二氧化铅/活性碳混合超级电容器研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
超级电容器是一种介于电池和传统电容器之间的新型储能器件,具有比传统电容器更高的能量密度及比普通电池更高的功率密度和更长的循环寿命。随着高性能的电化学超级电容器在移动通讯、信息技术、航天航空和国防科技等领域的不断应用,超级电容器越来越受到人们的关注,特别是环保汽车——电动汽车的出现,大功率的超级电容器更显示了其前所未有的应用前景,现已成为世界各国的能源研究的热点。展开这一热点,面对的就是一项研究的重点工程——超级电容器高比容电极材料的开发。
     本论文根据大量的资料调研,紧跟该领域的国际研究前沿,以碳材料和金属氧化物材料着手,通过选择材料体系,优化电极制作工艺,研制出超级电容器用碳电极和二氧化铅薄膜电极,并组装成电容器单元。将材料表征手段和电化学研究手段相结合,对其性能进行了测试,为研制超级电容器提供实验依据和理论基础。主要研究内容如下:
     1、采用活性碳作为超级电容器的电极材料,通过探索电极的制备工艺和电容器的组装工艺,利用循环伏安、电化学阻抗谱和恒流充放电等手段,测试了碳基超级电容器的电容特性。为后续新材料的开发奠定基础。
     2、采用恒电流法沉积二氧化铅薄膜电极,在前人的基础上对制备工艺进行了优化,并借助SEM和XRD研究了二氧化铅电极的结构特性。以二氧化铅电极为正极,活性碳电极为负极,1.28 g·cm~(-3)H_2SO_4作为电解液,组装成二氧化铅/活性碳混合超级电容器,并研究了其循环伏安、恒流充放电、交流阻抗等电化学特性。结果表明,该混合电容器具有电容特性,电容器工作时,既有双电层电容的贡献,又包含准电容的作用,因此其活性物质比容量高于活性碳双电层电容器,且沉积电流对产物的电化学性能有很大的的影响。在30mA·cm~(-2)电流密度下沉积的多孔结构二氧化铅电极组成的混合电容器不仅具有很高的比电容99.1 F·g~(-1),而且具有良好的循环稳定性,恒流充放电3000次后其容量仍保持在83%以上。
     3、采用脉冲电流技术沉积二氧化铅薄膜电极,重点研究了脉冲时间,脉冲电流大小对二氧化铅电极材料结构及性能的影响。并借助SEM和XRD对二氧化铅电极材料的结构特性进行了表征。以二氧化铅电极为正极,活性碳电极为负极,1.28 g·cm~(-3) H_2SO_4作为电解液,组装成二氧化铅/活性碳混合超级电容器,并研究了其循环伏安、恒流充放电、交流阻抗等电化学特性。结果表明,该混合电容器具有电容特性,电容器工作时,既有双电层电容的贡献,又包含准电容的作用,因此其活性物质比容量高于活性碳双电层电容器,且脉冲沉积条件对产物的结构及电化学性能有很大的的影响。在脉冲时间为0.01 s,间歇时间为0.1 s,脉冲电流密度为25 mA·cm~(-2)下制备的二氧化铅构成的混合电容器具有很高的比电容109.1 F·g~(-1),同时具有良好循环稳定性,经5000次深度循环其比容量仅损失9%。
As intermediate systems between conventional capacitors and batteries,supercapacitors have shown many advantageous features.While batteries are capable of storing higher energy density than supercapacitors,they deliver less power;Compared to conventional capacitors, supercapacitors can store higher energy density with tess delivered power.Supercapacitors have shown many potential applications in industrial fields,such as mobile telecommunication, information technology,consumer electronics,aviation & aerospace,military,and so on.Recently the prospect of supercapacitors with high power densities extends their application to various other novel devices such as hybrid capacitor-battery systems used in the electric vehicle,and such hybrid systems have attracted more attention throughout the world.Studies on supercapacitors are mainly focused on the preparation of high performance material and electrode assembly.
