithium intercalation into and de-intercalation from porous LiCoO_2 electrode by using potentiostatic current transient technique[J]. J. Power Sources, 1997, 68: 524-529.
    [63] K. Kushida, K. Kuriyama. Narrowing of the Co-3d band related to the order-disorder phase transition in LiCoO_2[J]. Solid State Communications 123 (2002) 349-352.
    [64] Y. Iriyama, M. Inaba, T. Abe, Z. Ogumi. Preparation of c-axis oriented thin films of LiCoO_2 by pulsed laser deposition and their electrochemical properties[J]. J. Power Sources, 2001, 94: 175~182.
    [65] Frangini, S. Scaccia, M. Carewska. Suppression of Phase Transitions in Li-rich Lithium Cobaltite Cathodes Observed by Microparticle Cyclic Voltammetry[J]. Electrochem. Solid-State Lett., 2002, 5(10): A209-A212.
    [66] H. Kim, T. Ko, B. Na, W. Il Cho, B. W. Chao. Electrochemical properties of LiM_xCo_(1/x)O_2 [M=Mg, Zr] prepared by sol-gel process[J]. J. Power Sources, 2004, 138: 232-239.
    [67] T. Itoh, H. Sato, T. Nishina, T. Matue, I. Uchida. In situ Raman spectroscopic study of Li_xCoO_2 electrodes in propylene carbonate solvent systems, J. Power Sources [J] 1997, 68: 333-337.
    [68] S. Frangini, S. Scaccia, M. Carewska. Suppression of Phase Transitions in Li-rich Lithium Cobaltite Cathodes Observed by Microparticle Cyclic Voltammetry[J], Electrochem. Solid-State Lett. [J] 2002, 5(10): A209-A212.
    [1]M. Di Giulio, G Micocci, A. Tepore, R. Rella, P. Siciliano, SnO_2 thin films for gas sensor prepared by r.f. reactive sputtering, Sensors and Actuators B 24-25 (1995) 465-468.
    [2] Q. Chen, Y. Qian, Z. Chen, G Zhou, Y. Zhang, Fabrication of ultrafine SnO_2 thin films by the hydrothermal method, Thin Solid Films 264 (1995) 25-27.
    
    [3] F. Ding, Z. Fu, M. zhou, Q. Qin, Tin-Based Composite Oxide Thin-Film electrodes Prepared by Pulsed Laser Deposition. J. Electrochem. Soc. 1999,146 :3554-3559.
    
    [4] J. Xie, V. K. Varadan, Synthesis of Tin Oxide/Carbon Nanotube Composite by Homogeneous Precipitation and Characterizations. Proceedings of SPIE, 2004,5389:210-220.
    [5] N. Li, C. R. Martin, B. Scrosati, Nanomaterail-based Li-ion Battery Electrodes. J. Power Sources, 2001,97-99:240-243.
    
    [6] S. C. Nam , C. H. Paik , W. I. Cho, B. W. Cho, H. S. Chun, K. S. Yun, Electrochemical characterization of various tin-based oxides as negative electrodes for rechargeable lithium batteries. J. Power Sources ,1999,84:24-31.
    
    [7] T. Brousse , O. Crosnier , X. Devaux , P. Fragnaud , P. Paillard , J. Santos-Pen, D. M. Schleich, Advanced oxide and metal powders for negative electrodes in lithium-ion batteries. Powder Technology.2002, 128:124-130.
    
    [8] G Taillades, N. Benjelloun, J. Sarradin, M. Ribes, Metal-based very thin film anodes for lithium ion microbatteries. Solid State Ionics 2002, 152-153 :119-124.
    
    [9] G Korotchenkov, V. Brynzari, S. Dmitriev. SnO_2 films for thin film gas sensor design [J]. Mater. Sci. Engi. 1999, B56 :195-200.
    
    [10] G Korotchenkov, V. Brynzari, S. Dmitriev. Electrical behavior of SnO_2 thin films in humid atmosphere [J].Sensors and Actuators , 1999, B54:197-201.
    
    [11] G. Korotcenkov, M. DiBattista, J. Schwank, V. Brinzari. Structural characterization of SnO_2 gas sensing films deposited by spray pyrolysis [J]. Mater.Sci. Engi.2000, B77: 33-39.
    [12] S. Kaneko, I. Yagi, K. Murakami, M. Okuya. Thermal decomposition of di-n-butyltin IV diacetate as a precursor for the spray pyrolysis deposition of oriented SnO_2 thin films [J]. Solid State Ionics,2001,141-142:463-470.
    
    [13] V. Brinzari, G Korotcenkov_, V. Golovanov. Factors influencing the gas sensing characteristics of tin dioxide films deposited by spray pyrolysis-understanding and possibilities of control [J]. Thin Solid Films,2001,391: 167-175.
    
    [14] B. Thangaraju. Structural and electrical studies on highly conducting spray deposited fluorine and antimony doped SnO_2 thin films from SnCl_2 precursor [J]. Thin Solid Films,2002, 402:71-78.
    [15] P.S. Patil, R.K. Kawar, T. Seth, D.P. Amalnerkar, P.S. Chigare. Effect of substrate temperature on structural, electrical and optical properties of sprayed tin oxide thin films [J].Ceramics International,2003, 29:725-734.
    
