不同时机转染基因对兔下颌骨牵引区新骨生成的影响
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
背景:自1992年McCarthy首次将牵引成骨术(distraction osteogenesis, DO)用于下颌骨畸形患者的治疗以来,DO在颅颌面外科领域取得了显著的进展。随着经验的日益积累,人们对下颌骨DO的认识也在进一步深化。在临床应用中发现,尽管DO为许多常规外科手术难以矫治的颅颌面骨严重发育不足畸形及骨缺损的整复提供了一种新的矫治方法,然而,较长的疗程及牵张装置长时间留置面部或口腔内所引发的各种问题(如固定螺松脱、伤口感染、骨折等)成为临床运用和推广该技术的瓶颈和主要障碍。因此,如何促进新骨生成、缩短疗程、减少并发症,已成为目前颅颌面外科研究的热点和难点。
     目的:本研究在前期研究的基础上,以新西兰大白兔双侧下颌骨牵引为动物模型,选择在术后即刻(潜伏期),牵引开始(牵引期)和牵引结束(固定期)利用电穿孔技术介导重组质粒pIRES-hBMP2-hVEGF 165转染下颌骨牵引区,观察不同时机进行基因转染对下颌骨牵引区新骨生成的影响,探索基因导入的最佳转染时间,以获得更好的治疗效果。
     方法:新西兰大白兔48只,全麻下沿双侧下颌骨截骨后,在下颌骨断开处安放内置式下颌骨牵引器,钛固定,分层缝合切口,牵引器旋转杆外置。将兔随机分成4组:A组:于术后即刻,双侧牵引区注射2μg(0.1μg/μl)重组质粒pIRES-hBMP2-hVEGF165;B组:于术后3天,牵引开始时双侧牵引区注射2μg(0.1μg/μl)重组质粒pIRES-hBMP2-hVEGF165;C组:于牵引结束时,双侧牵引区注射2μg(0.1μg/μl)重组质粒pIRES-hBMP2-hVEGF165;三组均予电脉冲刺激(电脉冲参数:电压200V,电容10μF,频率0.2Hz,平均脉冲宽度2.5ms,单脉冲刺激,6个脉冲,3个脉冲后更换正负极);D组:单纯牵引不行基因转染:各组于术后3天开始以lmm/d,1次/d速率进行牵引,连续牵引10天;各组分别于牵引结束后固定1、2、4、8周处死3只兔子,切取左侧下颌骨行x线检测下颌骨愈合情况、QCT测量牵引区新生骨组织密度后,将4、8周的标本加工成长20mm、宽10mm、厚3mm的标准试件行三点弯曲试验,测量牵引区新生骨组织的骨强度、弹性模量及最大破坏能量;切取右侧下颌牵引区新生组织行组织学检测和形态计量学分析。
     结果:各组牵引间隙新生骨骨密度与骨强度随着固定期的延长逐渐增高;固定1周时A、B、C三组新生骨骨密度无显著差异性,但均高于D组:B组固定2、4、8周时骨密度高于A、C、D组,固定4、8周时生物力学各项指标高于A、C、D组;组织学检查和形态计量学分析发现,B组与A、C、D组比较间隙内有更多的新生血管、成骨细胞和间充质细胞等成分,各时点新生骨量与新生骨小梁宽度明显高于后者。
     结论:在牵引开始时(牵引期)进行基因转染较其他时间转染促进新骨生成作用明显,能够获得最佳的促进新骨生成的效果,提示牵引期是下颌骨基因治疗的最佳时机。
Background:Since McCarthy reported that correction the human mandible malformation with distraction osteogenesis in 1992, this technology has been achieved remarkable progresses in craniomaxillofacial surgery. With the clinical application experience accumulation, we have known more and more about distraction osteogenesis. Clinically, many people realized that the technology provided a new method to treat severe craniomaxillifacial deformities and bone defects, which are difficult to manage with common operations, however, there are some problems may occur during the long time for distraction, such as loose of the fixation, infection, as well as bone fracture, all those because of the long period of the instruments placed introral or extroral, these would be the main hamper to further clinical application. Therefore, how to promote new bone formation, shorten treatment period and reduce the complications, has become a hot spot and challenge in craniomaxillofacial surgery research.
