过渡金属掺杂TiO_2的制备及其光催化性质的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
TiO2由于具有化学性质稳定、抗光腐蚀、无毒和成本低等优点,在光转化和光催化领域具有广阔的应用前景。但是,Ti02的禁带宽度较大,需要在紫外光照射下才能表现出光催化活性。为了增强Ti02可见光吸收和提高Ti02光催化效率,本论文采用溶胶凝胶法制备了过渡金属第一过渡系24-30号过渡金属离子掺杂Ti02,利用X-射线衍射(XRD)、紫外-可见漫反射吸收光谱(UV-Vis)、比表面积测试等表征手段研究了Ti02晶体结构、光吸收性能,比表面积等性能。同时制备了泡沫镍负载型Mn掺杂Ti02作为正极,碳棒作为负极,以三价砷为目标氧化物,以紫外灯(主波长253.7nm)为光源,进行光电催化实验,测试催化剂的催化活性。
     Mn/TiO2的UV-Vis表征结果表明:催化剂制备过程,离子掺杂浓度取1.5%(摩尔含量),焙烧温度取500℃,焙烧时间均3h时光吸收性能得到最大改善。由过渡金属离子掺杂TiO2光谱吸收图可知,过渡金属离子掺杂Ti02后,可见光吸收相比于纯Ti02均有所增强,在500nm附近增强程度按Cr3+, Mn2+, Cu2+, Co2+, Ni2+, Fe3+, Zn2+)顺序递减。XRD测试结果表明:掺杂对催化剂晶型结构影响不大,掺杂前后催化剂都保持了锐钛矿晶型,掺杂后未出现掺杂离子的特征峰可能是掺杂量太小的原因。比表面测试结果表明各种催化剂比表面积的大小顺序为Cr/TiO2> Mn/TiO2> Ni/TiO2> Cu/TiO2>Co/TiO2>Zn/TiO2>Fe/TiO2。
     金电极溶出伏安法测三价砷所得标准曲线线性度较好,光催化活性测试结果表明:光电催化降解三价砷效果优于光催化降解,原因是通电可以阻碍光催化剂的光生电子和空穴复合;Mn掺杂TiO2后催化活性增强,原因是Mn掺杂后使Ti02比表面积增大,光吸收增强。
     用密度泛函理论方法计算研究了Mn、Cu掺杂Ti408,讨论了掺杂对Ti02晶体结构、能带结构、态密度、轨道和光学性质的影响。结果表明:Mn掺杂Ti02后价带变宽,导带发生较大下移,同时在价带和导带之间增加了杂质能级,使禁带宽度变小,电子激发需要的能量变小。同时进行了Mn掺杂Ti02的实验研究,实验测得的光谱吸收结果与理论计算结果一致,就是掺杂后可见光吸收增强,Cu掺杂后表现了和Mn掺杂类似的效果。过渡金属掺杂Ti16032超晶胞计算筛选出Mn为过渡金属最佳掺杂元素。
Titanium dioxide(TiO2) has been considered as one of the most promising materials for its application in photocatalysis and photo conversion because of its high chemical stability, corrosion resistance, nontoxicity and low cost. However, it shows photo catalytic activity only under the UV irradiation due to its wide band gap(3.0-3.2eV). In order to improve the photocatalytic activity or extend the photo absorption to the visible light region, in this paper, transition metal(element 24 to 30) ion doped TiO2 had been prepared by sol-gel method. X-Ray diffraction, UV-Vis absorption spectrum, BET method were used to understand the crystallization behavior, optical property and specific surface area. By using Mn/TiO2 thin film deposited on porous nickel as positive electrode, carbon rod as negative electrode, arsenic as as target oxidation material, UV lamp(λ=253.7nm) as light source, experiments had been done to test the catalytic activity.
     The results of UV-Vis scanned by Mn/TiO2 indicated that catalysts showed the best optical properties when ion molar fraction was 1.5%, calcining temperature was 500℃, calcining time was 3h. UV-visible spectra of TiO2 doped with various transition metal ions showed that the absorption of the doped TiO2 had been improved in the visible-light range, the degree of improvement were decreasing by Cr3+, Mn2+, Cu2+, Co2+,Ni2+, Fe3+, Zn2+. The results of XRD showed that TiO2 and doping TiO2 were anatase crystal, and there were no typical characteristic diffraction peaks of doping ions because of the low doping rates. BET results showed that the display order of specific surface area was Cr/TiO2>Mn/TiO2> Ni/TiO2>Cu/TiO2> Co/TiO2>Zn/TiO2>Fe/TiO2.