    [16] R.S. Niranjan, K.R. Patil, S.R. Sainkar, I.S. Mulla. High H2S-sensitive copper-doped tin oxide thin film [J].Mater. Chem.and Phys.,2003,80:250-256.
    
    [17] A. Tlburcio-Silver, A. Sanchez-Juarez. Regeneration processes study on spray-pyrolyzed SnO_2 thin films exposed to CO-loaded air [J].Sensors and Acruators,2004, B102:174-177
    [18] G Korotcenkov, A. Cornet, E. Rossinyol, J. Arbiol, V. Brinzari, Y. Blinov. Faceting characterization of tin dioxide nanocrystals deposited by spray pyrolysis from stannic choride water solution [J].Thin Solid Films,2005,471:310- 319.
    
    [19] Y. J. Park, K. S. Park, J. G Kima, M. K. Kim, H. G Kim, H. T. Chung, Characterization of tin oxide/LiMn_2O_4 thin-film cell. J. Power Sources,2000,88:250-254.
    
    [20] S. C. Nam, Y. S. Yoon , W. I. Cho , B. W. Cho, H. S. Chun, K. S. Yun, Enhancement of thin film tin oxide negative electrodes for lithium batteries. Electrochem. Commun. 3 (2001) 6-10
    [21] S. C. Nam, Y. S. Yoon, W. I. Cho, B. W. Cho, H. S. Chun, K. S. Yun, Reduction of Irreversibility in the First Charge of Tin Oxide Thin Film Negative Electrodes. J. Electrochem. Soc. 148 (2001): A220-223.
    
    [22] M.Di Giulio, G Micocc, A. Serra, A. Tepore, R. Rella, P. Siciliano. SnO_2 thin films for gas sensor prepared by r.f. reactive sputtering [J]. Sensors and Actuators B 24-25 (1995):465-468
    [23] J.L.Brousseau, H.Bourque, A. Tessier, R.M. Leblanc. Electrical properties and topography of SnO_2 thin films prepared by reactive sputtering [J]. Appl. Surf. Sci. 108 (1997) 351-358
    [24] J.Santos, P.Serrini, B.O'Beirn, L.Manes. A thin film SnO_2 gas sensor selective to ultra-low NO_2 concentrations in air [J]. Sensors and Actuators B 43 (1997):154-160
    [25] M.C. Horrillo, P. Serrini, J. Santos, L. Manes. Influence of the deposition conditions of SnO_2 thin films by reactive sputtering on the sensitivity to urban pollutants [J]. Sensors and Actuators B 45 (1997): 193-198.
    
    [26] L.Sangaletti, L.E.Depero, A.Dieguez, GMarca, J.R.Morante, A.Romano-Rodriguez, G Sberveglieri. Microstructure and morphology of tin dioxide multilayer thin film gas sensors [J]. Sensors and Actuators B 44 (1997):268-274.
    
    [27] P.Serrini,V.Briois, M.CHorrillo, A.Traverse, L.Manes. chemical composition and crystalline structure of SnO_2 thin films used as gas sensors [J].Thin Solid Films 304 (1997) :113-122
    [28] E.S. Rembeza, O. Richard, J. Van Landuyt. Influence of Laser and isothermal treatments on micro-structural properties of SnO_2 films [J]. Mater. Research Bulletin, 34 (1999) :1527-1533
    [29] V. V. Kissine, S.A. Voroshilov, V.V. Sysoev. Oxygen flow effect on gas sensitivity properties of tin oxide film prepared by rf sputtering[J]. Sensors and Actuators B 55(1999): 55-59.
    [30] V. V. Kissine, S. A. Voroshilov, V. V. Sysoev. A comparative study of SnO_2 and SnO_2-Cu thin films for gas sensor applications[J]. Thin Solid Films 348(1999): 304-311.
    [31] J. Wo"llenstein, H. Bo"ttner, M. Jaegle, W. J. Becker, E. Wagner, Material properties and the influence of metallic catalysts at the surface of highly dense SnO_2 films [J]. Sensors and Actuators B 70(2000): 196-202.
    [32] T. Kawabe, K. Tabata, E. Suzuki, Y. Nagasawa. Methanol adsorption on an oxidized and a reduced SnO_2 thin film[J]. Surf. Sci. 454—456(2000): 374-378.
    [33] T. Kawabe, S. Shimomura, T. Karasuda, K. Tabata, E. Suzuki, Y. Yamaguchi. Photoemission study of dissociatively adsorbed methane on a pre-oxidized SnO_2 thin film[J]. Surf. Sci. 448 (2000): 101-107.
    [34] T. W. Kim, D. U. Lee, J. H. Lee, Y. S. Yoon. Surface and microstructural properties of SnO_2 thin films grown on p-InP (100) substrates at low temperature[J]. Solid State Comm. 115(2000): 503-507.
    [35] C. Branci, N. Benjelloun, J. Sarradin, M. Ribes. Vitreous tin oxide-based thin film electrodes for Li-ion micro-batteries[J]. Solid State Ionics 135(2000): 169-174.
    [36] T. Kawabe, K. Tabata, E. Suzuki, Y. Ichikawa, Y. Nagasawa. Morphological effects of SnO_2 thin film on the selective oxidation of methane[J]. Catalysis Today 71(2001): 21-29.
    [37] T. W. Kim. Dependence of the structural, the electrical, and the optical properties on the Ar-O_2 flow rate ratios for SnO_2 thin films grown on p-InSb(111) substrates[J]. Mater. Research Bulletin 36(2001): 349-353.
    [38] D. H. Kim, S. H. Lee, K. Kim. Comparison of Co-gas sensing characteristics between mono-and multi-layer Pt-SnO_2 thin films[J]. Sensors and Actuators B 77 (2001): 427-431.
    [39] V. V. Kissine, V. V. Sysoev, S. A. Voroshilov. Conductivity of SnO_2 thin films in the presence of surface adsorbed species[J]. Sensors and Actuators B 79 (2001) 163-170.
    [40] D. Lee, G. Rue, J. Huh, S. Choi, D. Lee. Sensing characteristics of epitaxially-grown tin oxide gas sensor on sapphire substrate[J]. Sensors and Actuators B 77 (2001): 90-94.
    [41] E. Comini, G. Faglia, G. Sberveglieri. UV light activation of tin oxide thin films for NO_2 sensing at low temperatures[J]. Sensors and Actuators B 78 (2001): 73-77.
    [42] R. Snyders, M. Wautelet, R. Gouttebaron, J. P. Dauchot, M. Hecq. Correlation between the gas composition and the stoichiometry of SnOx films prepared by DC magnetron reactive sputtering[J]. Surf. and Coatings Technology 142-144(2001): 187-19.
    [43] T. Kawabe, K. Tabata, E. Suzuki, Y. Nagasawa. Methanol adsorption on SnO_2 thin films with different morphologies[J]. Surf. Sci. 482-485(2001): 183-188.
    [44] A. Karthigeyan, R.P. Gupta, M. Burgmair, S.K. Sharma, I. Eisele. Influence of oxidation temperature, film thickness and substrate on NO_2 sensing of SnO_2 ultra thin films [J]. Sensors and Actuators B 87 (2002):321-330.
    