     Objective:Based on previous research, We employed New Zealand rabbits bilateral mandibular distraction model and used electroporation mediate recombinant plasmid pIRES-hBMP2-hVEGF165 transfect into the distraction gap at the beginning of latency period、distraction period and consolidation period respectively, to explore the optimal time for gene therapy and obtain a better effect.
     Methods:48 New-Zealand rabbits were employed, mandibles were osteotomy bilaterly under general anaesthesia, the distraction devices were fixed by titanium screws at the ends of bone gap. The arms of distractors are placed percutaneously outside the oral and the wound was closed layer by layer. The rabbits were randomly divided into 4 groups:Group A:2μg (0.1μg/μl) recombinant plasmids pIRES-hBMP2-hVEGF165 were injected into distraction area instantly after operation; Group B:2μg (0.1μg/μl) recombinant plasmids pIRES-hBMP2-hVEGF165 were injected into distraction area at the beginning of distraction; Group C:2μg (0.1μg/μl) recombinant plasmids pIRES-hBMP2-hVEGF165 were injected into distraction area after the completion of distraction. Each group was employed electroporation 5 minutes after the injection of plasmids (electric impulses parameters:200V in voltage,10μF in capacitance,0.2Hz in frequency,2.5ms in average pulse width,6 single pulses, change the positive and negative poles after 3 pulses). Group D:only distracted without gene transfection. In each group, after a 3 days of latency period, the device were activated at the rate of 1mm per day and rhythm of once per day for 10 days. Three rabbits of each group were sacrificed at lwk,2wk,4wk and 8wk of consolidation respectively. The mandibles were harvested and the left subject to X-ray examination for bone healing, and quantitative computed tomography (QCT) dectection for the density of newly formed bone in the distraction gap. The biomechanical properties of the new generation bone at 4th and 8th week of consolidation of each group were detected by three point bending test. The newly formed tissue in the distraction area of the right mandible was harvested for histology examination and histomorphometry analysis.
     Results:The bone mineral density and the biomechanical strength of newly formed bone increased with the pass of the consolidation time in each group. After 1 week of consolidation, there is no significant difference of BMD among group A, group B, group C; But the BMD of group A, B and C is higher than that of group D. After 2wk,4wk and 8wk of consolidation, the BMD of group B is significantly higher than those of group A, C, and D. The biomechanical parameters are also higher in group B than those of group A, C and D after four and eight weeks of consolidation. The amounts of newly formed vessel、osteoblast and mesenchymal cell of group B were greater than those of group A、group B and group D. The new bone volume and width of bone trabecula of distraction area in group B were higher than those of group A、group B and group D at 1wk,2wk,4wk and 8wk of consolidation respectively.
     Conclusion:It is better to transfect gene at the beginning of traction (distraction period) than at other stages of DO, in this way, we can obtain more remarkable effect on new bone formation. It suggests that the distraction stage is the optimal time for gene therapy.
引文
1.吴国平,滕利,归来,等.内置式下颌骨牵引成骨术及其常见并发症的处理[J].中华整形外科杂志,2006,22:18-21.
    2. Master DL, Hanson PR, Gosain AK. Complications of mandibular distraction osteogenesis[J]. J Craniofac Surg,2010,21(5):1565-1570.
    3. Tholpady SS, Ogle RC. Expression of transforming growth factor-B-responsive smads in canial suture development and closure [J]. J Craniofac Surg,2011, 22(1):324-328.
    4.黎德平,吴国平,郭力.血管内皮生长因子与骨形态发生蛋白促进牵引成骨的研究进展[J].中华医学美学美容杂志,2009,15(2):141-144.
