电化学超级电容器电极材料的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
电化学超级电容器是一种介于蓄电池和常规电容器之间的新型储能设备及器件,它具有比常规电容器更大的比能量,比蓄电池更大的比功率和循环使用寿命。利用超级电容器和电池组成混合动力系统,能够很好的满足电动汽车启动、加速等高功率密度输出场合的需要。它可以应用于很多领域,如:混合电动汽车、燃料电池、移动电话、微机等。根据储能原理,超级电容器可以分为双电层电容和法拉第准电容,电极材料主要包括碳材料、金属氧化物和导电聚合物。
     本文主要采用了循环伏安、恒电流充放电、交流阻抗以及透射电子显微镜等测试手段对超级电容器的电极活性物质材料进行了研究。对于碳材料,本文主要对活化方法进行了研究,结果发现用硝酸活化处理后的活性炭在浓度为7mol/L的氢氧化钾溶液中具有良好的电容性能。并且进行了硝酸的浓度实验和氨水活化时间的实验,发现容量随硝酸浓度的增加而增加,随氨水活化时间的增加而减少。由于碳基电容器正极容量远小于负极容量,所以本文主要致力于开发新的正极材料与作为负极的碳电极组成混合电容器。用固相合成法制备Ag_2O作为超级电容器材料,通过循环伏安与恒流充放电等测试手段对Ag_2O电极及与作为负极的活性炭电极组成的电容进行分析。结果表明,在7mol·L~(-1)KOH电解液中,Ag_2O电极在0.15~0.35V(vs.Hg/HgO)的电压范围内表现出了法拉第电容特性。在不同电流密度下,电极比容量达427.3~554.9 F·g~(-1),Ag_2O/活性炭单体电容器比电容为42.5~61.65F·g~(-1)。同时还对正极中Ag_2O的含量及导电剂对Ag_2O/活性炭单体电容器性能的影响进行了研究。用固相合成法制备了α-PbO、β-PbO、PbO_2和MnO_2。用MnO_2作为超级电容器正极电极材料,并通过在正极活性物质中加入不同的铅的氧化物探讨其对正极容量的影响。实验表明添加β-PbO的MnO_2电极在7mol·L~(-1)KOH溶液中在-0.3~0.4V(vs Hg/HgO)的电压范围内有良好的法拉第电容特性。添加2%β-PbO的MnO_2电极比容量达165.7~260F·g~(-1),比无添加剂的MnO_2电极的比容量高出62.5%,从实验数据可见,添加的配比对电化学性能的影响较大,添加量为2%时,电极具有良好的电容性能。从2000
    
    哈尔滨工程大学硕士学位论文
    次的循环性能看,在电流密度为somA·cm.2时,添加p一Pbo的MnOZ电极
    仍具有较好的循环性,容量衰减不到10%.同时,我们用活性炭做负极,二
    氧化锰做正极成功制备出了千法级混合超级电容器,容量可达20()0F,比能
    量可达SWh飞g,循环寿命可达2万次.
    关键词:电化学超级电容器;活性炭;氧化银;氧化铅;二氧化锰
    犷
Electrochemical supercapacitor is a new energy storage equipment and component between batteries and electrostatic capacitors, which has higher energy density than that of electrostatic capacitor and higher power density than that of batteries. When working with batteries, they can meet the high power out-put need of electric vehicles when starting-up or accelerating. It can also be applied into many fieids such as hybrid electric vehicle ,fuel cell mobile telephone and microcomputer. According to the principle of energy-storage there are two types of capacitors: electric double-layer capacitor and faradaic pseudocapacitor. Electrode material mainly includes carbon material, metal oxide and conducting polymer.A series of experiments were conducred to research on electrode material with the aids of the measure methods such as cyclic voltammetric measurements (CV), constant charge/discharge measurements, impedance spectrum, transmission electronic microscope measurements(TEM), and so on. As for carbon material, its activation in nitrate acid; In addition, we also studied the effect on capacitance of nitrate acid concentration and activation time in ammonia. The conclusion were obtained that electrode capacitance enhance with the increase of nitrate acid concentration, and decreased with the activation time in ammonia. The paper also found that the positive carbon electrode was much smaller than that of negative one, so it urged to develop new positive material to make up hybrid capacitor. Abstract The Ag2O was synthesized by solid-phase reaction as electrode material for electrochemical supercapacitor that was tested by cyclic voltammetry(CV) and constant charge-discharge curves. The results of experiment show that Ag2O electrode has good performance of faradic pseudocapacitance in 7molL-1'KOH between 0.15 and 0.35V(vs Hg/HgO). The electrode can provide a specific capacitance of 427.3 to 554.9 Fg-1 and the Ag2O/active carbon electrodes can provide a specific capacitance of 42.5 to 61.65 F-g-1 at different current densities. The effect of Ag2O content in the cathode and conductive substance on Ag2O/active carbon electrodes performance was also studied. The -PbO, -PbO, PbO2 and MnO2 were synthesized by solid-phase reaction. We use MnO2as the positive electrode material and add different lead oxide to the positive material.
    