     The standard curve of arsenite determined by electrochemical stripping voltammetry had the best linearity. Photocatalytic activity evaluation indicated that degradation of arsenite by photoelectrocatalytic method was better than photocatalytic method because electrifying could hinder the reuniting of photogenerated electron and photogenerated hole. Catalytic activity of Mn/TiO2 inhenced because of the increasment of BET and optical absorption.
     Using density function theory, pure TiO2, Mn/TiO2 and were calculated to investgate the geometry, the band structure, the electronic density of states, the orbit and the optical properties. The results indicated that the hybridization between O-2p and Mn-3d lead to some new bands between valence bands and conduction bands, besides, the valence bands become wider and the conduction bands shift downwards in Mn doped anatase TiO2, These changs lead to the narrowing of band gap and a red shift of the absorption band in Mri/TiO, experiments of Mn/TiO2 were also been done, the red-shift of Mn doped TiO2 in the experiments agreed with our calculation result. Calculated results of Cu/TiO2 are similar to Mn/TiO2. It was indicated that Mn was the best doping element by the caculation of transition metal ions doping Ti16O32 supercell.
引文
[1]Fujisima A, Honda K, et al. Electrochemical photolysis of water at a semiconductor electrode[J]. Nature,1972(238):37-38.
    [2]Cha D H, Kim Y S, Pan J H, et al. Synthesis of the mesoporous TiO2 films and their application to dye-sensitized solar cells[J]. Studies Surf Sci Catal,2007,165:625-628.
    [3]Patil R S, Lokhande C D, Mane R S, et al. Room temperature PbS nanoparticle growth, incubation in porous TiO2 electrode for photosensitization application [J]. J Non Crystalline Solids,2007,353:1645-1649.
    [4]Caricato A P, Capone S, Ciccarella G, et al. TiO2 nanoparticle thin film deposition by matrix assisted pulsed laser evaporation for sensing applications[J]. Appl Surf Sci,2007, 253(19):7937-7941.
    [5]Frank S N, Bard A J. Heterogeneous photocatalytic oxidation of cyanide ion in aqueous solutions at titanium dioxide powder[J]. J. Am. Chem. Soc.1977,99:303-304.
    [6]程沧沧,李太友,李华禄等.载银Ti02光催化降解2、4--氯苯酚水溶液的研究[J].环境科学研究,1998,11:212-215.
    [7]蒋伟川,谭湘萍.载银Ti02半导体光催化剂降解染料水溶液的研究[J].环境科学,1998,16:17--20.
    [8]Sokmen M, Ozkan A.Decoiourising textile wastewater with modified titania:the effects of inorganic anions on the photocatalysis[J]. J. Photochem. Photobiol. A:Chem.,2002, 147:77-81.
    [9]方靖淮,张向阳,吴敬文等.双染料共敏化的纳米晶二氧化钛多孔电极的光伏特性研究[J].太阳能学报,1997,18:164-167.
    [10]李敏,王振玲,石恒真等.敏化的Ti02纳米晶表面形貌、晶相、光谱及光催化灭菌研究[J].无机材料学报,2003,18:1261-1266.
    [11]杨蓉,王维波,敬炳文等.苯基磷酸联吡啶料络合物敏化钠晶多孔Ti02薄膜电极光电性能研究[J].感光科学与光化学,1997,15:293-296.
    [12]秦元东,王晶晶,杨蓉等.Ti02的联吡啶-化合物敏化及电子转移过程[J].物理化学学报,1998,14:520-526.
    [13]Watanabe T, Fujishima A, Tatsuoki O, et al., pH-dependence of spectral sensitization at semicondutor electrodes[J]. Bull. Chem. Soc. Jpn,1976,49:8-11.
    [14]Anpo M, Takeuto M.The design and development of highly reactive titanium oxide photocatalyst operating under visible light irradiation[J]. J. catal.,2003,216:505-516.
    [15]Yamashita H, Harada M, Misaka J, et al. Photocatalytic degradation of organic compound diluted in water using visible light-responsive metal ion-implanted TiO2 catalysts:Fe ion-implanted TiO2[J]. Catal.Today,2003,84:191-196.
    [16]Yamashita H, Harada M, Misaka J, et al. Degradation ofpropanal diluted in water under visible light irradiation using metal ion-impanted titanium dioxide photocatalysts[J]. J. Photochem. Photobiol. A:Chem.,2002,148:257-261.
