低维纳米复合材料结构物性及ZnO:N中Zn-N定域结构和热稳定性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本论文以静电纺丝技术为基础,基于相分离原理实现了单管电纺连续纳米管材料、与溶胶凝胶、气相输运方法、氮化法结合制备了ZnO基低维复合纳米结构材料及III-V族共掺及合金材料,研究了ZnO基低维复合纳米结构、III-V族共掺及合金材料以及ZnO:N薄膜的结构和发光性质,具体工作如下:
     基于相分离原理实现单管电纺连续纳米管材料。通过控制乙醇对挥发过程的影响,TEOS对相分离过程的影响,以及纺丝电压对弯曲和拉伸过程的影响,可以调控PVP/TEOS连续纳米管结构的直径,壁厚,以及二者的比。通过在空气中煅烧PVP/TEOS连续纳米管至600oC获得SiO_2纳米管,通过Mg蒸汽还原法成功的制备了硅纳米管。该方法是大面积制备PVP/TEOS复合纳米管及硅纳米管的有效方法。这些一维纳米管材料有可能应用于传感器、过滤器、锂离子电池负极材料、以及太阳能电池材料等领域。
     通过单管电纺技术制备出单分散ZnO量子点于PVP复合纳米管壁中。由于量子点的高度分散性,以及PVP分子对量子点表面缺陷的钝化作用,光致发光和共振拉曼谱展现了较窄的带边发射和较弱的激光热效应。观察到了由于量子限域效应所导致的带隙的蓝移,激子束缚能的增加,以及激子声子相互作用的弱化。利用气相输运沉积方法制备出一维SiO_2/ZnO核壳纳米结构材料。室温和低温的发光光谱表明ZnO纳米壳层的质量较好。其发光的反常温度效应表明界面对ZnO的纳米结构的发光有显著影响。
     通过电纺及氨气氮化技术制备了N-In共掺杂ZnO纳米纤维。通过退火改善了氮化后样品的结晶质量,减少了缺陷密度,提高了可见光响应性能,使得共掺杂的ZnO在类太阳光谱照射下能够降解罗丹明B染料。研究了氮化ZnO/ZnGa_2O_4复合纳米纤维过程中(Ga_(1-x)Zn_x)(N_(1-y)O_y)合金纳米结构的形成与演化。由于纳米结构的原因,合金的形成温度显著降低,既保证了氮原子的引入,同时又确保了锌原子的低损失率。325 nm激光激发的拉曼光谱表现出双模的行为,可以用于估计(Ga_(1-x)Zn_x)(N_(1-y)O_y)合金组分的比例。研究表明通过共掺杂及合金化的方法可以调控ZnO的电子结构拓展其在可见光催化、分解水方面的应用。
     研究了ZnO:N薄膜的发光性质和微结构的稳定性。紫外区的与受主相关的发射说明氮元素确实能够起到受主的作用。蓝光和绿光发射在82K、低激发密度时占主导作用,可能是由施主向价带跃迁导致的。红光发射随温度和激发密度的升高呈现蓝移,可能是源于深施主受主对发射。表明氮进入ZnO晶格中除了受主作用外还可能引起一些深的施主缺陷。变温XPS研究了ZnO:N薄膜的微结构及热稳定性,分析表明位于396和398 eV的峰可能分别来自富氮和富氧环境中的氮替氧(β-和α-NO)。与β-NO相比,作为浅受主的来源α-NO可以稳定到723 K。
In this dissertation, a simple method was proposed for controllable electrospinning polymer nanotubes via a single capillary; moreover, low dimensional ZnO composite nanostructures were prepared by combining sol-gel method, vapor transport deposition, and nitrification method with electrospinning technology; the structure and optical properties of these materials and ZnO:N thin film were also studied as follows:
     PVP/TEOS nanofibers and nanotubes have been electrospun by a single capillary. The diameters of products, the thicknesses of nanotubes walls, and the ratio of the nanotube wall to the nanotube diameter could be varied by controlling the effects of ethanol on evaporation process, TEOS on phase separation process, and the applied voltages on bending and stretching process. SiO_2 nanotubes could be fabricated by calcinating the PVP/TEOS composite nanotubes in air at 600℃. Moreover, silicon nanotubes could be prepared by magnesiothermic reduction of SiO_2 nanotube templates. The methods are effective to prepare PVP/TEOS composite nanotubes and silicon nanotubes. Such nanotubes are of interest for a broad range of applications in areas such as sensors, filter technologies, lithium ion batteries, and solar cells, etc.
     Highly dispersed ZnO QDs in PVP nanotubes have been prepared by a single capillary electrospinning. The composites exhibit narrower band edge emissions and less laser thermal effects due to the well dispersion of ZnO QDs and the passivation of PVP molecules on the surface defects of ZnO QDs. Thus, quantum confinement effects on the PL properties of ZnO QDs have been observed including blue shifted band gap, enlarged exciton binding energy and less exciton-LO phonon interaction. SiO_2/ZnO nanocables are obtained by the combination of electrospinning technology and vapor transport deposition procedure. The nanoshells of ZnO show good photoluminescence properties suggesting their high qualities. The anomalous behavior in temperature-dependent PL spectra is attributed to the carrier injection from thermal ionized carriers from the interface of the nanocables.