    5. Haque T, Mandu-Hrit M, Rauch F, et al. Immunohistochemical localization of bone morphogenetic protein-signaling Smads during long-bone distraction osteogenesis[J]. J Histochem Cvtochem,2006,54(4):407-415.
    6. Zheng LW, Ma L, Cheung LK. Comparison of gene expression of osteogenic factors between continuous and intermittent distraction osteogenesis in rabbit mandibular lengthening[J]. Oral Surg Oral Med Oral Pathol Oral Radiol Endod,2009,108(4):496-499.
    7. Kim UK, Park SJ, Seong WJ, et al. Expression of TGF-batal,osteonectin and BMP-4 in mandibular distraction osteogenesis with compression stimulation reverse transcriptase-polymerase chain reaction study and biomechanical test[J]. J Oral Maxillofac Surg,2010,68(9):2076-2084.
    8.刘玉玲,张志纯.BMP-2及Smad-1在兔下颌骨垂直牵张中的表达和意义[J].口腔颌面修复杂志,2009,10(4):204-208.
    9. Khanal A, Yoshioka I, Tominaga K, et al. The BMP signaling and its Smads in mandibular distraction osteogenesis[J]. Oral Dis,2008,14(4):347-355.
    10. Wang H, Warnke PH, Springer I, et al. Acceleration of callus maturation using rhOP-1 in madibular distraction osteogenesis in a rat model[J]. Int J Oral Maxillofac Surg,2003,32(5):528-533.
    11. Issa JP, Nascimento C, Lamano T, et al. Effect of recombinant human bone morphogenetic protein-2 on bone formation in the acute distraction osteogenesis of rat mandibles [J]. Clinical Oral Implants Research, 2009,20(11):1286-1292.
    12.张东,刘少华,孙善珍,等.重组人骨形成蛋白2促进兔下颌牵张成骨的实验研究[J].山东大学学报(医学版),2005,43(10):972-974.
    13. Ozec Y, Ozturk M, Kylyc E, et al. Effect of recombinant human bone morphogenetic protein-2 on mandibular distraction osteogenesis [J]. J Craniofac Surg,2006,17(1):80-83.
    14.杨小平,王明,苏宇雄,等.定量缓释rhBMP-2纳米微粒促进兔下颌骨牵张成骨的实验研究[J].中国口腔颌面外科杂志,2007,5(4):286-290.
    15. Ashinoff RL, Cetrulo CL Jr, Galiano RD, et al. Bone morphogenic protein-2 gene therapy for madibular distraction osteogensis[J]. Ann Plast Surg,2004, 52:585-591.
    16. Hu J, Qi MC, Zou SJ, et al. Callus formation enhanced by BMP ex vivo gene therapy during distraction osteosgenesis in rats[J]. J Orthop Res, 2007,25(2):241-251.
    17.陈安威,魏奉才,王克涛,等.腺病毒介导的人骨形成蛋白2基因转染促进下颌牵张成骨的实验研究[J].中华口腔医学杂志,2007,42(1):15-17.
    18. Lee M H, Kwon TG, Park H S, et al. BMP2 induced Osterix expression is mediated by Dlx5 but is independent of Runx2[J]. Biochem Biophvs Res Commun,2003,309(3):689-694.
    19.潘秋辉,李益广,杨松海,等.骨形态发生蛋白2通过Smad途径上调Osterix的表达[J].中国生物化学与分子生物学报,2008,24(1):40-45.
    20. Lai QG, Yuan KF, Xu X, et al. Transcription factor osterix modified bone marrow mesenchymal stem cells enhance callus formation during distraction osteogenesis [J]. Oral Surg Oral Med Oral Pathol Oral Radiol Endod,2011,111(4):412-419.
    21.吴国平,黎德平,何小川,等.电穿孔介导的pIRES-hVEGF 165-EGFP转染对牵 引成骨过程中早期血管生成的影响[J].中华医学美学美容杂志,2010,16(3):191-194.