    [17]Nakamural, Negishi N, Kotsuna S, et al. Role of oxygen vacancy in the plasma treated TiO2 photocatalyst with visible light activity for NO removal[J]. J. Mol. Catal. A.,2000, 161:205-212.
    [18]Takeuchi K, Nakamura I, Matumoto O, et al., Preparation of Visible-light-Responsive Titanium oxide photo catalysts by plasma Treatment[J]. Chem. Lett.,2000,29:1354-1355.
    [19]Nakamura I, Sugihara S, Takeuchi K. Mechanism for NO photooxidation over the Oxygen-Deficient TiO2 powder under Mecvisible light irradiation[J]. Chem. Lett.,2000, 29:1276-1277.
    [20]Vogel R. Quantum sized PbS, CdS, Ag2S, Sb2S3 and Bi2S3 particles as sensitizers for various nanoporous wide band gap semiconductors[J]. Phys. Chem.,1994,98: 3183-3188.
    [21]Fu H, Ohtaki M, Eguchi K, et al., Photocatalytic Activities of CdS Crystallites Embedded in TiO2 Gel as a Stable Semiconducting Matrix, J. Mater. Sci. Lett.,1997,16: 1086-1089.
    [22]颜秀茹,李晓红,霍明亮等.纳米SnO2-TiO2的制备及其光催化性能[J].物理化学学报,2001,17:23-28.
    [23]李芳柏,古国榜,李新军.WO3/TiO2复合半导体的光催化性能[J].物理化学学报,2000,16:997-1002.
    [24]Iwasaki M, Hara M, Kawada K,H.Tada H, and Ito S. Cobalt ion-doped TiO2 photocatalys tresponse to visible light[J]. Journal of Colloid and Interface Science,2000, 224(1):202-204.
    [25]吴树新,马智,秦永宁,等.过渡金属掺杂二氧化钛光催化性能的研究[J].感光科学与光化学,2005,23(2):94-101.
    [26]冯国良,吕绍洁,邱发礼.过渡金属掺杂对纳米TiO2光催化性能的影响[J].化学学报,2002,60(3):463-467.
    [27]Paola A D, Marei G, Palmisano L, et al., Preparation of polycrystalline TiO2 photocatalysis impregnated with various transition metal inons.-characterization and photocatalytic activity for the degradation of 4-nitropheno[J]. J. Phys. Chem. B,2002, 106:637-645.
    [28]牟季美,张立德.纳米材料和纳米结构[M].北京:科学出版社,2001.
    [29]刘光华.稀土固体材料学[M].北京:机械工业出版社,1997.
    [30]Xu Anwu, Gao Yuan, Liu Hanqin. The preparation, characterization, and their photocatalytic activitities of rare-earth-doped TiO2 nanoparticles [J]. Journal of Catalysis,2002,207:151-157.
    [31]Xie Y B, Yuan C W, Lix Z. Photocatalytic degradation of X-3B dye by visible light using lanthanide ion modified titanium dioxide hydrosol system[J].Colloids Surf A: Physicochem EngAspects,2005,252(1):87.
    [32]Asahi R, Morikawa T, Ohwaki T. Visible-light photocatalysis in nitrogen-doped titanium oxides[J]. Science,2001,293:269.
    [33]Burda C, Lou Y B, Chen X B, et al. Enhanched nitrogen doping in TiO2 nanoparticles[J]. Nano. Lett.,2003,3(8):1049-1051.
    [34]S. Yin, Q.W.Zhang, F.Saito,et al. Preparation of Visible Light-Activated Titania PZrtocatalyst by Mechanochemical MetZrd[J]. Chem. Lett,2003,32(4):358-359.
    [35]刘守新,陈孝云,陈曦.酸催化水解法制备可见光响应N掺杂纳米Ti02催化剂[J].催化学报,2006,27(8):697-702.
    [36]K.Wilke, H. D. Blnuer. Photokilling of Malignant Cells with Ultrafine TiO2 Powder[J]. Bull.Chem.Soc.Jpn.,2001,64(4):1268-1273.
    [37]M.Schwuger, K. Stickdom. Salor Photoassisted Catalytic Decomposition of the Chlorinated Hydrocarbons Trichloroethlene and Trichloromethane[J]. Sol.Ener.,1984, 32(5):597-601.
    [38]黄娟茹.二氧化钛纳米微晶的改性研究[D].天津大学,2007.
    [39]Goswami D Y. A review of engineering developments of aqueous phase solar photocatalytic detoxification mad disinfection processes[J]. Journal of Solar Energy Engineering,1997,119(3):101-107.