     By electrospinning technology and nitrifing process, N-In co-doped ZnO nanofibers have been prepared. By annealing the nitrified samples in air, the defect densities are decreased and the crystal qualities and visible photo-responsibilities were improved. The co-doped nanofibers photocatalyst shows good visible photocatalytic activity toward decomposing organic dye rhodamine B. The formation and evolvements of (Ga_(1-x)Zn_x)(N_(1-y)O_y) alloy nanostructures are also studied. The alloys formation temperature is decreased remarkably due to their nanostructures morphologies. Thus, nitrogen atoms could be introduced into the nanofibers while zinc atoms could hardly lost in the materials. The Raman spectra were also investigated in detail. By co-doping and alloying methods, the electronic structure of ZnO could be tuned. The results could be applied for visible light photocatalyst of decomposing organics and visible light driven overall water splitting.
     PL properties and thermal stabilities of ZnO:N local structures are investigated. Acceptor related UV emissions indicate that the doped nitrogen atoms could act as acceptors. The blue and green emissions might be related to the donor to valence band transitions, while the red emissions origin from deep DAP transitions. Thus, nitrogen not only acts as an acceptor, but also induces some complex defects acting as deep donors. Temperature-dependent XPS measurements suggest that XPS peaks at ~396 and ~398 eV originate from the NO in N- and O-rich local environments (β- andα-NO). Compared toβ-NO, theα-NO, as a shallow acceptor, is more thermally stable up to 723 K. The careful studies on the emissions and local states of N impurity are helpful for achieving the stable, high-quality p-ZnO:N.
引文
[1] Huang Z M, Zhang Y Z, Kotaki M, et al. A review on polymer nanofibers by electrospinning and their applications in nanocomposites[J]. Composites Science and Technology, 2003, 63 (15): 2223-2253.
    [2] Li D, Xia Y, Electrospinning of nanofibers: Reinventing the wheel?[J]. Advanced Materials, 2004, 16 (14): 1151-1170.
    [3] Reneker D H, Yarin A L, Fong H, et al. Bending instability of electrically charged liquid jets of polymer solutions in electrospinning, Journal of Applied Physics, 2000, 87 (9 I): 4531-4547.
    [4] Fong H, Chun I, Reneker D H,Beaded nanofibers formed during electrospinning[J]. Polymer, 1999, 40 (16): 4585-4592.
    [5] Xin Y, Huang Z H, Yan E Y, et al. Controlling poly(p-phenylene vinylene)/poly(vinyl pyrrolidone) composite nanofibers in different morphologies by electrospinning[J]. Applied Physics Letters, 2006, 89 (5): 053101.
    [6] Bognitzki M, Czado W, Frese T, et al. Nanostructured fibers via electrospinning, Advanced Materials, 2001, 13 (1): 70-72.
    [7] Xu X, Zhuang X, Chen X, et al. Preparation of core-sheath composite nanofibers by emulsion electrospinning[J]. Macromolecular Rapid Communications, 2006 27 (19): 1637-1642.
    [8] Sun Z, Zussman E, Yarin A L, et al. Compound Core-Shell Polymer Nanofibers by Co-Electrospinning[J]. Advanced Materials, 2003, 15 (22): 1929-1932.
    [9] Li D, Xia Y,Direct fabrication of composite and ceramic hollow nanofibers by electrospinning[J]. Nano Letters, 2004, 4 (5): 933-938.
    [10] Liu Z, Sun D D, Guo P, et al. An efficient bicomponent TiO2/SnO2 nanofiber photocatalyst fabricated by electrospinning with a side-by-side dual spinneret method[J]. Nano Letters, 2007, 7 (4): 1081-1085.
    [11] Zhao Y, Cao X, Jiang L, Bio-mimic multichannel microtubes by a facile method[J]. Journal of the American Chemical Society, 2007, 129 (4): 764-765.
    [12] Theron A, Zussman E, Yarin A L, Electrostatic field-assisted alignment of electrospun nanofibres[J]. Nanotechnology, 2001, 12 (3): 384-390.
    [13] Katta P, Alessandro M, Ramsier R D, et al. Continuous electrospinning of aligned polymer nanofibers onto a wire drum collector[J]. Nano Letters, 2004, 4 (11): 2215-2218.
    [14] Li D, Wang Y, Xia Y, Electrospinning of polymeric and ceramic nanofibers as uniaxially aligned arrays[J]. Nano Letters, 2003, 3 (8): 1167-1171.
    [15] Li D, Ouyang G, McCann J T, et al. Collecting electrospun nanofibers with patterned electrodes[J]. Nano Letters, 2005, 5 (5): 913-916.
    [16] Sundaray B, Subramanian V, Natarajan T S, et al. Electrospinning of continuous aligned polymer fibers[J]. Applied Physics Letters, 2004, 84 (7): 1222-1224.
    [17] Yang X, Shao C, Guan H, et al. Preparation and characterization of ZnO nanofibers by using electrospun PVA/zinc acetate composite fiber as precursor[J]. Inorganic Chemistry Communications, 2004, 7 (2): 176-178.
    [18] Onozuka K, Ding B, Tsuge Y, Electrospinning processed nanofibrous TiO2 membranes for photovoltaic applications[J]. Nanotechnology, 2006, 17 (4): 1026-1031.
    [19] Guan H, Shao C, Chen B, et al. A novel method for making CuO superfine fibres via an electrospinning technique[J]. Inorganic Chemistry Communications, 2003, 6 (11): 1409-1411.
    [20] Guan H, Shao C, Wen S, et al. Preparation and characterization of NiO nanofibres via an electrospinning technique[J]. Inorganic Chemistry Communications, 2003, 6 (10): 1302-1303.
    [21] Wang Y, Ramos I, Santiago-Avilés J, Electrical characterization of a single electrospun porous SnO2 nanoribbon in ambient air, (2007) Nanotechnology, 18 (43), art. no. 435704, .