    [45] M.A.Gubbins, V.Casey, S.B.Newcomb. Nanostructural characterisation of SnO thin films prepared by reactive rf magnetron sputtering of tin [J]. Thin Solid Films 405 (2002):270-275.
    
    [46]A.M. Serventi, D.G. Rickerby, M.C. Horrillo, R.G. Saint-Jacques. Transmission electron microscopy investigation of the effect of deposition conditions and a platinum layer in gas-sensitive rf-sputtered SnO_2 films [J]. Thin Solid Films 445 (2003):38-47.
    
    [47]S. H. Choi, J. S. Kim, Y.S.Yoon. Fabrication and characterization of SnO_2-RuO_2 composite anode thinfilm for lithium ion batteries [J]. Electrochimica Acta 50 (2004):547-552.
    
    [48]H. Ahn, Y. Kim, H. Shim, C. Kim, T. Seong. Improvement of the electrochemical properties of SnO_2 electrodes for lithium rechargeble battery using protective Ta_2O_5 thin films [J]. Solid State Ionics 176 (2005) 699-702 .
    
    [49] N. Li, C. R. Martin, A High-Rate, High-Capacity, Nanostructured Sn-Based Anode Prepared Using Sol-Gel Template Synthesis. J. Electrochem. Soc. 148 (2001) A164.
    
    [50]Y.P.Yadava, G.Denicolo,A.C.Arias, L.S.roman, I.A. Hummelgen. Preparation and characterization transparent conducting tin oxide thin film electrodes by chemical vapour deposition from reactive thermal evaporation of SnCl_2[J] .Mater. Chem. Phys. 48 (1997):263-267.
    
    [51] D.Davazoglou. Optical properties of SnO_2 thin films grown by atmospheric presure chemical vapour deposition oxidizing SnCl_2 [J]. Thin solid Films 302 (1997):204-213.
    
    [52]A.K. Mukhopadhyay, P. Mitra, A.P. Chatterjee, H.S. Maiti. Tin dioxide thin film gas sensor [J].Ceramics International 26 (2000):123-132.
    
    [53]GPark, G.Yang. Characterization of SnO_2 films on glass by transmission electron microscopy [J]. Thin Solid Films 365 (2000):7-11.
    
    [54] P. Rajaram, Y.C. Goswami, S. Rajagopalan, V.K. Gupta. Optical and structural properties of SnO_2 films grown by a low-cost CVD technique [J]. Mater. Lett. 54 (2002):158-163.
    
    [55] P.Montmeat, C. Pijolat, B.Riviere, G. Toumier, J. Viricelle. Effect of a platinum membrane on the sensing properties of materials bssed on thin and thick tin dioxide films [J]. Mater. Sci. Engi.C21(2002):113-123.
    
    [56] A. Salehi. A highly sensitive self heated SnO_2 carbon monoxide sensor [J]. Sensors and Actuators B 96 (2003):88-93.
    
