锂离子二次电池正极材料的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
继层状结构的LiCoO_2被广泛应用于小容量、低倍率锂离子电池之后,新型锂离子电池正极材料不断被提出,其中价格较低、资源丰富、比容量较高、具有层状结构的LiNiO_2系列化合物,被认为是有希望的正极材料。但是,它的纯相态晶体较难合成,循环过程中结构不稳定又导致容量衰减,这阻碍了它的实际应用。采用金属元素掺杂形成多元固溶体,以改善该材料的结构稳定性,提高其电化学活性,是该材料领域一个普遍使用的方法。
     本论文采用两段式高温固相反应方法,由不同含镍化合物,通过引入二价、三价、四价的掺杂金属元素,制备出锂离子电池正极材料用层状锂镍钴基氧化物LiNi_(0.7)Co_(0.3)O_2的掺杂化合物LiNi_(0.7)Co_(0.3-x)M_xO_2(M=Ga~(3+),Mg~(2+),Al~(3+),Ti~(4+),Sr~(3+))。论文应用粉末X射线衍射(XRD)、热重(TG)、扫描电镜(SEM)、循环伏安(CV)和实验电池性能测试等技术手段,对比研究了不同含镍化合物、前驱体制备工艺、前后两段烧结温度、烧结时间、烧结气氛等工艺参数,对所制材料的晶体结构、热稳定性、晶体颗粒形貌、电化学活性等性能的影响。结论如下:
     1、锂镍钴基氧化物LiNi_(0.7)Co_(0.3)O_2的研究:
     在氧气气氛下,用不同的含镍化合物制备LiNi_(0.7)Co_(0.3)O_2,系统考察了烧结温度和烧结时间对所制产物晶体结构的影响。
     1.1.在氧气气氛中,用γ-NiOOH、β-NiOOH、Ni(OH)_2、Ni_2O_3等为镍源,经600℃-650℃和700℃-800℃两段烧结的高温固相反应,均能得到六方层状结构的LiNi_(0.7)Co_(0.3)O_2。以γ-NiOOH为镍源,所制得的LiNi_(0.7)Co_(0.3)O_2没有电化学活性。由β-NiOOH,Ni_2O_3,Ni(OH)_2制备LiNi_(0.7)Co_(0.3)O_2,最佳的第二阶段烧结条件分别为700℃20小时、700℃30小时、750℃20~25小时。由β-NiOOH和Ni(OH)_2所制LiNi_(0.7)Co_(0.3)O_2的晶体结构更适宜于作为正极材料。
     1.2.由Ni(OH)_2制备LiNi_(0.7)Co_(0.3)O_2时,随着第二段烧结温度的升高,产物的结晶度提高,精细峰分裂明显,第二段烧结温度维持在800℃时容易引起锂离子的缺失,引起杂质相的生成,材料的电化学性能下降。在相同的烧结温度下,延长烧结时间具有同样的效果。
     2、掺杂化合物LiNi_(0.7)Co_(0.3-x)M_xO_2(M=Ga~(3+),Mg~(2+),Al~(3+),Ti~(4+),Sr~(3+))的研究:
     用高温固相法合成LiNi_(0.7)Co_(0.3-x)M_xO_2(M=Ga~(3+),Mg~(2+),Al~(3+),Ti~(4+),Sr~(3+))化合物,用X-射线衍射、热重分析,模拟电池的充放电以及为微电极循环伏安法对所得样品的结构、热稳定性和电化学性能进行了测试,结果表明:
     2.1.在氧气气氛中,用高温固相法所制LiNi_(0.7)Co_(0.3-x)Ga_xO_2(x=0.01,0.03,0.05)的晶体结晶度受前驱体制备条件的影响,原料经压片后进行第一阶段烧结,较原料不经压片直接进行第一阶段烧结,所制LiNi_(0.7)Co_(0.3-x)Ga_xO_2(x=0.01,0.03,0.05)的晶体结晶度高。
     2.2.镓掺杂对LiNi_(0.7)Co_(0.3-x)Ga_xO_2(x=0.01,0.03,0.05)结构和热稳定性的影响。
     随着镓掺杂量的增加LiNi_(0.7)Co_(0.3-x)Ga_xO_2(x=0.01,0.03,0.05)的结晶度提高。热重分析显示,第二段烧结温度在800℃以下时,镓的掺入有利于提高正极材料LiNi_(0.7)Co_(0.3)O_2的热稳定性。
     2.3.实验电池充放电结果和循环伏安测试结果显示,镓的引入有利于提高所制LiNi_(0.7)Co_(0.3-x)Ga_xO_2(x=0.01,0.03,0.05)的质量比容量及其在充放电循环中的结构稳定性。结构稳定表明循环过程中LiNi_(0.7)Co_(0.3-x)Ga_xO_2(x=0.01,0.03,0.05)没有发生相变,镓的掺入对其层状结构起到“扎”作用,抑制了它在充电过程中的相变。
     2.4.对LiNi_(0.7)Co_(0.2)M_(0.1)O_2(M=Mg~(2+)、Al~(3+)、Ti~(4+)、Sr~(3+))的初步研究结果显示,Al~(3+)和少量的Ti~(4+)或Sr~(3+)共同掺杂,使LiNi_(0.7)Co_(0.2)M_(0.1)O_2的晶胞体积变小,I_((003))/I_((104))值增大说明层间结合力增强;加入镁后a值没有变化,c值略有增加,是因为Mg~(2+)的半径与Li~+的半径较为接近,比其它阳离子大(Mg~(2+):0.072nm;Li~+:0.076nm;:0.051nm;Co~(3+):0.053nm;Ni~(3+):0.056nm)。