    [22] Zhao S, Li M, Liu X, et al. Synthesis of CuAlO2 nanofibrous mats by electrospinning[J]. Materials Chemistry and Physics, 2009, 116 (2-3): 615-618.
    [23] Cui X M, Lyoo W S, Son W K, et al. Fabrication of YBa2Cu3O7-δsuperconducting nanofibres by electrospinning[J]. Superconductor Science and Technology, 2006, 19 (12): 007-1264-007-1268.
    [24] Wang Z, Li Z, Zhang H, et al. Improved photocatalytic activity of mesoporous ZnO-SnO2 coupled nanofibers[J]. Catalysis Communications, 2009, 11 (4): 257-260.
    [25] Lin D, Wu H, Zhang R, et al. Enhanced photocatalysis of electrospun Ag-ZnO heterostructured nanofibers[J]. Chemistry of Materials, 2009, 21 (15): 3479-3484.
    [26] Lu X, Li L, Zhang W, et al. Preparation and characterization of Ag2S nanoparticles embedded in polymer fibre matrices by electrospinning[J]. Nanotechnology, 2005, 16 (10): 2233-2237.
    [27] Bognitzki M, Becker M, Graeser M, et al. Preparation of sub-micrometer copper fibers via electrospinning[J]. Advanced Materials, 2006, 18 (18): 2384-2386.
    [28] Wu H, Zhang R, Liu X, et al. Electrospinning of Fe, Co, and Ni nanofibers: Synthesis, assembly, and magnetic properties[J]. Chemistry of Materials, 2007, 19 (14): 3506-3511.
    [29] Lin D, Wu H, Zhang R, et al. Preparation of ZnS nanofibers via electrospinning[J]. Journal of the American Ceramic Society, 2007, 90 (11): 3664-3666.
    [30] Wu H, Sun Y, Lin D, et al. GaN nanofibers based on electrospinning: Facile synthesis, controlled assembly, precise doping, and application as high performance UV photodetector, Advanced Materials, 2009, 21 (2): 227-231.
    [31] Qi Q, Zhang T, Wang S, et al. Humidity sensing properties of KCl-doped ZnO nanofibers with super-rapid response and recovery[J]. Sensors and Actuators, B: Chemical, 2009, 137 (2): 649-655.
    [32] Zhang Z, Li X, Wang C, et al. ZnO hollow nanofibers: Fabrication from facile single capillary electrospinning and applications in gas sensors[J]. Journal of Physical Chemistry C, 2009, 113 (45): 19397-19403.
    [33] Jin M, Zhang X, Emeline A V, et al. Fibrous TiO2-SiO2 nanocomposite photocatalyst[J]. Chemical Communications, 2006, (43): 4483-4485.
    [34] Wang C, Shao C, Liu Y, et al. Photocatalytic properties BiOCl and Bi2O3 nanofibers prepared by electrospinning[J]. Scripta Materialia, 2008, 59 (3): 332-335.
    [35] Zhang R, Wu H, Lin D, et al. Preparation of necklace-structured TiO2/SnO2 hybrid nanofibers and their photocatalytic activity[J]. Journal of the American Ceramic Society, 2009, 92 (10): 2463-2466.
    [36] Zhang X, Xu S, Han G, Fabrication and photocatalytic activity of TiO2 nanofiber membrane, [J]. Materials Letters, 2009, 63 (21): 1761-1763.
    [37] Gu Y, Chen D, Jiao X,Synthesis and electrochemical properties of nanostructured LiCoO2 fibers as cathode materials for lithium-ion batteries[J]. Journal of Physical Chemistry B, 2005, 109 (38):17901-17906.
    [38] Fan Q, Whittingham M S,Electrospun manganese oxide nanofibers as anodes for lithium-ion batteries[J]. Electrochemical and Solid-State Letters, 2007, 10 (3): A48-A51.
    [39] Wang L, Yu Y, Chen P C, et al. Electrospinning synthesis of C/Fe3O4 composite nanofibers and their application for high performance lithium-ion batteries[J]. Journal of Power Sources, 2008, 183 (2): 717-723.
    [40] Gu Y, Chen D, Jiao X, et al. LiCoO2-MgO coaxial fibers: Co-electrospun fabrication, characterization and electrochemical properties[J]. Journal of Materials Chemistry, 2007, 17 (18): 1769-1776.
    [41] Ji L, Zhang X,Fabrication of porous carbon/Si composite nanofibers as high-capacity battery electrodes[J]. Electrochemistry Communications, 2009, 11 (6): 1146-1149.
    [42] Yu Y, Gu L, Wang C, et al. Encapsulation of Sn@carbon nanoparticles in bamboo-like hollow carbon nanofibers as an anode material in lithium-based batteries[J]. Angewandte Chemie - International Edition, 2009, 48 (35): 6485-6489.
    [43] Ding Y, Zhang P, Long Z, et al. Synthesis and electrochemical properties of Co3O4 nanofibers as anode materials for lithium-ion batteries[J]. Materials Letters, 2008, 62 (19): 3410-3412.
    [44] Yu Y, Gu L, Zhu C, et al. Tin nanoparticles encapsulated in porous multichannel carbon microtubes: Preparation by single-nozzle electrospinning and application as anode material for high-performance Li-based batteries[J]. Journal of the American Chemical Society, 2009, 131 (44): 15984-15985.
    [45] Kim C, Yang K S, Kojima M, et al. Fabrication of electrospinning-derived carbon nanofiber webs for the anode material of lithium-ion secondary batteries[J]. Advanced Functional Materials, 2006, 16 (18): 2393-2397.