    [57] J. Jeong, S. Choi, C.Chang, D. C. Shin, J. S. Park, B-T Lee, Y. Park, H. Song. Photoluminescence properties of SnO_2 thin films grown by thermal CVD [J]. Solid State Comm. 127 (2003):595-597.
    [58] J. Jeon, S. P. Choi, K. J. Hong, Y. T. O, H. J. Song, J. B. Koo, I. H. Lee, J. S. Park, D. C. Shin. Atomic scale faceting and its effect on the grain size distribution of SnO_2 thin films during deposition[J]. Mater. Sci.. Engi. B 110(2004): 240-242.
    [59] S. W. Lee, P. P. Tsai, h. Chen. H_2 sensing behavior of MOCVD-derived SnO_2 thin films[J]. Sensors and Actuators B 41(1997): 55-61.
    [60] A. I. Ivashchenko, Ia. I. Kemer, G. A. Kiosse, I. Yu. Maronchuk. Dimensional effect on the electrical conductivity of polycrystalline SnO_2 thin films[J]. Thin Solid Films 303(1997): 292-294
    [61] S. W. Lee, P. P. Tsai, H. Chen. Comparison study of SnO thin- and thick-film gas sensors[J]. Sensors and Actuators B 67(2000): 122-127.
    [62] F. MAURY, M. AMJOUD. Study of the properties of in situ Pt-doped SnO_2 thin films prepared by metal-organic chemical vapour deposition[J]. Ann. Chim. Sci. Mat. 27(2002)61-68
    [63] V. M. Jime(?)nez, J. P. Espino(?)s, A. Caballero, L Contreras, A. FernaAndez, A. Justo, A. R. Gonza(?)lez-Elipe. SnO_2 thin films prepared by ion beam induced CVD-preparation and characterization by X-ray absorttion spectroscopy[J]. Thin Solid Films 353(1999): 113-123.
    [64] J. Szuber, G. Czempik, R. Larciprete, B. Adamowicz. The comparative XPS and PYS studies of SnO thin films prepared by L-CVD technique and exposed to oxygen and hydrogen[J]. Sensors and Actuators B 70(2000): 177-181.
    [65] J. Szuber, G. Czempik, R. Larciprete, D. Koziej, B. Adamowicz. XPS study of the L-CVD deposited SnO thin films exposed to oxygen and hydrogen [J]. Thin Solid Films 391(2001): 198-203.
    [66] A. Tarre, A.Rosental, V. Sammelselg, T. Uustare. Comparative study of low temperature chloride atomic-layer chemical vapor deposition of TiO_2 and SnO_2[J]. Appl. Surf. Sci. 175-176(2001): 111-116.
    [67] A. Rosental, A. Tarre, A. Gerst, J. Sundqvist, A. Ha°rsta, A. Aidla, J. Aarik, V. Sammelselg, T. Uustare. Gas sensing properties of epitaxial SnO_2 thin films prepared by atomic layer deposition [J]. Sensors and Actuators B 93 (2003): 552-555.
    [68] J. Lu, J. Sundqvist, M. Ottosson, A. Tarre, A. Rosental, J. Aarik, A. Harsta. Microstructure characterisation of ALD-grown epitaxial SnO2 thin films[J]. J. Crys. Growth 260 (2004): 191-200
    [69] F. Hellegouarc'h, F. Arefi-Khonsari, R. Planade, J. Amouroux. Prepared SnO_2 thin films for ethanol sensors[J]. Sensors and Actuators B 73(2001): 27-34.
    [70] Y. Kim, S. H. Nahm, M. Jung. Structural refinement of SnO_2 thin film prepared by plasma-enhanced chemical vapor deposition[J]. Mater. Lett. 57(2003): 3653-3659.
    [71] P. Y. Liu, J. F. Chen, W. D. Sun. Characterizations of SnO_2 and SnO_2-Sb thin films prepared by PECVD [J].Vacuum 76 (2004):7-ll.
    
    [72] Y.-I. Kim, C. S. Yoon, J. W. Park, Microstructural Evolution of Electrochemically Cycled Si-Doped SnO_2 Lithium Thin-Film Battery J. Solid State Chemistry 160 (2001) 388-393.
    
    [73] M.H. Madhusudhana Reddy, A.N. Chandorkar. E-beam deposited SnO_2, Pt-SnO_2 and Pd-SnO_2 thin films for LPG detection [J]. Thin Solid Films 349 (1999) 260-265.
    
    [74] J.CJiang, KXian, E.I.Meletis. Influence of oxygen plasma treatment on the microstructure of SnO thin films [J]. Thin Solid Films 411 (2002):203-210.
    
    [75] S.K. Song, W.K.Choi, H. J. Jung, H.K.Baik, S.K.Koh. Comparison of properties of tin oxide films deposited by reactive-partially ionized beam, ion assisted and hybrid ion beam methods [J]. Nanostructured Mater. 8 (4) (1997):477-488.
    
    [76] C.K.Kim, S.M.Choi, I.H.Noh, J.H.Lee, CHong, H.B.Chae,G.E.Jang, H.D.Park. A study on thin gas sensor based on SnO_2 prepared by pulsed laser deposition method [J]. Sensors and Actuators B 77 (2001):463-467.
    
    [77] MA.E1 Khakani, R.DoIbec, A.M.Serventi, M.C.Horrillo, M.Trudeau, R.GSaint-Jacques, D.G Rickerby, I.Sayago. Pulsed laser deposition of nanostructured tin oxide films for gas sensing applications [J].Sensors and Actuators B 77 (2001):383-388.
    
    [78] A.M. Serventi, R. Dolbec, M.A. El Khakani, R.G. Saint-Jacques, D.G. Rickerby. High-resolution transmission electron microscopy investigation of the nanostructure of undoped and Pt-doped nanocrystalline pulsed laser deposited SnO_2 thin films [J]. J. Phys. Chem. of Solids 64 (2003):2097-2103.
    