Following the extensive usage of LiCoO_2 with layer structure, served as cathode material in lithium ion battery, which have small capacity and used with low multiple ratio discharge current, several new cathode materials have being proposed. The layer structure LiNiO_2, was one kind of compounds among them, which have the feature of plenty raw material source, relatively low price and higher specific capacity. It was believed to be a hopeful cathode material for lithium ion batter}'. However, in practice it is difficulty to synthesis pure phase layer structure LiNiO_2, and the instability of its layer structure during cycling lead to the decline of its specific capacity, all these shortcomings hinder it from practical applying. In order to modify the crystal structure stability of LiNiO_2 and improve its electrochemical property, one useful method commonly used in the field of researching LiNiO_2 based cathode material was partially substituting the Ni atom in LiNiO_2 by variety metal elements to form solid solution of multi-components.
     In this thesis, several additive compounds of LiNi_(0.7)Co_(0.3-x)M_xO_2(M= Ga~(3+), Mg~(2+), Al~(3+), Ti~(4+), Sr~(3+)) belong to the family of LiNi_(0.7)Co_(0.3)O_2 were synthesized for lithium ion battery cathode material The method used here was tow steps sintering process which contains high temperature solid reactions in two different temperature ranges. The raw material used here were several nickel containing compounds. The additive metal elements were that with the valance of two, three and four. The effects of technology parameters upon the feature of yields, have been studied comparatively, using the technologies of powder X-ray diffraction (XRD), thermo-gravimetric analysis (TG), scanning electric microscope (SEM), cyclic voltammegram(CV), and charge-discharge feature probe by simulated cell, from the views of crystal structure, thermal stability, particle morphology and electrochemical property. The technology parameters been taken into account are, the raw materials of nickel containing compounds, the technology for producing precursors, the temperature used in former and later sintering stage, the sustaining time and the atmosphere for sintering. The results are showed as follow.
     1. Research on the material based on LiNi_(0.7)Co_(0.3)O_2
     In oxygen atmosphere, LiNi_(0.7)Co_(0.3)O_2 was produced using different nickel contained compounds, the effects of sintering temperature and continuing sintering time upon the crystal structure of target products have been studied systematically.