    [46] Chuangchote S, Sagawa T, Yoshikawa S,Efficient dye-sensitized solar cells using electrospun TiO2 nanofibers as a light harvesting layer[J]. Applied Physics Letters, 2008, 93 (3): 033310,.
    [47] Zhang W, Zhu R, Liu X, et al. Facile construction of nanofibrous ZnO photoelectrode for dye-sensitized solar cell applications[J]. Applied Physics Letters, 2009, 95(4): 043304 .
    [48] Munir M M, Iskandar F, Yun K M, et al. Optical and electrical properties of indium tin oxide nanofibers prepared by electrospinning[J]. Nanotechnology, 2008, 19 (14): 145603 .
    [49] Song H, Yu H, Pan G, et al. Electrospinning preparation, structure, and photoluminescence properties of YBO3:Eu3+ nanotubes and nanowires[J]. Chemistry of Materials, 2008, 20 (14): 4762-4767.
    [50] ?zgürü, Alivov Ya I, Liu C, et al. A comprehensive review of ZnO materials and devices[J]. Journal of Applied Physics, 2005, 98 (4): 041301-1-041301-103.
    [51] Li H D, Yu S F, Lau S P, et al. High-temperature lasing characteristics of ZnO epilayers[J]. Advanced Materials, 2006, 18 (6): 771-774.
    [52] Yang H Y, Lau S P, Yu S F, et al. High-temperature random lasing in ZnO nanoneedles[J]. Applied Physics Letters, 2006, 89 (1): 011103.
    [53] http://upload.wikimedia.org/wikipedia/commons/8/8e/Wurtzite_polyhedra.png
    [54] Sharma P, Gupta A, Rao K V, et al. Ferromagnetism above room temperature in bulk and transparent thin films of Mn-doped ZnO[J]. Nature Materials, 2003, 2(10): 673-677.
    [55] Kundaliya D C, Ogale S B, Lofland S E, et al. On the origin of high-temperature ferromagnetism in the low-temperature-processed Mn-Zn-O system[J]. Nature Materials, 2004, 3 (10): 709-714.
    [56] Schmidt-Mende L, MacManus-Driscoll J L, ZnO-nanostructures, defects, and devices[J]. Materials Today, 2007, 10 (5): 40-48.
    [57] Baruah S, Dutta J, Hydrothermal growth of ZnO nanostructures[J]. Science and Technology of Advanced Materials, 2009, 10 (1), art. no. 013001 .
    [58] Wang Z L, Nanostructures of zinc oxide[J]. Materials Today, 2004, 7 (6): 26-33.
    [59] Huang M H, Mao S, Feick H, Room-temperature ultraviolet nanowire nanolasers[J]. Science, 2001, 292 (5523): 1897-1899.
    [60] Wang Z L, Song J, Piezoelectric nanogenerators based on zinc oxide nanowire arrays[J]. Science, 2006, 312 (5771): 243-246.
    [61] Chen S, Liu Y, Shao C,et al. Structural and optical properties of uniform ZnO nanosheets[J]. Advanced Materials, 2005, 17 (5): 586-590.
    [62] Chen S J, Liu Y C, Shao C L, et al. Pressure-dependent photoluminescence of ZnO nanosheets[J]. Journal of Applied Physics, 2005, 98 (10):106106-1-106106-3.
    [63] Chen S J, Liu Y C, Shao C L, Photoluminescence of wurtzite ZnO under hydrostatic pressure[J]. Journal of Applied Physics, 2006, 99 (6: 066102.
    [64] Park W I, Yi G C,Electroluminescence in n-ZnO Nanorod Arrays Vertically Grown on p-GaN[J]. Advanced Materials, 2004, 16 (1): 87-90.
    [65] Sun X W, Huang J Z, Wang J X, et al. A ZnO nanorod inorganic/organic heterostructure light-emitting diode emitting at 342 nm[J]. Nano Letters, 2008, 8 (4): 1219-1223.
    [66] Zhang Q F, Dandeneau C S, Zhou X Y, et al. ZnO Nanostructures for Dye-Sensitized Solar Cells[J]. Adv. Mater. 2009, 21: 4087–4108.
    [67] Daneshvar N, Salari D, Khataee A R, Photocatalytic degradation of azo dye acid red 14 in water on ZnO as an alternative catalyst to TiO2[J]. Journal of Photochemistry and Photobiology A: Chemistry, 2004, 162 (2-3): 317-322.
    [68] Maeda K, Takata T, Hara M, et al. GaN:ZnO solid solution as a photocatalyst for visible-light-driven overall water splitting[J]. Journal of the American Chemical Society, 2005, 127 (23): 8286-8287.
    [69] Wan Q, Li Q H, Chen Y J, et al. Fabrication and ethanol sensing characteristics of ZnO nanowire gas sensors[J]. Applied Physics Letters, 2004, 84 (18): 3654-3656.
    [70] Wang J X, Sun X W, Yang Y, et al. Hydrothermally grown oriented ZnO nanorod arrays for gas sensing applications[J]. Nanotechnology, 2006, 17 (19): 037-4995-037-4998.
    [71] Liu Y, Zhong M, Shan G, et al. Biocompatible ZnO/Au nanocomposites for ultrasensitive DNA detection using resonance Raman scattering[J]. Journal of Physical Chemistry B, 2008, 112 (20): 6484-6489.
    [72] Bagnall D M, Chen Y F, Zhu, Z, et al. Optically pumped lasing of ZnO at room temperature[J]. Applied Physics Letters, 1997, 70 (17): 2230-2232.