     This dissertation was carried out following the international frontier research,according to many literature materials.With carbon materials and lead dioxide as electrode materials for supercapacitors,by integrating various electrochemical and material preparation methods,this research work has been carried out on investigation of material preparation,electrolyte optimization,electrode preparation,capacitive property and mechanism of double-layer capacitance.The main results are as follows:
     1.Activated carbons have been used as electrode materials in supercapacitor.By investigating electrode preparation and capacitor assembly technology,using cyclic voltammogram, electrochemical impedance spectrum measurement and constant current charge/discharge methods,capacitive characteristics of carbon supercapacitor are studied.These researches are the basis of novel electrode materials.
     2.Lead dioxides were prepared by the galvanostatic method.Conditions were optimized in the preparation technology and the influence of the current density on the structure of lead dioxide electrodes investigated by using scanning electron microscope(SEM) and X-ray diffraction(XRD).Electrochemical performance of the hybrid supercapacitor by using the lead dioxide thin electrode as positive electrode,an AC electrode as negative electrode and 1.28g cm~(-3) H_2SO_4 as electrolyte were characterized by using cyclic voltammetry(CV), electrochemical impedance spectroscopy(EIS) and galvanostatic charge/discharge measurements.The results showed that the hybrid capacitor also exhibited capacitance characteristics.Its capacitance was attributed to activated carbon double-layer capacitor at electrodes interfaces and redox pseudocapacitance.And it demonstrated that current density had large effect on the electrochemical performance of the lead dioxide thin electrode.The hybrid capacitor assembled with lead dioxide prepared at current density of 30 mA·cm-2 as positive electrode and an activated carbon as negative electrode delivered a discharge specific capacitance of 99.1 F·g~(-1),and after 3000 cycles the specific capacitance remained 83%of the maximum value.
     3.Lead dioxides were prepared by the pulsed current techniques.The influence of the pulsed curent and pulsed time on the structure of lead dioxide electrodes was studied by using SEM and XRD.Electrochemical performance of the hybrid supercapacitor by using the lead dioxide thin electrode as positive electrode,an AC electrode as negative electrode and 1.28g cm~(-3) H_2SO_4 as electrolyte was characterized by using CV,EIS and galvanostatic charge/discharge measurements.The results showed that the hybrid capacitor exhibited capacitance characteristics.Its capacitance was attributed to activated carbon double-layer capacitor at electrodes interfaces and redox pseudocapacitance.It was demonstrated that pulsed conditions had large effect on the electrochemical performance of the lead dioxide thin electrode.The hybrid capacitor assembled with lead dioxide prepared at pulsed current density of 25 mA·cm~(-2),pulsed time and relaxation time as positive electrode and an activated carbon as negative electrode delivered a discharge specific capacitance of 109.1 F·g~(-1),and after 5000 cycles the specific capacitance remained 91%of the maximum value.
引文
[1]Burke A.Ultracapacitor:why,how,andwhere is the technology.J.Power Sources,2000,91(1):37-50
    [2]Conway B.E.Electrochemical supercapacitors:scientific fundamentals and technology applications.New York:Plenum Publisher,1999:p.6
    [3]Conway.B.E,Transision from "supercapacitor" to "batteryz" behavior in electrochemical energy storage.J.Electrochem.Soc,1991,138(6):1539-1548
    [4]Pellw.G,Conway.B.E,Anamsw.A,et al.Electrochmical efficiency in multiple discharge/recharge cycling of supercapacitors in hybrid EV applications.J Power Sources,1999,80:134-137.
    [5]Kotz.R,Carlen.M.Principles and applications of electrochemicalcapacitors.Electrochim Acta,2000,45:2483-2498.
    [6]Gouerec.P,Talbi.H,Miousse.D,et al.Preparation and modification of polyacrylonitrilemicro-cellular foam films for use as electrodes in supercapacitors.J.Power Sources,2001,148:94-101..
    [7]Sarangapani.S,Tllak.B.V,Chen.C.P.Materials for electrochemicalcapacitors-theoretical and experimental constraints.J.Electrochem.Soc,1996,143(11 ):3791-3798.