    The results of experiment show that MnO2 electrode of adding P -PbO has good performance of faradic pseudocapacitance in TmolL"1 KOH between -0.3 and 0.4V(vs Hg/HgO). MnO2 electrode of adding 2% 3 -PbO can provide a specific capacitance of 165.7 to 260Fg"' that inhance by 65% than that of no additive. It appeared that the ratio of P -PbO in samples had greater effect on the electrochemical capacity. The better discharge capacity could be obtained when the ratio of P -PbO was 2%. After 2000 cycles of constant charge-discharge the electrode was stable and the capacitance reduces no more than 10% at current density of 50mAcm"2. Successfully we made kilifarads hybrid capacitor ,the anode is active carbon electrode and the cathode is MnO2 electrode.Its capacitance is 2000F. Its specific energy is 5Wh/kg. Its cyclic life was over 20000 cycles.
引文
[1] 王晓峰,王大志,梁吉.超细氧化钌超电容器电极材料的制备.无机化学学报.2003,19(4):371页
    [2] B E CONWAY, ed. Electrochemical Supereapacitors. Kluwer Academic/Plenum Publishers. 1999: 1-9P
    [3] 张丹丹,姚宗干.大容量高储能密度电化学电容器的进展.电子元件与材料.2000,19(1):34-37页
    [4] 黄小文.电化学电容器及锂离子电池正极材料的研究.东北师范大学博士学位论文.2002:13页
    [5] Deyang Qu, Shi H. Studies of activated carbons used in double-layer capacitors. J Power Sources, 1998, 74:99-107 P
    [6] Atsushi Nishino. Capacitor: operating principles, current market and technical trends. J Power Sources, 1996, 60:137-147 P
    [7] 王晓峰,谢晶莹,孔祥华,等.“超电容”电化学电容器研究进展.电源技术,2001,25(suppl.):166-170,190页
    [8] 南俊民,杨勇,林祖赓.电化学超级电容器及其研究进展.电源技术,1996,20:152-156,164页
    [9] 张丹丹,姚宗干.双电层电容器.高压电技术.1999,25(4):69-71页
    [10] C Arbizzani, M Mastragostino, F Soavi. New trends in electrochemical supercapacitors. J Power Sources, 2001, 100(1-2): 164-170P
    [11] 戴贵平,刘敏,王茂章,等.电化学电容器中坦电极的研究及开发.新型炭材料.2002,17(1):75-76页
    [12] Andrew Burke. Ultracapacitors: why, how, and where is the technology. J Power Sources, 2000, 91: 37-50P
    [13] H E Becker, U S Patent, 2,800,616 (to General Electric Co.) (1957-07-23)
    [14] Gamby J, Taberna P L, Simon D, Fauvarque J F, Chesneall M. Studies and characterizations of supercapacitors. J Power Sources, 2001, 101 (1): 109-116P
    