    [79] Z.W. Chen, J.K.L. Lai, C.H. Shek. High-resolution transmission electron microscopy investigation of nanostructures in SnO_2 thin films prepared by pulsed laser deposition [J]. J.Solid State Chem. 178 (2005) 892-896.
    
    [80] Y. Nuli, S. Zhao, Q. Qin, Nanocrystalline Tin Oxides and Nickel Oxide Film Anodes for Li-ion batteries. J. Power Sources 114 (2003) 113-120.
    
    [81] H. Yana, GH. Chen, W.K. Man, S.P. Wong, R.W.M. Kwok.Characterizations of SnO_2 thin films deposited on Si substrates [J].Thin Solid Films 326 (1998):88-91.
    
    [82] G Carbajal-Franco, A. Tiburcio-Silver, J.M. Dom'inguez, A. S'anchez-Ju'arez. Thin film tin oxide-based propane gas sensors [J]. Thin Solid Films 373 (2000):141-144.
    
    [83] Y. Kimura, T. Kobayashi, K. Hanamoto, M. Sasaki, S. Kimura, T. Nakada, Y. Nakayama, C. Kaito. Effect of SR irradiation on crystallization of amorphous tin oxide films [J]. Nuclear Instruments Methods Phys. Research A 467-468 (2001) 1221-1224.
    
    [84] M. Mohamedi, Seo-Jae Lee, D. Takahashi, M. Nishizawa, T. Itoh, I. Uchida, Amorphous tin oxide films: preparation and characterization as an anode active material for lithium ion batteries. Electrochim. Acta 46 (2001) 1161-1168.
    
    [85] J. P. Maranchi, A. F. Hepp, P. N. Kumta, LiCoO_2 and SnO_2 thin film electrodes for lithium-ion battery applications. Mater. Sci. Eng. B 116 (2005) 327-340
    
    [86] G Sakai, N. S. Baik, N. Miura, N. Yamazoe. Important Gas sensing properties of tin oxide thin films fabricated from hydrothermally treated nanoparticles dependence of CO and H_2 responsed on film thickness [J].Sensors and acuators B 77 (2001):116-121.
    
    [87] F. Gu, S.F. Wang, M. K. L.u, X. F. Cheng, S. W. Liu, G. J. Zhou, D. Xu, D. R. Yuan. Luminescence of SnO_2 thin films prepared by spin-coating method [J]. J. Crys.Growth 262 (2004):182-185.
    
    [88] T. Brousse, R. Retouxf . U. Herterich, D. M. Schleich, Thin-Film Crystalline 5nO_2-Lithium Electrodes. J. Electrochem. Soc. 145 (1998) 1-4.
    
    [89] T.M. Racheva, GW.Critchlow. SnO_2 thin films prepared by the sol—gel process [J].ThinSolid Films 292 (1997):299-302.
    
    [90] Z. Jiao, S. Wang, L. Bian, J. Liu. Stability of SnO_2-Fe_2O_3 Multilayer thin film gas sensor [J]. Mater. Research Bulletin 35 (2000):741-745.
    
    [91] A. Teeramongkonrasmee, M. Sriyudthsak. Methanol and ammonia sensing characteristics of sol-gel derived thin film gas sensor [J]. Sensors and Actuators B 66 (2000): 256-259.
    
    [92] C.Cobianu, C.Savaniu, P.Siciliano, S.Capone, M.Utriainen, L.Niinisto. SnO_2 sol-gel derived thin films for integrated gas sensors [J].Sensors and Actuators B 77 (2001):496-502.
    
    [93] Q.Liu, X.Wu, B.Wang, Q.Liu. Preparation and super-hydrophilic properties of TiO_2-SnO_2 thin films [J]. Mater. Research Bulletin 37 (2002):2255-2262.
    
    [94] A. Taurino, S. Capone, C. Distante, M. Epifani, R. Rella, P. Siciliano. Recognition of olive oils by means of an integrated sol-gel SnO_2 electronic nose [J]. Thin Solid Films 418 (2002):59-65.
    
    [95] MA. Dal Santos, A.C. Antunes, C. Ribeiro, C.P.F. Borges, S.R.M. Antunes, A.J. Zarab, S.A. Pianaro. Electric and morphologic properties of SnO_2 films prepared by modified solgel process [J]. Mater. Lett. 57 (2003):4378-4381.
    