    [73] Tang Z K, Wong G K L, Yu P, et al. Room-temperature ultraviolet laser emission from self-assembled ZnO microcrystallite thin films[J]. Applied Physics Letters, 1998, 72 (25): 3270-3272.
    [74] McCluskey M D, Jokela S J, Defects in ZnO[J]. Journal of Applied Physics, 2009, 106 (7): 071101.
    [75] Bierwagen O, Ive T, Van De Walle C G, et al. Causes of incorrect carrier-type identification in van der Pauw–Hall measurements[J]. Applied Physics Letters, 2008, 93: 242108.
    [76] Barnes T M, Olson K, Wolden C A, On the formation and stability of p-type conductivity in nitrogen-doped zinc oxide[J]. Applied Physics Letters, 2005, 86 (11): 112112-1-112112-3.
    [77] Mosbacker H L, Strzhemechny Y M, White B D, et al. Role of near-surface states in ohmic-Schottky conversion of Au contacts to ZnO[J]. Applied Physics Letters, 2005, 87 (1): 1-3.
    [78] Look D C, Claflin B, P-type doping and devices based on ZnO[J]. Physica Status Solidi (B) Basic Research, 2004, 241 (3): 624-630.
    [79] Yao B, Shen D Z, Zhang Z Z, et al. Effects of nitrogen doping and illumination on lattice constants and conductivity behavior of zinc oxide grown by magnetron sputtering[J]. Journal of Applied Physics, 2006, 99 (12): 123510.
    [80] Tsukazaki A, Ohtomo A, Onuma T, et al. Repeated temperature modulation epitaxy for p-type dopingand light-emitting diode based on ZnO[J]. Nature Materials, 2005, 4 (1): 42-45.
    [81] Schubert E F, Light Emitting Diodes, 2006, p.2, 2nd ed. Cambridge: Cambridge University Press.
    [82] Look D C, Reynolds D C, Litton C W, et al. Characterization of homoepitaxial p-type ZnO grown by molecular beam epitaxy[J]. Applied Physics Letters, 2002, 81 (10): 1830.
    [83] Schirra M, Schneider R, Reiser A,et al. Stacking fault related 3.31-eV luminescence at 130-meV acceptors in zinc oxide[J]. Physical Review B, 2008, 77: 125215.
    [84] Kohan F,Ceder G,Morgan D,et al. Van de Walle,First-principles study ofnative point defects in ZnO[J]. Physical Review B, 2000, 61: 15019.
    [85] Zhang S B, Wei S H, Alex Zunger, Intrinsic n-type Versus p-type doping asymmetry and the defect physics of ZnO[J]. Physical Review B, 2001, 63: 075205-075211.
    [86] Kohan A F, Leder G,Morgan D,First-principles study of native point defects in ZnO[J]. Physical Review B, 2000, 61: 15019—15027.
    [87] Qiu H, Meyer B, Wang Y, et al. Ionization energies of shallow donor states in ZnO created by reversible rormation and depletion of H interstitials[J]. Physical Review Letters, 2008, 101 (23): 236401.
    [88] Wardle M G, Goss J P, Briddon P R, First-principles study of the diffusion of hydrogen in ZnO[J]. Physical Review Letters, 2006, 96 (20): 205504 .
    [89] Hofmann D M, Hofstaetter A, Leiter F,et al. Hydrogen: A relevant shallow donor in zinc oxide[J]. Physical Review Letters, 2002, 88 (4): 045504-1-045504-4.
    [90] Cox S F J, Davis E A, Cottrell S P, et al. Experimental confirmation of the predicted shallow donor hydrogen state in zinc oxide[J]. Physical Review Letters, 2001, 86 (12): 2601-2604.
    [91] Van De Walle C G, Hydrogen as a cause of doping in zinc oxide[J]. Physical Review Letters, 2000, 85 (5): 1012-1015.? ?
    [1] Li D, McCann J T, Xia Y, Use of electrospinning to directly fabricate hollow nanofibers with functionalized inner and outer surfaces[J]. Small, 2005, 1 (1): 83-86.
    [2] Czaplewski D A, Kameoka J, Mathers R, et al. Nanofluidic channels with elliptical cross sections formed using a nonlithographic process[J]. Applied Physics Letters, 2003, 83 (23): 4836-4838.
    [3] Verbridge S S, J Edel O B, Stavis S M, et al. J. Appl. Phys. 2005, 97, 124317-1-124317-4.
    [4] Wang M, Jing N, Su C B, et al. Electrospinning of silica nanochannels for single molecule detection[J]. Applied Physics Letters, 2006, 88 (3), art. no. 033106, pp. 1-3.
    [5] Zhang B P, Binh N T, Wakatsuki K, et al. Formation of highly aligned ZnO tubes on sapphire (0001) substrates[J]. Applied Physics Letters, 2004, 84 (20): 4098-4100.
    [6] Yao B D, Chan Y F, Zhang X Y, et al. Formation mechanism of TiO2 nanotubes[J]. Applied Physics Letters, 2003, 82 (2): 281-283.
    [7] Sun Z, Zussman E, Yarin A L, Compound Core-Shell Polymer Nanofibers by Co-Electrospinning[J]. Advanced Materials, 2003, 15 (22): 1929-1932.
    [8] Yu H J, Fridrikh S V, Rutledge G C, Production of submicrometer diameter fibers by two-fluid electrospiiming[J]. Advanced Materials, 2004, 16 (17): 1562-1566.