    [15] Saliger R, Fischer U, Herta C, Frickle J. High surface area carbon aerogels for supercapacitors. Journal of Non-Crystalline Solids, 1998,225(1): 81-85P
    [16] Frackowiak E, Jurewicz K, Delpeux S, Beguin F. Nanotubular materials for supercapacitors. J Power Sources, 2001, 6 (97-98): 822-825P
    [17] C Schmitt, H Probstle, J Fricke. Carbon-cloth reinforced and activated aerogel films for supercapacitors. Journal of Non-Crystalline Solids,2001,285: 277-282P
    [18] Aoon, ed. High power 2300F double layer capacitor based on Ac / c composite electrode technology. Extended abstracts of 188th fall meeting. Chicago. Electrochemical Society. 1995
    [19] Saliger R, Fischer. Journal of Non-Crystalline Solids, 1998,225:81-85P
    [20] Mayer S T, Pekala R W, Kashmitter J L. J Electrochem Soc, 1993,140(2):446-451P
    [21] Sullivan M G,Schnyder B, Bartsch M, ed. J Electrochem Soc, 2000,147(7):2636-2643P
    [22]江奇,瞿美臻,张伯兰等.电化学超级电宣传品电极材料的研究进展.无机材料学报.2002,17(14):651P
    [23] Kinishita Kim, Xi Chu, ed. Carbon for supercapacitors in electrochemical capacitors/1995. Pennington: 1996,135P
    [24] E G Gagnon. The triangular voltage Sweep Method for Determining Double-layer Capacity of Porous Electrodes IV. Porous Carbon in Potassium Hydroxide, J Electrochem Soc, 1975, 65: 61P
    [25] Mayer ST, Pekala RW, Kaschimitter JL. The aerocapacitors: an electrochemical double layer energy-storage device. J Electrochem Soc,1993, 140(2): 446P
    [26] Tassin N BRONOELG, Fauvaroue JF, et al. Effects of three- dimensional current collectors on supercapacitors characteristics. J Power Sources,1997,65:61P
    
    [27] Ramai, Manikandan -laran, et al. Development of carbon metal oxide supercapacitors by ebctrodes deposition. Proc Electrochem Soc, 1998,98-15(selected battery Topics). NJUSA: electrochemical Society, 1999,226-235P
    [28] Kuo Chuan L, Mare A Anderson. Porous nickel oxide/nickel film for electrochemical capacitors. J Electrochem Soc, 1996,143(1): 124-129P
    [29] Venkat S, Weidener W. An electrochemical route for making porous nickel oxide electrochemical capacitors. J Electrochem Soc, 1997, 14(8):L210
    [30] Hee Y LEE, V Manivannan, J B GOOD ENOUGH. Electrochemical capacitors with KC1 electrolyte. C R Acad Sci Paris, 1999,2: 565-577P
    [31] CHUAN L, JAMES A, BRANKO N. Characterization of Sol-gel-derived cobalt oxide xergels as electrochemical capacitors. J Electrochemical Soc, 1998, 145(2): 4097-4101P
    [32] Liu T C, Pell W G, Conway B E, et al. Behavior of Molybdenum nitrides as materials for electrochemical capacitors. J. Electrochem Soc. 1998,145(6): 1882-1888P
    [33] LEEH Y, GOODENOUGH J B. Ideal supercapacitor behavior of amorphous V2O5 nH2O in potassium chloride (KC1) aqueous solution. J solid state chem, 1999, 148(1): 81-84P
    [35] Mastragosina Marina, Arbizzani catia, Soavi Francessa. Polymer-based supercapacitors. J Power Sources, 2001, 97-98: 812-815P
    [36] Arbizzani C, catellani M, Mastragostina M, Mingazzini C. N and P-doped polyditnieno[3,4-B:3'4'-D] thiophene: a narrow band gap polymer for redox supercapacitors. Electrochemic Acta, 1995, 40(12):1871-1876P
    [37] UE M. Advance in electrochemical capacitors electrolytes for electrochemical capacitors. Denki kagaku, 1998,66(9): 904-911P
    [38]李建玲,梁吉,徐景明,等.双电层电容器有机电解液的研究进展.电源技术,2002,25(3):229-234页
    