    [8]Atsushi N.Capacitors:operating principles,current market and technical trends.J.Power Sources,1996,60(2):137-147
    [9]Soavi F.New trends in electrochemical supercapacitors.J.Power Sources,2001,100(1-2):164-170
    [10]Nomoto S.,Nakata H.,Yoshioka K.,et al.Advanced capacitors and their application.J.Power Sources,2001,97-98:807-811
    [11]Portet C.,Tabema P.L.,Simon P,et al.High power density electrodes for Carbon supercapacitor applications.Electrochimica Acta,2005,50(20):4174-4181
    [12]Robert A.H.Supercapacitors and electrochemical pulse sources.Solid State lonics,2000,134(1-2):179-195
    [13]王晓峰,孔祥华,刘国庆等.新型化学储能器件-电化学电容.化学世界.2001,2(2):3-8
    [14]Oxley J E.High-rate,solid-state electrochemical capacitors.Inter-national Electrochemical Society.Proceedings of the 34th international power sources symposium.The Hyat CherryHill,1990,New Jersey:JES Pre,1991:346-350.
    [15]Landau.M,Knorr.R,wilier.B et al.Double-layer-capacitors for PV-applications.ISETed.2nd world conference and exhibition on photovoltaic solar energy conversion.1998.
    [16]Clark.N.H.Testing of double-layer capacitors for high reliability applications.International Electrochemical Society.Proceedings of the 35th international power sources symposium.The Hyat Cherry Hill,1992,New Jersey:JES Pre.,1993:306-309.
    [17]Faggioli.E,Rena.P,Danel.V,et.al.Supercapacitors for the energymanagement of electricvehicles.J.Power Sources.1999,84:261-269.
    [18]Pell.w,Conway.B E,Adams.w.A,et al.Electrochemical efficiency in multiple discharge/recharge cycling of supercapacitors in hybrid EV applications.J.Power Sources. 1999,80:134-141.
    [19]Becker.H.Low voltage electrolytic capacitoer.U S Patent,2800616,1957-07-23.
    [20]BardA J,Faulkner I.R(谷林瑛等译).电化学方法原理及应用.北京:化学工业出版社.1986.
    [21]李荻.电化学原理.北京:北京航空航天大学出版社.1999.
    [22]查全性.电极过科动力学导论.北京:科学出版社.2002.
    [23]Anon,Electrochem.Soc,Extended abstracts of 188~# Fall meeting,1995:313-316.
    [24]徐斌,曹高萍,程杰等.电化学电容器用木质超级活性碳.军事化学电源研究与发展中心学术报告论文集
    (25]陈艾,王有钧,陶凤波.离子注入型超大容量离子电容器.电子学报,1992,20(11):88-92
    [26]梁逵,陈艾,周旺等.电池型电容器-超大容量离子电容器.电子元件与材料,2001,4(20):24-26
    [27]Mitani S.,Lee S.Z.,Yoon S.H.,et al.Activation of raw pitch cokewith alkali hydroxide to prepare high performance carbon for electric double layer capacitor.Joural of power sources,2004,133(2,4):298-301
    [28]weng T.C.,Teng H.Characterization of high porosity carbon electrodes derived form mesophase pitch for electric double-layer capacitors.J.Electrochem.Soc.,2001,148(4):A368-A373
    [29]Alonso A.,Ruiz V.,Blanco C.,et al.Activated carbon produced from Sasol-Lurgi gasifierpireh and its application as electrodes in supereapacitor.Carbon,2006,44(3):441-446
    [30]刘洪波,常俊玲,张红波.双电层电容器高比表面积活性碳的研究.电子元件与材料,2002,21(2):19-22
    [31]Jurewicz K.,vix-guterl C.,Frackowiak E.,et al.capacitance properties of orderod porous carbon matorials prepared by a templating procedure,Journal of physics and chemistry of solids,2004,65(2-3):287-293
    [32]李护彬,碳材料中孔控制技术,碳素,2002,4:30-34
    [33]Dybal,lone,heine,et at.Method for enzu-matric treatment ofwool[P],united states:62581229,200t
    [34]吴伯明.化学活化法制备活性碳的研究进展,碳素技术,1999,4:19-24
    [35]郭艳芝,沈军,王珏.常压干燥法制备碳气凝胶.新型碳材料,2001,16(3):55-57