     1.1 In the oxygen atmosphere, all the products (LiNi_(0.7)Co_(0.3)O_2) with well-ordered hexagonal layer structure are synthesized by the two-step calcinations process, with the 1st step sintering temperature range from 600℃to 650℃, and the 2nd step sintering temperature range from 700℃to 800℃, when using different nickel contain compounds as raw material, such asγ-NiOOH、β-NiOOH、Ni(OH)_2、Ni_2O_3 and so on . But the product fromγ-NiOOH does not have electrochemical activity. The optimum sintering temperature and sustaining sintering time in second calcinations process for synthesizing LiNi_(0.7)Co_(0.3)O_2 fromβ-NiOOH, Ni_2O_3, Ni(OH)_2 raw materials, are sintering at 700℃for 20 hours, sintering at 700℃for 30 hours and sintering at 750℃for 20~25 hours respectively. The products of LiNi_(0.7)Co_(0.3)O_2 made from Ni(OH)_2 andβ-NiOOH are much more suitable to be used as cathode material for lithium ion battery than other products made from other nickel containing compounds.
     1.2 When Ni(OH)_2 were used to produce LiNi_(0.7)Co_(0.3)O_2, with increasing the temperature of second calcinations process, the crystal structural (degree of crystal) of the product was enhanced and the splitting of fine peak in XRD spectra was obviously. When the temperature of second calcinations process was maintained at 800℃, the electrochemical performance of the products declined, because of the escape of lithium lead deficiency and impurity phase may be produced during calcinations at relatively high temperature. The same result was occurred, when the sustaining sintering time is lengthened under the same calcinations temperature.
     2. Research of doped compound LiNi_(0.7)Co_(0.3-x)M_xO_2 (M= Ga~(3+), Mg~(3+), Al~(3+), Ti~(4+), Sr~(3+))
     LiNi_(0.7)Co_(0.3-x)M_xO_2 (M= Ga~(3+), Mg~(2+), Al~(3+), Ti~(4+),Sr~(3+)) was synthesized by the high temperature solid state reaction . The performance feature of the target products were compared, from the views of crystal structure, thermal stability and electrochemical property, by means of X-ray diffraction (XRD), thermal gravimetric analysis (TGA), charge-discharge of simulated cell and cyclic voltammogram (CV). The results are showed as followed:
     2.1 In the oxygen atmosphere , the structural performance of LiNi_(0.7)Co_(0.3-x)Ga_xO_2 (x=0.01,0.03,0.05) synthesized by the high temperature solid state reaction waseffected by the preparation condition of the precursor . The precursor was prepared by two different processes: (i) the raw material were compressed to be pellet before the first calcinations step, (ii) the raw material were mixed only without compress before the first calcinations step. The structural performance of LiNi_(0.7)Co_(0.3-x)Ga_xO_2 (x=0.01,0.03,0.05) from the first processes was better .
     2.2 The influence of doped Gallium to the crystal structure and the thermal stability of LiNi_(0.7)Co_(0.3-x)Ga_xO_2 (x=0.01,0.03,0.05) . With increase the quantity of doped Gallium in LiNi_(0.7)Co_(0.3-x)Ga_xO_2, its crystal performance (degree of crystal) was enhanced. The results of thermo-gravimetric analysis (TG) shown that, if the temperature of second calcinations process was lower than 800℃, the additive of Gallium was conducive to increase the thermal stability of LiNi_(0.7)Co_(0.3)O_2 cathode material.
     2.3. The tests of charge-discharge of simulated cell and cyclic voltammogram (CV) revealed that when Ga doped, the capacity of LiNi_(0.7)Co_(0.3-x)Ga_xO_2 (x=0.01,0.03,0.05) increased and structural stability of the cathode was improved during the charge-discharge. The gallium doping stabilized the crystal structure of the LiNi_(0.7)Co_(0.3-x)Ga_xO_2 (x-0.01,0.03,0.05) during charging, suppression of the phase transitions.
     2.4 The results of preliminary study about LiNi_(0.7)Co_(0.2)M_(0.1)O_2 (M= Mg~(2+), Al~(3+), Ti~(4+), Sr~(3+)) shown that: when simultaneously multiple additive Al~(3+) and a few Ti~(4+) or Sr~(3+) to LiNi_(0.7)Co_(0.2)M_(0.1)O_2, the unit cell volume of LiNi_(0.7)Co_(0.2)M_(0.1)O_2 was decreased, and the ratio value of I_((003)) /I_((104)) was increased, these revealed that the inter layer binding force were enhanced. If Mg~(2+) was doped, the value of a does not change ,the value of c increase slightly, the reason for that were the radius of Mg~(2+)is approaches to the radius of Li+, and it is bigger than the radius of other positive ions (Mg2+ :0.072nm; Li+:0.076nm;: 0.051nm; Co3+:0.053nm; Ni3+:0.056nm).