    [40]方世杰,徐明霞,黄卫友等.纳米TiO2光催化降解甲基橙[J].硅酸盐学报,2001,29(5):439-442.
    [41]黄丽华,赵峰,陈建民等.纳米TiO2光催化降解直接耐晒蓝的研究[J].环境化学,2003,22(4):359-363.
    [42]Pelizzetti E. Photocatalystic Degradation of Arazine and Other a-Triazine Herbicides[J]. Environ. Sci.Techenol,1999,24:1559-1562.
    [43]张天永,张友兰,赵进才等.染料及表面活性剂的太阳光催化降解[J].天津大学学报,2003,36(1):5-8.
    [44]史月萍,杨祝红,冯新等.掺铂二氧化钛纤维光催化降解氯仿的研究[J].催化学报,2003,24(9):663-665.
    [45]方佑龄,赵文宽,赵国华.用浸涂法制备漂浮附载型Ti02薄膜光催化降解辛烷[J].环境化学,1997,16(5):413-417.
    [46]Rjames B, Michael R.M., Photocatalytic Decomposition of Crude Oil Slicks Using TiO2 on a Floating Substrate[J]. J. Microchem,1994,50(1):28-31.
    [47]Hisahiro E, Shigeru F, Takashi I. Complete oxidation of benzene in gas phase by platinizd titania photocalysts[J]. Env Sci Techn,2001(9):1880-1883.
    [48]李玉华,王琨,赵庆良.球载纳米Ti02光催化氧化低质量浓度甲醛[J].化学工程,2009,37(1):37-40.
    [49]Sun S.Q., Sun B., Zhang W.Q. et al. Preparation and antibacterial activity of Ag-TiO2 composite film by liquid phase deposition(LPD)method[J]Bulletin of Mater.Sci.,2008, 31(1):61-66.
    [50]Wenguang Zhu, Xiaofeng Qiu, Violeta et al. Band gap narrowing of titanium oxide semiconductors by noncompensated anion-cation codoping for enhanced visible-light photoactivity[J]. PhysRev Lett,2009,103(22):(226401-1)-(226401-4).
    [51]陈书鸿,付川,傅杨武.用密度泛函理论研究三价铁掺杂锐钛矿二氧化钛[J].计算机与应用化学,2006,23(10):983-985.
    [52]成英之,张渊明,唐渝溶.溶胶-凝胶法制备纳米二氧化钛的工艺研究[J_].催化学报,2001,22(1):23-26.
    [53]Ryu. J, Choi. W. Effects of TiO2 surface modifications on photocatalytic oxidation of asenite:the role of superoxides[J]. Environ. Sci. Technol,2004,38:2928-2933.
    [54]邹邵芳.重金属电化学传感器及其在海水检测中的应用[D].浙江大学,2006.
    [55]苑宝玲,傅明来,林清赞.荧光法测定环境水中的痕量砷[J].分析试验室,
    2000,19(6):71-73.
    [56]H Tang, K Prasad, R Sanjines, et al. Electrical and Optical of TiO2 Anatase Thin Films[J]. J. Appl. Phys.,1994,75(4):2042-2046.
    [57]Natarajan C, Nogami G. Cathodic electrodeposition of nanocrystalline titanium dioxide thin films [J]. Journal of the Electrochemical Society,1996,143(5):1547-1550.
    [58]Robertn J, Candal, Walter A, et al. Titanium-supported titania photo-electrodes made by sol-gel processes [J]. Journal of Environmental Engineering,1999,10:906-912.
    [59]陈建华,龚竹青.二氧化钛半导体光催化材料离子掺杂[M].北京:科学出版社,2006.
    [60]J.K.Burdett,T.Hughbanks,G.J.Miller,J.W.Richardson,J.V.Smith,et al. Structural electronic relation ships in inorganic solids:powder neutron diffraction studies of the rutile and anatase polymorphs of titanium dioxide at 15 and 295 K[J]. J.Am.Chem.Soc, 1987,109(12):3639-3646.
    [61]付川,陈书鸿,傅杨武,等.Fe(Ⅲ)掺杂对TiO2光催化活性的影响机理[J].重庆大学学报,2005,(28)8:96-99.
    [62]Jee-Gong Chang, Hsin-Tsung, et al. Role of Hydroxyl Groups in the NHx(x= 1-3)adsorption on the TiO2 anatase(101) surface determined by a first-principles sdudy[J]. Langmuir,2010,26(7):4813-4821.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700