    [36]Pekala R.,wetal J.Organic aerogels:microstructural dependence of mechanieal properties in compression.J.Non-crystsolids 1990,125(1-2):67-75
    [37]Pekala R.W.,Organic aerogels from the polycondensation of resorcinoiwith formaldehyde.J.Mater.Sci.,1989,24(9.):3221-3227
    [38]赵根祥.玻璃碳.新型碳材料,2000,15(1):79
    [39]Miklos J.,Double-layer.capacitors.[P].DE 3011701,198
    [40]Sullivan M.,K(o|¨)tz R.,Haas O.Electrochemically modified glassy carbon as an electrochemical capacitor material.The Electrochemical Society Proceedings V95-29:198-209
    [41]Sullivan M.G.,B(a|¨)rtsch M.,K(o|¨)tz R.,et al.An electrochemical Capacitor Using Modified Glassy Carbon Electrodes.Electrochemical Society Proceedings V96-25:192-201
    [42]Sullivan M.G.,Schnyde B.,B(a|¨)rtsch M.,et al.Electrochemically modified glassy carbon for capacitor electrodes characterization of thick anodic layers by cyclic voltammetry, differential electrochemical mass spectrometry,spectroscopic ellipsometry,X-Ray Photoelectron Spectroscopy,FTIR,and AFM.J.Electrochemical Society,2000,147(7):2636-2643
    [43]Sullivan M.G.,K(o|¨)tz R.Thick active layers of electrochemically modified glassy carbon electrochemical impedance studies.J.Electrochemical Society,2000,147(1):308-317
    [44]Wen Y.H.,Cao G.P.,Yang Y.S.Study on nanoporous glassy carbon as a new electrochemical capacitor material.J.Power Sources,2005,148(1):121-178
    [45]Mayer S.T.,Pekala R.W.,Kaschmitter J.L.The aerocapacitor:an electrochemical double-layer energy-storage device.Journal of Electrochemical Society,1993,140(2):446-451
    [46]马仁志,魏秉庆,徐才录等.基于CNTs的超级电容器.中国科学E,2000,2(30)112-115
    [47]何春建,薛宽宏,陈巧玲等.多壁CNTs阵列电极的循环伏安行为.化学研究和应用,2003,5(15),627-631
    [48]Hashmi S.A.,upadhyaya H.M.Polypyrrole and poly(3-methyl thiophene)-based solid state redox supercapacitors using ion conducting polymer electrolyte.solid state ionic,2002,152-153:883-889
    [49]Ghosh S.,Inganas O.Conducting polymer hydrogels as 3Delectrodes:applications for supercapacitors.Adv.Mater.1999,11(14):1214-1218
    [50]Zhou Z.H.,Cai N.C.,Zhou Y.H.Capacitive of characteristics of manganese oxides and polyaniline composite thin film deposited on porous carbon.Materials Chemistry and Physics.,2005,94(2-3):371-375
    [51]Trasatti S,Buzzanca P.Ruthenium oxide:a new interesting electrode material,solid state structure and electrochemical behavior.J Electroanal.Chem.,1971,29:1-5.
    [52]Zheng J P,Cygan P J,Jow T R.Hydrous ruthenium oxide as an electrode material for electrochemical capacitors.J Electrochem Soc,1995,142:2699-2703.
    [53]Jow T R,Zheng J P.Electrochemical capacitors using hydrous ruthenium oxide and hydrogen inserted ruthenium oxide.J Electrochem Soc,1998,145:49-52
    [54]Zheng J P,Jow T R.A new charge storage mechanism for electrochemical capacitors.J Electrochem Soc,1995,142:L6-L8
    [55]Takasu Y,Nakamura T Ohkawauchi H,et al.Dip-coated Ru-V oxide electrodes for electrochemical capacitors.J Electrochem Soc,1997,144(8):2601-2606.
    [56]Ito M,Murakami Y,Kaji H,et al.Surface characterization of RuO2-SnO2 coated Titanium electrodes.J Electrochem Soc,1996,143:32-36.
    [57]Kameyama K,Tsukada K,Yahikozawa K,et al.The application of scanning Auger microscopy to the surface characterization of RuO_2-TiO_2 coated Titanium electrodes.JElectrochem Soc,1993,140:966-969.