    [9] Li D, Xia Y, Direct fabrication of composite and ceramic hollow nanofibers by electrospinning, Nano Letters, 2004, 4 (5): 933-938.
    [10] Zussman E, Yarin A L, Bazilevsky A V, et al. Electrospun polyacrylonitrile/poly(methyl methacrylate)-derived turbostratic carbon micro-/nanotubes[J]. Advanced Materials, 2006, 18 (3): 348-353.
    [11] Dror Y, Salalha W, Avrahami R, et al. One-step production of polymeric microtubes by co-electrospinning[J]. Small, 2007, 3 (6): 1064-1073.
    [12] Xu X, Zhuang X, Chen X, et al. Preparation of core-sheath composite nanofibers by emulsion electrospinning. Macromolecular Rapid Communications, 2006, 27 (19): 1637-1642.
    [13] Tomczak N, Van Hulst N F, Vancso G J, Beaded electrospun fibers for photonic applications[J]. Macromolecules, 2005, 38 (18): 7863-7866.
    [14] Bognitzki M, Czado W, Frese T, et al. Nanostructured fibers via electrospinning[J]. Advanced Materials, 2001, 13 (1): 70-72.
    [15] Kessick R, Tepper G, Microscale polymeric helical structures produced by electrospinning[J]. Applied Physics Letters, 2004, 84 (23): 4807-4809.
    [16] Shin M K, Kim S I, Kim S J, Controlled assembly of polymer nanofibers: From helical springs to fully extended[J]. Applied Physics Letters, 2006, 88 (22), art. no. 223109. (223109-1-223109-3)
    [17] Xin Y, Huang Z H, Yan E Y, et al. Controlling poly(p-phenylene vinylene)/poly(vinyl pyrrolidone) composite nanofibers in different morphologies by electrospinning[J]. Applied Physics Letters, 2006, 89 (5), art. no. 053101. (053101-1-053101-3)
    [18] Kim C, Jeong Y I, Ngoc B T N, et al. Synthesis and characterization of porous carbon nanofibers with hollow cores through the thermal treatment of electrospun copolymeric nanofiber webs[J]. Small, 2007, 3 (1): 91-95.
    [19] Bazilevsky A V, Yarin A L, Megaridis C M, Co-electrospinning of core-shell fibers using a single-nozzle technique[J]. Langmuir, 2007, 23 (5): 2311-2314.
    [20] Dayal P, Kyu T, Porous fiber formation in polymer-solvent system undergoing solvent evaporation[J]. Journal of Applied Physics, 2006, 100 (4), art. no. 043512. (043512-1-043512-6.)
    [21] Koombhongse S, Liu W, Reneker D H,Flat polymer ribbons and other shapes by electrospinning[J]. Journal of Polymer Science, Part B: Polymer Physics, 2001, 39 (21): 2598-2606.
    [22] Caruso R A, Schattka J H, Greiner A, Titanium dioxide tubes from Sol-Gel coating of electrospun polymer fibers, Advanced Materials, 2001, 13 (20): 1577-1579.
    [23] Zhang C, Yuan X, Wu L, et al. Study on morphology of electrospun poly(vinyl alcohol) mats[J]. European Polymer Journal, 2005, 41 (3): 423-432.
    [24] Fennessey S F, Farris R J, Fabrication of aligned and molecularly oriented electrospun polyacrylonitrile nanofibers and the mechanical behavior of their twisted yarns[J]. Polymer, 2004, 45 (12), pp. 4217-4225.
    [1]唐元洪.硅纳米线及硅纳米管[M].北京:化学工业出版社,2007.
    [2] Sha J, Niu J, Ma X Y, et al. Silicon nanotubes, Advanced Materials, 2002, 14(17): 1219-1221.
    [3] Jeong S Y, Kim J Y, Yang H D, et al. Synthesis of silicon nanotubes on porous alumina using molecular beam epitaxy[J]. Advanced Materials, 2003,15: 1172-1176
    [4] Tang Y H, Pei L Z, Chen Y W, et al. Self-Assembled Silicon Nanotubes under Supercritically Hydrothermal Conditions,Physical review letter, 2005, 95: 116102, page1-4,
    [5] Chen Y W, Tang Y, Pei L Z, et al. Self-Assembled Silicon Nanotubes Grown from silicon Monoxide[J]. Advanced Materials, 2005, 17: 564-567.
    [6] Ishai M B, Patolsky F, Shape- and Dimension-Controlled Single-Crystalline Silicon and SiGe Nanotubes: Toward Nanofluidic FET Devices[J]. Journal of the American chemical society, 2009, 131(10): 3679–3689.
    [7] Quitoriano N J, Belov M, Evoy S, et al. Single-crystal, Si nanotubes, and their mechanical resonant properties[J]. Nano Lett, 2009, 9(4): 1511-1516.
    [8] Bozhi Tian, Xiaolin Zheng, Thomas J. Kempa, Ying Fang, Nanfang Yu, Guihua Yu, Jinlin Huang, Charles M. Lieber, Coaxial silicon nanowires as solar cells and nanoelectronic power sources[J]. Nature, 2007, 449: 885-889.
    [9] Stelzner T, Pietsch M, Andr¨a G, et al. Silicon nanowire-based solar cells[J]. Nanotechnology, 2008, 19: 295203.
    [10] Tsakalakos L, Balch J, Fronheiser J, et al. Silicon nanowire solar cells[J]. Applied Physics Letters, 2007, 91: 233117.
    [11] Chan C K, Peng H L, Liu G, et al. High-performance lithium battery anodes using silicon nanowires[J]. Nature Nanotechnology, 2008, 3: 31-35.