引文
[1]. Vincent C. A.. Lithium batteries: A 50-year perspectives .[J].Solid State Ionics. 2000, 134: 159-167
    [2] Katz H., Bogel W., Buchel J. R. Industrial awareness of lithium batteries in the world during the past two years. [J]. Power Sources, 1998, 72: 43-50
    [3] Armand M., Coic L., Palvadeau P., et al. The M-O-X transition metal oxyhalides: a new class of lamellar cathode material. [J]. Power Sources. 1978, 3(2): 137-144
    [4] Armand M, et al. In material for advanced batteries. [M]. New York, 1980, 8: 145-152
    [5] Bruno S., Lithium rocking chair batteries: an old concept? [J]. Electrichem. Soc, 1992, 139(10): 2776-2781
    [6] Auborn J. J., Barberio L.. Lithium intercalation cells without metallic lithium MoO_2/LiCoO_2 and WO_2/LiCoO_2. [J]. Electrochem. Soc. 1987, 134(3): 638-641
    [7] 李景虹。[M].先进电池材料.化学工业出版社.2004.6:P210
    [8] 冯熙康,锂离子蓄电池用作电动车与航天电源的进展,Symposium of CIBF99, 1999, 41-45
    [9] 吴国良。锂离子负极材料的现状与发展.[J].电池.2001,31(4):54-55
    [10] 冯熙康。锂离子蓄电池用作电动车与航天电源的进展。[J].Sympsium of CIBF 1999,99:41-45
    [11] 吴宇平。锂离子电池锡基负极材料的研究。[J].电镀技术,1999,23(3):191-193
    [12] 杜翠微。锂离子电池非碳负极材料的研究进展。第24届中国化学与物理学术年会论文集,2000:294-295
    [13] 李泓,陈立泉。锂离子电池纳米材料的研究。[J].电化学,2000,6(2):137-145
    [14] 周恒辉,慈云样,刘昌炎。锂离子电池正极材料的研究进展一化学进展.1998,10(1):85-94
    [15] Ohzuku T., Hirai T.. Insertion materials for lithium batteies. [J]. Materia. 1994, 33(9): 1134-1141
    [16] Mizushima K., Jones P. C., Wiseman P. J., et al LiCoO_2(0<x<1): A new cathode material for batteries of high energy density. [J]. Mater Res Bull. 1980, 15(6): 783-789
    [17] 吴川,吴锋,刘国庆。锂离子电池正极材料的研究进展.[J].电池.2000,30 (1): 36-38
    [18] Zhechva E., Stoyanora R.., Gorova M., et al. Lithium-cobalt citrate precursors in the preparationl electrodematerials.[J]. Chem. Mter., 1996, 8: 1429-1453
    [19] Saadoune I, Delmas C, et al. On the Li_xNi_(0.8)Co_(0.2)O_2 sysrem. [J]. Solid State Chem. 1998, 136(1): 8-15.