    [58]Zheng J P.Ruthenium oxide-carbon composite electrodes for electrochemical capacitors.Electrochem Solid State Letters,1999,2(8):359-361.
    [59]Miller J M,Dunn B,Tran T D,et al.Depostion of ruthenium nanoparticles on carbon aerogels for high energy density supercapacitor electrodes.J Electrochem Soc,1997,144:L309-L311.
    [60]王晓峰,王大志,梁吉.氧化/活性碳超级电容器电极材料的研制.稀有金属材料与工程,2003,32(6):424-427.
    [61]陈卫祥,韩贵,LeeJY,等.微波辐射合成碳纳米复合材料及其在电化学超级电容器的应用.化学学报,2003,61:2033-2035.
    [62]Liu T C,Pell W G,Conway B E.Self-discharge and potential recovery phenomena atthermally and electrochemically prepared RuO_2 supercapacitor electrodes.Electrochim Acta,1997,42:3541-3552.
    [63]Hu C C,Huang Y H.Cyclic voltammetric deposition of hydrous ruthenium oxide for electrochemical capacitors.J Electrochem Soc,1999,146:2465-2471.
    [64]Hu C C,Huang Y H.Effects of preparation variable on the deposition rate and physicochemical properties of hydrous ruthenium oxide for electrochemical capacitors.Electrochim Acta,2001,46:3431 3444.
    [65]闪星,张密林纳米氧化镍在超大容量电容器中的应用.功能材料与器件学报,2002,8(1):35-39.
    [66]王晓峰,孔祥华,刘庆国,等.氧化镍超电容器的研究.电子元件与材料,2000,19(5):26-28.
    [67]Liu K C,Anderson M A.Porous nickel oxide/nickel films for electrochemical capacitors.J Electrochm Soc,1996,143:124-130.
    [68]Srinivasan V,Weidner J W.Studies on the capacitance of nickel oxide films:effects of heating temperature and electrolyte concentration.J Electrochem Soc,2000,147:880-885
    [69]梁边,陈艾,吴孟强,等.热处理温度及掺杂对氧化镍电极鹰电容器特性的影响.硅酸盐学报,2002,30(1):1-4.
    [70]Nam K 议 Kim K B.A study of the preparation of NiOx electrode via electrochemical route for supercapacitor application and their charge storage mechanism.J Electrochem Soc,2002,149:A346-A354.
    [71]张密林,杨晨.纳米氧化镍的制备及其电容特性研究.无机化学学报,2004,20(3):283-286.
    [72]Lin C,Ritter J A,Popov B N.Characterization of sol-gel-derived eobalt oxide xerogels as electrochemical capacitors.J Electrochem Soc,1998,145:4097-4103.
    [73]Liu T C,Pell W G,Conway B E.Stages in the development of thick cobalt oxide films Exhibiting reversible redox behavior and pseudocapacitance.Electrochim Acta,1999,44:2829-2842.
    [74]Srinivasan V,Weidner(?) W.An electrochemical route for making porous nickel oxide electrochemical capacitors.J Electrochem Soc,1997,144:L210-L213.
    [75]Srinivasan V,Weidner J W.Capacitance studies of cobalt oxide films formed via electrochemical precipitation.J Power Sources,2002,10:15-20.
    [76]雷永泉.新能源材料.天津:天津大学出版社.2000.
    [77]Kordesch K V(夏熙,袁光饪译).电池组:二氧化锰.北京:轻工业出版社.1981.
    [78]夏熙,刘玲.二氧化锰在锉离子电池中的应用.电源技术,1997,21(3):120-126.
    [79]房振乾,刘文西,陈玉如.新型氧电极催化剂材料纳米7型MnOz—合成及其电化学性能.电源技术,2003,27(3):267-283
    [80]Lee H Y,Goodenough J B.Supercapacitor behavior with KCl electrolyte.J Solid State Chem.,1999,144:220-223
    [81]闪星,董国君,景晓燕,等.新型超大容量电容器电极材料—纳米水合MnO:的研究.无机化学学报,2001,17(5):669-674.
    [82]闪星,张密林,董国君,等.纳米MnO:的制备及在超大容量电容器中的应用.电源技术,2002,26(2):92-94.