    [96]T. Wang, Z. Ma, F. Xu, Z. Jiang. The one-step preparation and electrochemical characteristics of tin dioxide nanocrystalline materials [J]. Electrochem.Comm., 2003, 5:599-602.
    [97]T. Brousse, S.M. Lee, L. Pasquereau, D. Defives, D.M. Schleich. Composite negative electrodes for lithium ion cells [J] . Solid State Ionics, 1998, 113-115: 51-56.
    [98] M. Winter, J. O. Besenhard, Electrochemical lithiation of tin and tin-based intermetallics and composites. Electrochim. Acta 45 (1999) 31-50.
    [99] A. Ulus, Y. Rosenberg, L. Burstein, E. Peled, Tin Alloy-Graphite Composite Anode for Lithium-Ion Batteries. J. Electrochem. Soc. 149(2002)A635-A643.
    [100] Y. Wang, J. Y. Lee, Preparation of SnO_2-graphite nanocomposite anodes by urea-mediated hydrolysis. Electrochem. Commun. 2003, 5: 292-296.
    [101] Y. Wang, J. Y. Lee, B. -H. Chen, Microemulsion Syntheses of Sn and SnO_2-Graphite Nanocomposite Anodes for Li-Ion Batteries. J. Electrochem. Soc. 151(2004)A563-A570.
    [102] Y. Wang, J. Y. Lee, T. C. Deivaraj, Tin Nanoparticle Loaded Graphite Anodes for Li-Ion Battery Applications. J. Electrochem. Soc. 2004, 151: A1804-A1809.
    [103] M. Winter, J. O. Besenhard. Electrochemical lithiation of tin and tin-based intermetallics and composites[J]. Electrochim. Acta, 1999, 45: 31-50.
    [104] J. Zhu, Z. Lu, S. T. Aruna, D. Aurbach, A. Gedanken, Sonochemical Synthesis of SnO_2 Nanoparticles and Their Preliminary Study as Li Insertion Electrodes. Chem. Mater. 12(2000) 2557-2566.
    [105] A. Odani, A. Nimberger, B. Markovsky, E. Sominski, E. Levi, V. G. Kumar, M. Motiei, A. Gedanken, P. Dan, D. Aurbach, Development and testing of nanomaterials for rechargeable lithium batteries. J. Power Sources 119-121(2003)517-521.
    [1] Y. Rho, K. Kanamura. Preparation of Li_(4/3)Ti_(5/3)O_4 Thin Film Electrodes by a PVP Sol-Gel Coating Method and Their Electrochemical Properties[J]. J. Electrochem. Soc., 2004, 151: A106-A110.
    [2] G. G. Amatucci, F. Badway, A. D. Pasquier, T. Zheng. An Asymmetric Hybrid Nonaqueous Energy Storage Cell[J]. J. Electrochem. Soc, 2001, 148(8): A930-A939.
    [3] A. D. Pasquier, A. Laforgue, P. Simon, G. G. Amatucci, J. Fauvarqueb. A Nonaqueous Asymmetric Hybrid Li_4Ti_5O_(12)/Poly(fluorophenylthiophene) Energy Storage Device[J]. J. Electrochem. Soc., 2002, 149(3): A302-A306.
    [4] A' D. Pasquier, I. Plitz, J. Gural, S. Menocal, G. Amatucci. Characteristics and performance of 500F asymmetric hybrid advanced supercapacitor prototypes[J]. J. Power Sources, 2003, 113: 62-71.
    [5] A. D. Pasquier, I. Plitz, S. Menocal, G. Amatucci. A comparative study of Li-ion battery, supercapacitor and nonaqueous asymmetric hybrid devices for automotive applications[J]. J. Power Sources, 2003, 115: 171-178.
    [6] A. D. Pasquier, A. Laforgue, P. Simon. Li_4Ti_5O_(12)/poly(methyl)thiophene asymmetric hybrid electrochemical device[J]. J. Power Sources, 2004, 125: 95-102.
    [7] K. Zaghib, M. Simoneau, M. Armand, M. Gauthier. Electrochemical study of Li_4Ti_5O_(12) as negative electrode for Li-ion polymer rechargeable batteries[J]. J. Power Sources, 1999, 81-82: 300-305.
    [8] T. Brousse, P. Fragnaud, R. Marchand, D. M. Schleich, O. Bohnke, K. West. All oxide solid-state lithium-ion cells[J]. J. Power Sources, 1997, 68: 412-415.
    [9] K. Zaghib, M. Armand, M. Gauthier. Electrochemistry of Anodes in Solid-State Li-Ion Polymer Batteries[J]. J. Electrochem. Soc., 1998, 145(9): 3136-3140.
    [10] A. N. Jansen, A. J. Kahaian, K. D. Kepler, P. A. Nelson, K. Amine, D. W. Dees, D. R. Vissers, M. M. Thackeray. Development of a high-power lithium-ion battery[J]. J. Power Sources, 1999, 81-82: 902-905.
    [11] Q. Wang, S. M. Zakeeruddin, I. Exnar, M. Gra"tzela. 3-Methoxypropionitrile-Based Novel Electrolytes for High-Power Li-Ion Batteries with Nanocrystalline Li_4Ti_5O_(12) Anode[J]. J. Electrochem. Soc., 2004, 151(10): A1598-A1603.
    [12] A. D. Pasquier, I. Plitz, J. Gural, F. Badway, G. G. Amatucci. Power-ion battery: bridging the gap between Li-ion and supercapacitor chemistries[J]. J. Power Sources, 2004, 136: 160-170.
    [13] D. Peramunage, K. M. Abraham. The Li_4Ti_5O_(12)//PAN Electrolyte//LiMn_2O_4 Rechargeable Battery with Passivation-Free Electrodes[J]. J. Electrochem. Soc., 1998, 145(8): 2615-2622.
    [14] P. Birke, F. Salam, S. Do"ring, W. Weppner. A first approach to a monolithic all solid state inorganic lithium Battery[J]. Solid State Ionics, 1999, 118: 149-157.
    [15] P. P. Prosini, Rita Mancini, Lorenzo Petrucci, Vittoria Contini, Paola Villano. Li 4Ti5 O12 as anode in all-solid-state, plastic, lithium-ion batteries for low-power applications[J]. Solid State Ionics, 2001, 144: 185-192.