    22.吴国平,黎德平,胡纯兵,等.电穿孔介导的基因治疗对兔下颌骨牵引区新生骨骨密度与强度的影响[J].中华整形外科杂志,2010,26(3):207-211.
    23. Ai-Aql ZS, Alagl AS, Graves DT, et al. Molecular Mechanisms controlling bone formation during fracture healing and distraction osteogenesis[J]. J Dent Res,2008,87(2),107-118.
    24. Kroczek A, Park J, Birkholz T, et al. Effects of osteoinduction on bone regeneration in distraction:results of a pilot study[J]. J Craniomaxillofac Surg,2010,38(5):334-344.
    25. Jiang X, Zou S, Ye B, et al. bFGF-Modified BMMSCS enhence bone regeneration following distraction osteogenesis in rabbits [J]. Bone, 2010,46(4):1156-1161.
    1.吴国平,滕利,归来,等.内置式下颌骨牵引成骨术及其常见并发症的处理[J].中华整形外科杂志,2006,22:18-21.
    2. Master DL, Hanson PR, Gosain AK. Complications of mandibular distraction osteogenesis[J]. J Craniofac Surg,2010,21(5):1565-1570.
    3. Tatum SA, Losquadro WD. Advances in craniofacial surgery[J]. Arch Facial Plast Surg,2008,10(6):376-380.
    4. Dai J, Rabie AB, Hagg U, et al. Alternative gene therapy strategies for the repair of craniofacial bone defects[J]. Curr Gene Ther,2004,4(4):469-485
    5. Warren SM, Fong KD, Chen CM, et al.Tools and techniques for craniofacial tissue engineering[J]. Tissue Eng,2003,9(2):187-200.
    6.黎德平,吴国平,郭力.血管内皮生长因子与骨形态发生蛋白促进牵引成骨的研究进展[J].中华医学美学美容杂志,2009,15(2):141-144.
    7. Reddi AH. Role of bone morphogenetic proteins in skeletal tissue engineering and regeneration[J]. Nat Biotechnol,1998,16(3):247-252.
    8. Temaat MF, Blokhuis TJ, Bakker FC, et al. The role of bone morphogenetic proteins in bone healing[J]. Osteo Trauma Care,2003,11:122-125.
    9. Hannallah D, Peterson B, Lieberman JR, et al. Gene therapy in orthopaedic surgery[J]. J Bone Joint Surg Am,2002,84:1046-1061.
    10. Ashinoff RL, Cetrulo CL Jr, Galiano RD, et al. Bone morphogenic protein-2 gene therapy for mandibular distraction osteogenesis[J]. Ann Plast Surg,2004, 52:585-591.
    11. Hu J, Qi MC, Zou S J, et al. Callus formation enhanced by BMP-7 ex vivo gene therapy during distraction osteogenesis in rats[J]. J Orthop Res, 2007,25(2):241-251.
    12.陈安威,魏奉才,王克涛,等.腺病毒介导的人骨形成蛋白2基因转染促进下颌牵张成骨的实验研究[J].中华口腔医学杂志,2007,42(1):15-17.
    13. Lee M H, Kwon T G, Park H S, et al. BMP2 induced Osterix expression is mediated by Dlx5 but is independent of Runx2[J]. Biochem Biophys Res Commun,2003,309(3):689-694.
    14.潘秋辉,李益广,杨松海,等.骨形态发生蛋白2通过Smad途径上调Osterix的表达[J].中国生物化学与分子生物学报,2008,24(1):40~45.
    15. Long J, Du HM, Liu L, et al. Effects of bone morphogenetic protein 2 gene therapy on new bone formation during mandibular distraction osteongenesis at rapid rate in rabbits[J]. Oral Surg Oral Med Oral Pathol Oral Radiol Endod, 2010.
    16. DW Leung, G Cachianes, WJ Kuang, et al. Vascular endothelial growth factor is a secreted angiogenic mitogen[J]. Science,1989,246:1306-1315.
    17.曾际斌.血管内皮生长因子研究进展[J].国外医学分子生物学分册,2000,22:87-92.