    [20] 赫万君,陈岗,史延慧。Al掺杂对Li(Al_yCo_(1-y))O_2材料结构的影响.[J].化学学报,2001,22:175-178
    [21] Huang H. T., Subba Rao G.. V., Choedari B. V. R.. LiAl_xCo_(1-x)O_2 as 4V cathode lithium ion batteries. [J]. J. Power Sources. 1999, 81-82: 690-695
    [22] Alcantara R., Lavela R, Tirado J. L., Stoyanova R., Zhecheva E., Structure and electrochemical properties of boron-doped LiCoO2 [J]. Solid State Chemistry. 1997, 134(2): 265-273
    [23] 谢晶莹,张全生。[M]锂离子蓄电池及其相关材料.信息产业部电源专业情报网.2000.7:P36
    [24] Tsunoda, Oshima M., Yoshinaga Y.. et al. Prismatic lithium-ion rechargeable battery with manganese spinel and nickel-cobalt oxide cathode. [J]. NEC Research and Development. 2000, 41(1): 13-17
    [25] Padhi K., Nanjundawamy K. S.. Phosphate-olivines as positive-electrode material for rechargeable lithium batteries. [J]. Electrochem. Soc. 1997, 144(4): 1188-1194
    [26] Padhi A. K., Nanjundawamy K. S., Goodenough J. B., et al. Effect of structure on the Fe~(3+)/Fe~(2+)redox couple in iron phosphate. [J]. Electrochem. Soc, 1997, 144: 1609-1613;
    [27] Yang S. F., Zavalij P. Y., Whittingham M. S., et al. Hydrothermal synthesis of lithium iron phosphate cathodes. [J]. Electrochem. Commun. 2001, 3: 505-508
    [28] Arnold G.., Garche J., Hemmer R., et al. Fine-particle lithium iron phosphate LiFePO_4 synthesis by a new low-cost aqueous precipitation technique. [J]. Power Sources. 2003, 119-121: 247-251
    [29] Croce F., Epifanio A. D., Hassoun J., et al. A novel concept for the synthesis of an improved LiFePO_4 lithum battery cathode. [J]. Electrochem. and Solid State Lett. 2002, 5(3): A47-A50
    [30] 刘景,温兆银等。锂离子电池正极材料的研究进展.[J].Power Sources.1993,43-44:145-155
    [31] Moshtev R., Zlatilova P., Manev V., et al. Synthesis of LiNiO_2 in air atmosphere: X-ray diffraction characterization and electrochemical investigation. [J]. Power Sources. 1996, 62: 59-66.
    [32] Benco L., Barras J. L., Atanasov M., et al. First-principles prediction of voltages of lithiated oxides for lithium-ion batteries. [J]. Solid State Ionics. 1998, 112: 255-259
    [33] 唐致远,李建刚,薛建军等。LiNiO_2的制备与改性的探讨.[J].电池.2001,31(1):10-13
    [34] Ohzuku T., Ueda A., Nagayama M.. Electrochemistry and structural chemistry of LiNiO_2 (R3m) for 4 Volt secondary lithium cells. [J]. Electroche. Soc. 1996, 140(7): 1862-1869.
    [35] Delmas C., Menetrier M., Croguennec L., et al. Lithium batteries: a new tool in solid state chemistry. [J]. Inter. Inorg. Mater. 1999, 1 (1): 11-19.
    [36] Peres J. P., Weill F, Delmas C.. Lithium/vacancy ordering in the monoclinic Li_xNiO_2(0.50<x<0.75) solid solution. [J]. Solid State Ionics. 1999, 116: 9-27
    [37] 田彦文,高虹,翟玉春等。LiNiO_2热分解反应动力学研究.[J].无机材料学报.2000,15(6):1050-1054
    [38] Fujita Y., Amine K.. LiNi_(1-x)Co_x O_2 prepared at low temperature using β-Ni_(1-x)Co_xO_2 and either LiNO_3 or LiOH. [J]. Power Sources. 1997, 68: 126-130
    [39] Han K. S., Song S. W., Fujita H., et cl. Single-step fabrication of Li_(1-x)Ni_(1+x)O_2 and LiCoO_2 films by soft solution-process at 20-200℃. [J]. Solid State Ionics. 2000, 135: 273-276
    [40] Maruta J., Yasuda H., Yamachi M.. Low-temperature synthesis of lithium nickelate positive active material from nickel hydroxide for lithium cells. [J]. Power Sources. 2000, 90: 89-94
    [41] 唐致远,李建刚等。锂电池正极材料的改性与循环寿命,[J].化学通报2000.8:10-14
    [42] Pouillerie C., Croguennec L., Delmas C.. The Li_x Ni_(1-y) Mg_y O_2 (y=0.05, 0.10) system: structural modifications observed upon cycling. [J]. Solid State Ionics. 2000, 132: 15-29
    [43] Julien C., Nazri G.A., Rougier A. Electrochemical performances of layered LiM_(1-y) M_y O_2(M=Ni, Co; M'=Mg, Al, B) oxides in lithium batteries. [J].Solid State Ionics. ,2000, 135:121-130