    [16] P. Reale, S. Panero, B. Scrosati, Sustainable High-Voltage Lithium Ion Polymer Batteries[J]. J. Electrochem. Soc., 2005, 152(10): A1949-A1954.
    [17] C. Shen, X. Zhang, Y. Zhou, H. Li. Preparation and characterization of nanocrystalline Li_4Ti_5O_(12) by sol-gel method[J]. Mater. Chem. Phys., 2002, 78: 437-441.
    [18] L Kavan, J. Prochazka, T. M. Spitler, M. Kalbac, M. Zukalova, T. Drezen, M. Gratzelc. Li Insertion into Li_4Ti_5O_(12) (Spinel) Charge Capability vs. Particle Size in Thin-Film Electrodes[J]. J. Electrochem. Soc., 2003, 150(7): A1000-A1007.
    [19] Y. H. Rho, K. Kanamura, M. Fujisaki, J. Hamagami, S. Soda, T. Umegaki. Preparation of Li_4Ti_5O_(12) and LiCoO_2 thin film electrodes from precursors obtained by sol-gel method[J]. Solid State Ionics, 2002, 151: 151-157.
    [20] Y. H. Rho, K. Kanamura. Fabrication of thin film electrodes for all solid state rechargeable lithium batteries[J]. J. Electroanaly. Chem., 2003, 559: 69-75.
    [21] Young Ho Rho, Kiyoshi Kanamura. Preparation of Li_(4/3)Ti_(5/3)O_4 Thin Film Electrodes by a PVP Sol-Gel Coating Method and Their Electrochemical Properties[J]. J. Electrochem.. Soc., 2004, 151: A106-A110.
    [22] A. Singhal, G. Skandan, G. Amatucci, F. Badway, N. Ye, A. Manthiram, H. Ye, J. J. Xu. Nanostructured electrodes for next generation rechargeable electrochemical devices[J]. J. Power Sources, 2004, 129: 38-44.
    [23] C. -L Wang, Y. C. Liao, F. C. Hsu, N. H. Tai, M. K. Wu, Preparation and Characterization of Thin Film Li_4Ti_5O_(12) Electrodes by Magnetron Sputtering[J]. J. Electrochem. Soc., 2005, 152(4): A653-A657.
    [24] Y. Yu, J. L. Shui, C. H. Chen. Electrostatic spray deposition of spinel Li_4Ti_5O_(12) thin films for rechargeable lithium batteries[J]. Solid State Comm., 2005, 135: 485-489.
    [25] 吴宇平,戴晓兵,马军旗,程预江.锂离子电池—应用与实践[M].北京:化学工业出版社,2004:84-85.
    [1] J. M. Miller, B. Dunn, T. D. Tran, R. W. Pekala. Deposition of Ruthenium Nanoparticles on Carbon Aerogels for High Energy Density Supercapacitor Electrodes [J]. J. Electrochem. Soc., 1997, 144(12): L309-L311.
    [2] B. E. Conway, V. Birss, J. Wojtowicz. The role and utilization of pseudocapacitance for energy storage by supercapacitors [J]. J. Power Sources, 1997, 66: 1-14. (E25)
    [3] 张莉,邹积岩,薛洪发.大功率超级电容器的实验研究[J].电子元件与材料,2002,21(7):11-12
    [4] C. Wang, C. Hu. Electrochemical and Textural Characteristics of (Ru-Sn)O_x.nH_2O for Supercapacitors-Effects of Composition and Annealing [J]. J. Electrochem. Soc., 2005,152 (2)A370-A376.
    [5] C. Hu, W. Chen. Effects of substrates on the capacitive performance of RuOx·nH2O and activated carbon-RuOx electrodes for supercapacitors [J]. Electrochim. Acta, 2004, 49: 3469-3477 (,paper 03, E173)
    [6] C. Hu, W. Chen, K. Chang. How to Achieve Maximum Utilization of Hydrous Ruthenium Oxide for Supercapacitors [J]. J. Electrochem. Soc., 2004, 151(2): A281-A290.
    [7] J. Zhang, D. Jiang, B. Chen, J. Zhu, L. Jiang, H. Fang. Preparation and Electrochemistry of Hydrous Ruthenium Oxide/Active Carbon Electrode Materials for Supercapacitor [J]. J. Electrochem. Soc., 2001,148 (12): A1362-A1367.
    [8] A. B. Fuertes, F. Pico, J. M. Rojo. Influence of pore structure on electric double-layer capacitance of template mesoporous carbons [J]. J. Power Sources,2004, 133:329-336.
    [9] H. Liu, K. Wang, H. Teng. A simplified preparation of mesoporous carbon and the examination of the carbon accessibility for electric double layer formation [J]. Carbon, 2005, 43: 559-566.
    [10] C. Vix-Guterl, S. Saadallah, K. Jurewicz, E. Frackowiak, M. Reda,J. Parmentier, J. Patarin, F. Beguin. Supercapacitor electrodes from new ordered porous carbon materials obtained by a templating procedure [J]. Mater. Sci..Engi.,2004, B108: 148-155.
    [11] C Vix-Guter, E Frackowiak, K Jurewicz, M Friebe, J Parmentier, F Beguin. Electrochemical energy storage in ordered porous carbon materials [J]. Carbon 2005, 43: 1293-1302.
    [12] H. Zhou, S. Zhu, M. Hibino, I. Honma. Electrochemical capacitance of self-ordered mesoporous carbon [J]. J. Power Sources,2003, 122:219-223.
    [13] K. Jurewicz, C. Vix-Guterl, E. Frackowiak, S. Saadallah, M. Reda, J. Parmentier, Capacitance properties of ordered porous carbon materials prepared by a templating procedure [J]. J. Phys. Chem. Solids, 2004,65:287-293.
    [14] J.Lee,. J.Kim, Y. Lee, S.Yoon, S. M. Oh, T. Hyeon. Simple Synthesis of Uniform Mesoporous Carbons with Diverse Structures from Mesostructured Polymer/Silica Nanocomposites [J].Chem. Mater., 2004,16(17):3323-3329.
    