    18. Casap N, Venezia NB, Wilensky A, et al. VEGF facilitates periosteal distraction-induced osteogenesis in rabbits:a micro-computerized tomography study[J]. Tissue Eng Part A,2008,14(2):247-253.
    19. Eckardt H, Bundgaard KG, Christensen KS, et al. Effects of locally applied vascular endothelial growth factor (VEGF) and VEGF-inhibitor to the rabbit tibia during distraction osteogenesis[J]. J Orthop Res,2003,21(2):335-340.
    20.吴国平,黎德平,何小川,等.电穿孔介导的PIRES-hVEGF165-EGFP转染对牵引成骨过程中早期血管生成的影响[J].中华医学美学美容杂志,2010,16(3):191-194.
    21. Gospodarowicz D. Fibroblast growth factor Chemical structure and biologic function[J]. Clin Orthop Relat Res,1990,(257):231-248.
    22. Nagai H, Tsukuda R, Yamasaki H, et al. Systemic injection of FGF-2 stimulates endocortical bone modelling in SAMP6:a murine model of low turnover osteopenia[J]. J Vet Med Sci,1999,61(8):869-875.
    23. Okazaki H, Kurokawa T, Nakamura K, et al. Stimulation of bone formation by recombinant fibroblast growth factor-2 in callotasis bone lengthening of rabbits[J]. Calcif Tissue Int,1999,64:542-546.
    24.朱永云,徐静,熊竹友,等.外源性bFGF对兔下颌骨牵张成骨的影响[J].中国美容医学,2009,18(9),1293-1296.
    25. Jiang X, Zou S, Ye B, et al. bFGF-Modified BMMSCs enhance bone regeneration following distraction osteogenesis in rabbits[J]. Bone, 2010,46(4):1156-1161.
    26. Z.S. Al-Aql, A.S. Alagl, D.T. Graves, et al. Molecular Mechanisms Controlling Bone Formation during Fracture Healing and Distraction Osteogenesis[J]. J Dent Res,2008,87(2),107-118.
    27. Ozkan K, Eralp L, Kocaoglu M, et al. The effect of transforming growth factor betal on the regenerate bone in distraction osteogenesis[J]. Growth Factors,2007,25(2),101-107.
    28. Rauch F, Lauzier D, Travers R, et al. Effect of locally applied transforming growth facor-β1 on distraction osteogenesis in a limb lengthening model[J]. Bone,2000,26(6):619-624.
    29. Sciadini MF, Dawson JM, Banit D, et al. Growth factor modulation of distraction osteogenesis in a segmental defect model [J]. Clin Orthop,2000, 381:266-277.
    30. Kroczek A, Park J, Birkholz T, et al. Effects of osteoinduction on bone regeneration in distraction:results of a pilot study[J]. J Craniomaxillofac Surg. 2010,38(5):334-344.
    31. Cao Y, Zhou Z, de Crombrugghe B, et al. Osterix, a Transcription Factor for Osteoblast Differentiation, Mediates Antitumor Activity in Murine Osteosarcoma[J]. Cancer Res,2005,65(4):1124-1128.
    32. Nakashima K, Zhou X, Kunkel G, et al. The novel zinc finger-containing transcription factor osterix is required for osteoblast differentiation and bone formation[J]. Cell,2002,108:17-29.
    33. Weber KL, Douncet M, et al. Blockade of epidermal growth factor receptor signaling leads to inhibition of renal cell carcinoma growth in the bone of nude mice[J]. Cancer Res,2003,63:2940-2947.
    34. Lai QG, Yuan KF, Xu X, et al. Transcription factor osterix modified bone marrow mesenchymal stem cells enhance callus formation during distraction osteogenesis [J]. Oral Surg Oral Med Oral Pathol Oral Radiol Endod, 2011,111(4):412-419.
    35.盂国林,胡蕴玉.基因治疗在骨科疾病治疗中的探索性应用[J].中华矫形外科杂志,2000,7(10):1005-1007.