    [39] Lassegues J-c, Grondim, J, Becker T, et al. Supercapacitor using a proton conducting polymer electrolyte. Solid state Ionics, 1995, 77:311-317P
    [40] 钟云海,李荐,戴艳阳,等.新型能源器件—超级电容器研究发展最新动态.电源技术,2001,25(5):367-370页
    [41] Faggioli Eugenio, Rena Piergeorgio, Danel Veronique, et al. Supercapacitors for the energy management of electric vehicles. J Power Sources, 1999, 84: 261-269P
    [42] Laforgue Alexis, Simon Patrice, Sarrazin Christion, Fauvarque Jean-Francois. Polythiophene-based supereapaeitors. J Power Sources, 1999, 80(1-2): 142-148P
    [43] S Sarangapani, B V Tilak, C P Chen. Materials for Electrochemical Capacitors. J Electrochem Soc, 1996, 143(11): 3791-3799P
    [44] Yoon Y S, Cho W L Lim, J H Chio, D J. Solid-state thin-film supercapacitor with ruthenium oxide and solid electrolyte thin-film. J Power Sources, 2001, 101 (1): 126-129P
    [45] 周仲柏,陈永言编著.电极过程动力学基础教程.第一版.武汉大学出 版社,1988:34-41页
    [46] 刘晨光,刘敏,王茂章等.电化学电容器中炭电极的研究及开发.新型炭材料,2002,17(2):64-66页
    [47] V Srinivasan, C Lin, J A Ritter. Mathematical modeling of sol-gel derived carbon xerogels as double layer capacitors. Proceedings of the Symposium on Electrochemical Capacitor Ⅱ, Califoria, 1996. Clifomia: EMS Pre. 1997: 53-166P
    [48] S M Lipka. Electrochemical capacitors utilizing low surface area carbon fiber. IEEE AES Systems Magazine. 1997, 7: 27-30P
    [49] J P Zheng, T R Jow. The effect of salt concentration in electrolytes on the maximum energy storage for double layer capacitors. J Electrochem Soc, 1997, 144(7): 2417-2420P
    [50] M Morita, M Goto, Y Matsuda. Ethylene carbonate-based organic electrolytes for electric double layer capacitors. J Appl Electrochem, 1992, 22: 901-908P
    [5
    
    [51] L Bonnefoi, P Simon, J F Fauvarque, et al. Electrode optimization for carbon power supercapactiors. J Power Sources, 1999, 79: 37-42P
    [52] T Osaka, X J Liu, M Nojima. An electrochemical double layer capacitor using an active carbon electrode with gel electrolyte binder. J Electrochem Soc, 1999, 146(5): 1724-1729P
    [53] A B Mcewen, J L Goldman, T Blakley, et al. Nonaqueous electrochemical capacitors. C F Holmes and A R Landgrebe ed, Batteries for Portable Applications and Electric Vehicles. Electrochemical Society Proceed, 1997: 602-612P
    [54] 严继民,张启元著.吸附与凝聚-固体的表面与孔.北京:科学出版社,1979:10页
    [55] L J vander Pauw. A method of measureing the resistivity and hall coefficient on lamellae of arbitrary shape. Philip Techmical Review. 1965, 20: 220-224P
    [56] 王建立,刘文华.碳基电化学超级电容器及其研究进展.电源技术,2000,24(1):57-60页
    [57] 刘洪涛,夏熙.电极用纳米Ag2O的电化学性能研究.化学学报,2000,58(8):992-993页
    [58] 李娟,龚良玉,夏熙.α—PbO纳米粉体的固相合成及其对MnO2电极材料的改性作用.应用化学,2001,18(4):264-268页
    [59] 龚良玉,李娟,夏熙.固相合成β—PbO纳米粉体及相关过程的研究.无机材料学报,2001,16(5):969-972页
    [60] 夏熙,龚良玉.PbO2纳米粉体的固相合成及其对MnO_2电极材料的改性作用.化学学报,2002,60(1):87-92页
    [61] 刘广林著.铅酸蓄电池工艺技术.物资出版社,1992:55-103页
    [62] 李娟,李清文等.纳米MnO_2粉体固相合成及其电化性能(Ⅲ)固相氧化还原反应合成纳米α-MnO_2的性能.应用化学,1999,16(3):103-105页
    [63] 王晓峰,王大志,梁吉等.氧化/活性炭超电容器复台电极的电化 ?
    
    ?学行为.物理化学学报,2002,18(8):752页

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700