    [15] A.S.Kumar, K.C. Pillai. Studies of electrochemical behaviors of RuO_2-PVC film electrodes:dependence on oxide preparation temperature [J]J .Solid State Electrochem. 2000,4:408-416.
    
    [16]V. Dharuman, K.C. Pillai. RuO_2 electrode surface effects in electrocatalytic oxidation of glucose [J]. J. Solid State Electrochem., 2005:DOI 10.1007/sl0008-005-0033-7.
    
    [17] Zheng J P, Jow T R.A new charge storage mechanism for electrochemical capacitors [J]. J Electrochem Soc.,1995,142 (1):L6-L8.
    
    [18] Zheng JP, Cygan PJ, Jow TR . Hydrous Ruthenium Oxide as an electrode material for electrochemical capacitors [J]. J Electrochem Soc.,1995,142(8):2699-2703.
    
    [19] W. Chen, C. Hu, C. Wang, C. Min. Electrochemical characterization of activated carbon-ruthenium oxide nanoparticles composites for supercapacitors [J] J. Power Sources ,2004, 125 :292-298.
    
    [20] H.Kim, Branko N. Popov. Characterization of hydrous ruthenium oxide/carbon nanocomposite supercapacitors prepared by a colloidal method [J].J.Power Sources , 2002, 104:52-61.
    
    [21] M. Ramani, B.S. Haran, R.E. White, B. N. Popov. Synthesis and Characterization of Hydrous Ruthenium Oxide-Carbon Supercapacitors [J]. J. Electrochem. Soc, 2001, 148 (4): A374-A380.
    
    [22] C. Hu, Y. Huang. Effects of preparation variables on the deposition rate and physicochemical properties of hydrous ruthenium oxide for electrochemical capacitors [J]. Electrochimi. Acta ,2001,46:3431-3444.
    
    [23] C. Hu, K. Chang. Cyclic voltammetric deposition of hydrous ruthenium oxide for electrochemical supercapacitors: effects of the chloride precursor transformation [J]. J. Power Sources ,2002,112: 401-409.
    
    [24] K. Chang. C. Hu. Oxidative Synthesis of RuOx.nH2O with Ideal Capacitive Characteristics for Supercapacitors [J]. J. Electrochem. Soc, 2004,151 (7): A958-A964.
    
    [25] V. Panic, T. Vidakovic, S. Gojkovic, A. Dekanski, S. Milonjic, B. Nikolic. The properties of carbon-supported hydrous ruthenium oxide obtained from RuOxHy sol [J]. Electrochim Acta, 2003,48:3805-3813.
    
    [26] Girish Arabale, Deepali Wagh, Mahesh Kulkarni, I.S. Mulla, S.P. Vernekar, K.Vijayamohanan, A.M. Rao . Enhanced supercapacitance of multiwalled carbon nanotubes functionalized with ruthenium oxide [J]. Chem. Phys. Lett.,2003, 376 : 207-213.
    [27] J. H. Park, J. M. Ko, O. Ok Park. Carbon Nanotube/RuO_2 Nanocomposite Electrodes for Supercapacitors [J]. J. Electrochem. Soc, 2003,150 (7): A864-A867.
    
    [28] J. D. Kim, B. S. Kang, T. W. Noh, J. Yoon, S. I. Baik, Y.-W. Kim. Controlling the Nanostructure of RuO_2 /Carbon Nanotube Composites by Gas Annealing [J]. J. Electrochem. So., 2005,152 (2): D23-D25.
    
    [29] S. Jun, S. H. Joo, R. Ryoo, M. Kruk, M. Jaroniec, Z. Liu, T.Ohsuna, O.Terasaki. Synthesis of New, Nanoporous Carbon with Hexagonally Ordered Mesostructure [J]. J. Am. Chem. Soc., 2000, 122:10712-10713.
    
    [30] A. Dekanski, J. Stevanovic, R. Stevanovic, B.Z. Nikolic, V.M. Jovanovic. Glassy carbon electrodes I. Characterization and electrochemical activation [J]. Carbon ,2001,39 :1195-1205.
    
    [31] M. Zuleta, P. Bjornbom, A. Lundblad. Effects of Pore Surface Oxidation on Electrochemical and Mass-Transport Properties of Nanoporous Carbon [J]. J. Electrochem.So., 2005,152 (2): A270-A276.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700