    36. Hannallah D, Peterson B, Lieberman JR, et al. Gene therapy in orthopaedic surgery[J]. J Bone Joint Surg Am,2002,84:1046-1061.
    37. Kang R, Ghivizzani SC, Muzzonigro TS, et al. Orthopaedic applications of gene therapy[J]. Clin Orthp,2000,375:324-337.
    38. Issa JP, Do Nascimento C, Lamano T, et al. Effect of recombinant human bone morphogenetic protein-2 on bone formation in the acute distraction osteogenesis of rat mandibles[J]. Clin Oral Implants Res,2009, 20(11):1286-1292.
    39. Sailhan F, Gleyzolle B, Parot R, et al. Rh-BMP-2 in distraction osteogenesis:dose effect and premature consolidation[J]. Injury,2010,41(7): 680-686.
    40. Aybar B, Emes Y, Atalay B, et al. Effects of bone morphogenetic protein on neonatal rat calvarial osteoblast-like cells:An in vitro study[J]. J Biomed mater ResA,2008,86(2):560-568.
    41. Kakudo N, Kusumoto K, Wang YB, et al. Immunolocalization of vascular endothelial growth factor on intramuscular ectopic osteoinduction by bone morphogenetic protein-2[J]. Life Sci,2006,79(19):1847-1855.
    42. Tokuda H, Hatakeyama D, Shibata T, et al. p38 MAP kinase regulates BMP-4-stimulated VEGF synthesis via p70 s6 kinase in osteoblasts[J]. Am J Physiol Endocrinol Metab 2003,284(6):E1202-E1209.
    43.傅德皓,杨述华,肖宝钧等.骨形态发生蛋白-2对原代鼠胚成骨细胞血管内皮生长因子表达的影响[J].中华创伤骨科杂志,2006,8(8):751-754.
    44. Bouletreau PJ, Warren SM, Spector JA, et al. Hypoxia and VEGF up-regulate BMP-2 mRNA and protein expression in microvascular endothelial cells:implications for fracture healing[J]. Plast Reconstr Surg,2002,109(7): 2384-2397.
    45.曾中华,余黎,龚玲玲,等.骨折愈合过程中BMP-2和VEGF的表达[J].武汉大学学报(医学版),2005,26(4):467-470.
    46.初同伟,王正国,朱佩芳.血管内皮生长因子对骨折愈合相关因子表达的调控[J].中华骨科杂志,2003,23(4):235-238.
    47. Egermann M, Lill C A, Griesbeck K, et al. Effect of BMP-2 gene transfer on bone healing in sheep[J]. Gene Therapy,2006,13:1290-1299.
    48. Sanjay Kumar, Chao Wan, Girish Ramaswamy, et al. Mesenchymal stem cells expressing osteogenic and angiogenic factors synergistically enhance bone formation in a mouse model of segmental bone defect[J]. Molecular Therapy, 2010,18(5):1026-1034.
    49. Koh JT, Zhao Z, Wang Z, et al. Combinatorial gene therapy with BMP2/7 enhances cranial bone regeneration[J]. J Dent Res.2008,87(9):845-849.
    50. Wu GP, He XC, Yang ZH, et al. Influence on the osteogenic activity of the human bone marrow mesenchymal stem cells transfected by liposome-mediated recombinant plasmid pIRES-hBMP2-hVEGF165 in vitro[J]. Ann Plast Surg, 2010,65(1):80-84.
    51.吴国平,黎德平,胡纯兵,等.电穿孔介导的基因治疗对兔下颌骨牵引区新生骨骨密度与强度的影响[J].中华整形外科杂志,2010,26(3):207-211.
    52. Li G, Corsi-Payne K, Zheng B, et al. The dose of growth factors influence the synergistic effect of vascular endothelial growth factor on bone morphogenetic protein 4-induced ectopic bone formation[J]. Tissue Eng Part A, 2009,15(8),2123-2133.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700