    [44] Kim J., Amine K.. A comparative study on the substitution of divalent, trivalent and tetravalent metal ions in LiNi_(1-x)M_xO_2(M=Cu~(2+), Al~(3+), Ti~(4+)). [J]. Power Sources. 2002, 104: 33-39
    [45] Ohzuku T., Komori H., Swai K., Hirai T.. Preliminary results on synthesis and characterization of LiCo 1-xNixO2 (0≤x≤0.5) for 4-volts class of rechargeable lithium cells. [J] .Chemistry Express. 1990, 5(10): 733-739
    [46] Delmas C., Sadoune I., Electrochemical and physical properties of the lithium nickel cobalt oxide (LixNil-yCoyO2) phases. [J].Solid State Ionics 1992, 53-56:370-5
    [47] Marichal C., Hirschinger J., Granger P., et al, 6Li and 7Li NMR in the LiNil-y CoyO_2 Solid Solution (0≤y≤1). Inorganic Chemistry 1995, 34(7): 1773-1781
    [48] Stoyanov R., zhecheva E. R., Alcantara R. , et al, EPR studies of Li_(1-x)(Ni_xCo_(1-y))_(1+x)O2 solid solutions. [J]. Solid State Communications. 1997, 102(6): 457-462.
    [49] Alcantara R., Lavela P., Tirado J. L. , et al, Negative electrodes for lithium-and sodium-ion batteries obtained by heat-treatment of petroleum cokes below 1000℃. [J].Journal of the Electrochemical Society .2002, 149(2): A201-A205.
    [50] Gover K. B., Kanno R., Mitchell B.J..The role of nickel content on the structure and electrochemical properties of Li_x (Ni_yCO_(1-y))O_2. [J]. Power Sources. 2001, 97-98:316-320.
    [51] Levi E., Levi M.D., Salitra G., et al. Electrochemical and in-situ XRD characteriz- ation of LiNiO_2 and LiCo_(0.2) Ni_(0.8)O_2 electrodes for rechargeable lithium cells. [J]. Solid State Ionics. 1999, 126: 97-108.
    [52] Wang G. X., Horvat J., Bradhurst D. H., et al. Structural, physical and electrochemical characterization of LiNi_x Co_(1-x) O_2 solid solutions.[J]. Power Sources. 2000, 85:279-283.
    [53] Delmas C., Menetrier M., Croguennec L., Saadoune I., Rougier A., Pouillerie C., Prado G., Grune M., Foumes L., An overview of the Li(Ni,M)O2 systems:syntheses, structures and properties. [J] .Electrochimica Acta., 1999, 45(1-2): 243-253.
    [54] Periasamy P., Kim H.S., Na S.H., et al. Synthesis and characterization of LiNi_(0.8)Co_(0.2)O_2 prepared by a combustion solution method for lithium batteries. [J]. Power Sources. 2004,132:213-218
    [55] Wang G. X., Horvat J., Bradhurst D.H., Liu H. K.,Dou S. X. Structural, physical and electrochemical characterisation of LiNixCol-xO2 solid solutions. [J].Journal of Power Sources. 2000, 85(2): 279-283.
    [56] Nanjundaswamy K. S., Standlee D., Kelly C. O.,Whiteley R. V., Jr. Low temperature synthesis, chemical and electrochemical characterization of LiNixCo1-xO2 (O<x<1) cathode materials for rechargeable lithium ion batteries. [J].Solid State Ionics. 1996, 91(1, 2): 45-54.
    [57] Nishida Y., Nakane K., Satoh T. Synthesis and properties of gallium-doped LiNiO_2 as cathode material for lithium secondary batteries. [J]. Power Sources. 1997, 68: 561-564
    [58] Yang. S. F, Zavalij P. Y, Whittingham. M .S, et al. Hydrothermal synthesis of lithium iron phosphate cathodes[J]. Electrochem. Commun 2001, 3:505-508;
    [59] Park S. H., Park K.S., Sun Y. K., et al. Structural and electrochemical characteriza- tion of lithium excess and Al-doped nickel oxides synthesized by the sol-gel method. [J]. Electrochimica Acta. 2001, 46:1215-1222
    [60] Wang G. X, Zhong S., Bradhurst D.H., et al. LiAl_δNi_(1-δ) O_2 solid solutions as cathodic materials for rechargeable lithium batteries. [J]. Solid State Ionics. 1999, 116: 271-277
    [61] Delmas C., Prado G.., Rougier A., et al. Effects of iron on the electrochemical behaviour of lithium nickelate: from LiNiO_2 to 2D-LiFeO_2. [J]. Solid State Ionics. 2000, 135: 71-79.