    [12] Park M H, Kim M G, Joo J, et al. Silicon Nanotube Battery Anodes[J]. Nano Letters, 2009, 9 (11): 3844–3847.
    [13] Bao Z H, Weatherspoon M R, Shian S, Chemical reduction of three-dimensional silica, micro-assemblies into microporous silicon replicas[J]. Nature, 2007, 446: 172-175.
    [14] Cullity B D, Elements of X-ray Diffraction[M]. Addison Wesley Publishing Company, 1978, 102.
    [15]薛清,郁伟中,黄远明,利用快速退火法从非晶硅薄膜中生长纳米硅晶粒[J].物理实验, 2002,22(8): 17-20.
    [16] Iqbal Z, Vep?ek S, Webb A P, et al. Raman scattering from small particle size polycrystalline silicon[J]. Solid State Communications, 1981, 37 (12) : 993-996.
    [17] Liao L S , Bao X M, Zhang X Q, et al. Blue luminescence from Si+2 implanted SiO2 films thermally grown on crystalline silicon[J]. Applied Physics Letters, 1996, 68: 850-852.
    [18] Cullis A G, Canham L T, Calcott P D J, The structural and luminescence properties of porous silicon, J Appl Phys, 1997, 82: 909.
    [1] Liu Y C, Xu H Y, Mu R, et al. Production, structure, and optical properties of ZnO nanocrystals embedded in CaF2 matrix[J]. Applied Physics Letters, 2003, 83 (6): 1210-1212.
    [2] Ma J G, Liu Y C, Shao C L, et al. Formation and luminescence of ZnO nanoparticles embedded in MgO films[J]. Physical Review B - Condensed Matter and Materials Physics, 2005, 71 (12): 1-6.
    [3] Eijt S W H, De Roode J, Schut H, et al. Formation and stability of rocksalt ZnO nanocrystals in MgO[J]. Applied Physics Letters, 2007, 91 (20), art. no. 201906.
    [4] Kim K K, Koguchi N, Ok Y W, Fabrication of ZnO quantum dots embedded in an amorphous oxide layer[J]. Applied Physics Letters, 2004, 84 (19): 3810-3812.
    [5] Ma J G, Liu Y C, Xu C S, et al. Preparation and characterization of ZnO particles embedded in SiO2 matrix by reactive magnetron sputtering[J]. Journal of Applied Physics, 2005, 97 (10), art. no. 103509, pp. 1-6.
    [6] Peng Y Y, Hsieh T E, Hsu C H, Optical characteristics and microstructure of ZnO quantum dots- SiO 2 nanocomposite films prepared by sputtering methods[J]. Applied Physics Letters, 2006, 89 (21), art. no. 211909.
    [7] Amekura H, Umeda N, Boldyryeva H, et al. Embedment of ZnO nanoparticles in SiO2 by ion implantation and low-temperature oxidation[J]. Applied Physics Letters, 2007, 90 (8), art. no. 083102.
    [8] Zang C H, Liu Y C, Mu R, et al. Optical properties of ZnO nanocrystals embedded in BaF2 film fabricated by magnetron sputtering[J]. Journal of Physics D: Applied Physics, 2007, 40 (18), art. no. 015, pp. 5598-5601.
    [9] Sui X M, Shao C L, Liu Y C, White-light emission of polyvinyl alcohol/ZnO hybrid nanofibers prepared by electrospinning[J], Applied Physics Letters, 2005, 87 (11): 1-3.
    [10] Sui X, Shao C, Liu Y, Photoluminescence of polyethylene oxide-ZnO composite electrospun fibers[J], Polymer, 2007, 48 (6): 1459-1463.
    [11] Liu Y, Zhong M, Shan G, et al. Biocompatible ZnO/Au nanocomposites for ultrasensitive DNA detection using resonance Raman scattering[J]. Journal of Physical Chemistry B, 2008, 112 (20): 6484-6489.
    [12] Li X H, Shao C L, Liu Y C, A simple method for controllable preparation of polymer nanotubes via a single capillary electrospinning[J]. Langmuir, 2007, 23 (22): 10920-10923.
    [13] Du T, Song H, Ilegbusi O J, Sol-gel derived ZnO/PVP nanocomposite thin film for superoxide radical sensor[J]. Materials Science and Engineering C, 2007, 27 (3): 414-420.
    [14] Tang H, Yan M, Ma X, et al. Gas sensing behavior of polyvinylpyrrolidone-modified ZnO nanoparticles for trimethylamine[J]. Sensors and Actuators, B: Chemical, 2006, 113 (1): 324-328.
    [15] Guo L, Yang S, Yang C, et al. Highly monodisperse polymer-capped ZnO nanoparticles: Preparation and optical properties[J]. Applied Physics Letters, 2000, 76 (20): 2901-2903.
    [16] Yang C L, Wang J N, Ge W K, et al. Enhanced ultraviolet emission and optical properties in polyvinyl pyrrolidone surface modified ZnO quantum dots[J]. Journal of Applied Physics, 2001, 90 (9): 4489-4493.
    [17] Spanhel L, Anderson M A, Semiconductor clusters in the sol-gel process: Quantized aggregation, gelation, and crystal growth in concentrated ZnO colloids[J]. Journal of the American Chemical Society, 1991, 113 (8): 2826-2833.
    [18] Cullity B D, Elements of X-ray Diffraction, Addison-Wesley, 1978, 102.
    [19] Ramvall P, Tanaka S, Nomura S, et al. Observation of confinement-dependent exciton binding energy of GaN quantum dots[J]. Applied Physics Letters, 1998, 73 (8): 1104-1106.