    [83]闪星.纳米氧化物的制备及在超级电容中的应用:[硕士学位论文].哈尔滨:哈尔滨工程大学.2002.
    [84]罗旭芳,张雪纯,王先友,等.超级电容器用纳米y-MnOZ制备及性能电池,2004,32(5):334-336.
    [85]Jeong Y U,Manthiram A.Nanocrystalline manganese oxides for electrochemical capacitors with neutral electrolytes.J Electrochem Soc,2002,149:A 1419-A 1422.
    [86]Reddy R N,Reddy R G.Sol-gel MnO2 as an electrode material for electrochemical capacitors.J Power Sources,2003,124:330-337.
    [87]Reddy R N,Reddy R G.Synthesis and electrochemical characterization of amorphous MnO2 electrochemical capacitor electrode material.J Power Sources,2004,132:315-320.
    [88]张宝宏,张娜.纳米MnO:超级电容器的研究,物理化学学报,2003,19(3):286-288
    [89]Lee H Y,Manivannan V,Goodenough J B.Electrochemical capacitorswith KCl electrolyte.C.R.Acad.Sci.Series Ilc Chem,1999,2:565-577.
    [90]刘献明,张校刚.热解温度对MnO:电容行为的影响.无机材料学报,2003,I8(5):1022-1026.
    [91]Reddy R N,Reddy R G.EPD Congress 2002 on Fundamentals of Advanced Materials for Energy Conversion,Feb 17-21 2002,Seattle,wA,United States.
    [92]Hu C C,Tsou Tw.Ideal capacitive behavior of hydrous manganese oxide prepared by anodic deposition.Electrochem Commun,2002,4:105-109.
    [93]Hu C C,wang C C.Nanostructures and capacitive characteristic of hydrous manganese oxide prepared by electrochemical deposition.J Electrochem Soc,2003,150:A 1097-A 1084.
    [94]Chang J K,Tsaiw T.Material characterization acrd electrochemical performance of hydrousmanganese oxide electrodes for use in electrochemical pseudocapacitors.J ElectrochemSoc,2003,150:A1333-A1338.
    [95]Jiang J,Kucernak A.Electrochemical supercapacitor material based on manganese oxide:preparation and characterization.Electrochim Acta,2002,47:2381-2386.
    [96]Pang S C,Anderson M A,Chapman Tw.Novel electrode materials for thin-film ultracapacitor:comparison of electrode properties of sol-gel-derived and electrodepositedmanganese dioxide.J Electrochem Soc,2000,147:444-450.
    [97]Broughton J N,Brett M J Investigation of thin sputtered Mn films for electrochemical capacitors.Electroehim Acta,2004,49:4439-4446
    [98]Lee H 丫 Goodenough J B.Ideal Supercapacitor behavior of amorphous V205wH20 in KCl aqueous solution.J Solid State Chemistzy,1999,148:81-84
    [99]wu N L,wang S Y,Han C Y,et al.Electrochemical capacitor of magnetite in aqueous electrolytes.J Power Sources,2003,113:173-178.
    [100]于维平,张世超,张弛.复合氧化钥电极的制备和电容特性研究.材料热处理学报,2004,25(3):22-24.
    [101]Prasad K R,Miura N.Electrochemical synthesis and characterization of nanosturctured tin oxide for electrochemical redox supercapacitors.Electrochem Commun,2004,6:849-852.
    [102]Volfkovich,Yu.M.and Smatko,P.A..,PROC.of the 8th int.Seminar Double Layer Capacitors and Similar Energy Storage Devices,Deerfield Beach,Florida,1998,special issue.
    [103]L.Lipp,D.Pletcher,Electrochim.Acta.42(1997) 1091-1099.
    [104]P.K.Shen,X.L.wei,Morphologic study of electrochemically formed lead dioxide.Electrochim Acta,2003,48:1743-1747.
    [105] S Ghasemi, H Karami, M F Mousavi, M Shamsipur, Synthesis and morphological investigation of pulsed currentformed nano-structured lead dioxide. Electrochemistry Communications 2005, 7:1257-1264.
    
    [106] N. Vatistas, S. Cristofaro, Lead dioxidecoating obtained by pulsed current technique. Electrochemistry Communications 2000, 2:334-337.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700