    [62] Kim J, Amine K. The effect of tetravalent titanium substitution in LiNi_(1-x)Ti_xO_2(0.025≤x≤0.2) system. [J].Electroche. Commun. 2001, 3:52-55
    [63] Yu A., Subba Rao G. V., Chowdari B. V. R.. Synthesis and properties of LiGa_xMg_yNi_(1-x-y) O_2 as cathode material for lithium ion batteries. [J].Solid State Ionics. 2000, 135:131-135
    [64] Zhu X. J., Chen H.H., Zhan H., et al. Synthesis and characterization of LiNi_(0.85)Co_(0.15-2x)(TiMg)_xO_2 as cathode materials for lithium-ion batteries. [J]. Materials Chemistry and Physics. 2004, 88: 145-149
    [65] Kim W. S., Chung K. I., Choi Y. K., et al. Synthesis and charge-discharge properties of LiNi_(1-x-y)Co_xM_yO_2 (M=Al, Ga) compounds.[J]. Power Sources. 2003, 115:101-109
    [66] Kalyani P., Kalaiselvi N., Renganathan N. G., et al. Studies on LiNi_(0.7)Al_(0.3-x)Co_xO_2 solid solutions as alternative cathode materials for lithium batteries. [J]. Materials Research Bulletin. 2004, 39: 41-54
    [67] Guilmard M., Pouillerie C., Croguennec L., et al. Structural and electrochemical properties of LiNi_(0.70)Co_(0.15)Al_(0.15)O_2. [J]. Solid State Ionics. 2003, 160: 39-50
    [68] Kuho K., Fujiwara M., Yamada S., et al. Synthesis and electrochemical properities for LiNiO_2 substituted by other elements [J]. Power Sources, 1997, 68:553-557
    [69]
    [70] Li W., Currie J. C., Wolstenholme J.. Influence of morphology on the stability of LiNiO_2. [J]. Power Sources. 1997, 68:565-569
    [71] Yang H X,DongQ F, Hu X H, Ai X ELi S X. Prepration and characterization of LiNiO_2 synthesized from Ni(OH)_2 and LiOH.H_2O, [J]. Powe scources 1999,79:256-263
    [72] Amatucci G. G, Tarascon J. M., Klein L. C.. The End Member of the LiCo_2O_2 Solid Solution, [J]. Electrochem. Soc. 1996, 143: 1114-1118
    [73] Lee Y. S. Sun, Nahm K. S.. Synthesis and chanracterization of LiNiO_2 cathode material prepared by an adipic acid-assisted sol-gel method for lithium secondary batteries [J]. Solid State Ionics, 1999, 118: 159-167
    [74] Arai. H., Okada .S, Sakurai .Y, Yamaki .J. Reversibility of LiNiO_2 cathode. [J]. Solid State Ionics, 1997, 95: 275-281
    [75] Woo-SeongKim, Kwang-il Chung, et al. Synthesis and charge-discharge properties of LiNi_(1-x-y)Co_xM_yO_2(M=Al, Ga) compounds. [J]. Power Sources, 2003, 115:101-109
    [76] Chang Joo Han, Won Sob Eom, et al. Study of electrochemical propeties of Ga -doped LiNi_(0.8)Co_(0.2)O_2 synethesized by sol-gel method. [J]. Power Sources, 2005,144: 214-219
    [77] 童东革,赖琼钰,吉晓洋。掺Ga对锂离子电池正极材料LiCo_(0.3-x)Ga_xNi_(0.7)O_2的影响.[J].高等化学学报,2005,8(26):1488-1491

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700