    [20] Bergman L, Chen X B, Morrison J L, et al. Photoluminescence dynamics in ensembles of wide-band-gap nanocrystallites and powders[J]. Journal of Applied Physics, 2004, 96 (1): 675-682.
    [21] Cheng H M, Lin K F, Hsu H C, et al. Size dependence of photoluminescence and resonant Raman scattering from ZnO quantum dots[J]. Applied Physics Letters, 2006, 88 (26), art. no. 261909.
    [22] Arguello C A, Rousseau D L, Porto S P S, First-order raman effect in wurtzite-type crystals[J]. Physical Review, 1969, 181 (3): 1351-1363.
    [23] Zhang X H, Liu Y C, Wang X H, et al. Structural properties and photoluminescence of ZnO nanowalls prepared by two-step growth with oxygen-plasma-assisted molecular beam epitaxy[J]. Journal of Physics Condensed Matter, 2005, 17 (19): 3035-3042.
    [24] Alim K A, Fonoberov V A, Balandin A A, Origin of the optical phonon frequency shifts in ZnO quantum dots[J]. Applied Physics Letters, 2005, 86 (5), art. no. 053103, pp. 1-3.
    [25] Alim K A, Fonoberov V A, Shamsa M, et al. Micro-Raman investigation of optical phonons in ZnO nanocrystals[J]. Journal of Applied Physics, 2005, 97 (12), art. no. 124313, pp. 1-5.
    [26] Kim C, Kim Y J, Kim Y A, Fabrication and structural characterization of electro-spun polybenzimidazol-derived carbon nanofiber by graphitization[J]. Solid State Communications, 2004, 132 (8): 567-571.
    [27] Xiang B, Wang P, Zhang X, Rational synthesis of p-type zinc oxide nanowire arrays using simple chemical vapor deposition[J]. Nano Letters, 2007, 7 (2): 323-328.
    [28] Hsu W T, Lin K F, Hsieh W F, Reducing exciton-longitudinal-optical phonon interaction with shrinking ZnO quantum dots[J]. Applied Physics Letters, 2007, 91 (18), art. no. 181913.
    [29] Fonoberov V A, Alim K A, Balandin A A, et al. Photoluminescence investigation of the carrier recombination processes in ZnO quantum dots and nanocrystals[J]. Physical Review B - Condensed Matter and Materials Physics, 2006, 73 (16), art. no. 165317, pp. 1-9.
    [30] Makino T, Chia C H, Tuan N T, et al. Exciton spectra of ZnO epitaxial layers on lattice-matched substrates grown with laser-molecular-beam epitaxy[J]. Applied Physics Letters, 2000, 76 (24): 3549-3551.
    [1] Huemmer K, Interband magnetoreflection of ZnO[J]. Physica Status Solidi (B) Basic Research, 1973, 56 (1): 249-260.
    [2] Park W I, Jun Y H, Jung S W, et al. Excitonic emissions observed in ZnO single crystal nanorods[J]. Applied Physics Letters, 2003, 82 (6): 964-966.
    [3] Ahn S E, Soo J L, Kim H, et al. Photoresponse of sol-gel-synthesized ZnO nanorods[J]. Applied Physics Letters, 2004, 84 (24): 5022-5024.
    [4] Wan Q, Li Q H, Chen Y J, et al. Fabrication and ethanol sensing characteristics of ZnO nanowire gas sensors[J]. Applied Physics Letters, 2004, 84 (18): 3654-3656.
    [5] Lee C J, Lee T J, Lyu S C, et al. Field emission from well-aligned zinc oxide nanowires grown at low temperature[J]. Applied Physics Letters, 2002, 81 (19): 3648.
    [6] Wang R C, Liu C P, Huang J L, et al. ZnO nanopencils: Efficient field emitters[J]. Applied Physics Letters, 2005, 87 (1): 1-3.
    [7] Dai Z R, Pan Z W, Wang Z L, Novel nanostructures of functional oxides synthesized by thermal evaporation[J]. Advanced Functional Materials, 2003, 13 (1): 9-24.
    [8] Huang M H, Wu Y, Feick H, et al. Catalytic growth of zinc oxide nanowires by vapor transport[J], Advanced Materials, 2001, 13 (2): 113-116.
    [9] Dzenis Y, Spinning continuous fibers for nanotechnology[J]. Science, 2004, 304 (5679): 1917-1919.
    [10] Sundaray B, Subramanian V, Natarajan T S, et al. Electrospinning of continuous aligned polymer fibers[J]. Applied Physics Letters, 2004, 84 (7): 1222-1224.
    [11] Li D, Wang Y, Xia Y, Electrospinning of polymeric and ceramic nanofibers as uniaxially aligned arrays[J]. Nano Letters, 2003, 3 (8): 1167-1171.
    [12] Kim G, Kim W, Formation of oriented nanofibers using electrospinning[J]. Applied Physics Letters, 2006, 88 (23), art. no. 233101.
    [13] Mo M, Yu J C, Zhang L, et al. Self-assembly of ZnO nanorods and nanosheets into hollow microhemispheres and microspheres[J]. Advanced Materials,2005, 17 (6): 756-760.
    [14] Vanheusden K, Warren W L, Seager C H, et al. Mechanisms behind green photoluminescence in ZnO phosphor powders[J]. Journal of Applied Physics, 1996, 79 (10): 7983-7990.
    [15] Teke A, ?zgürü, Do?an S, et al. Excitonic fine structure and recombination dynamics in single-crystalline ZnO[J]. Physical Review B - Condensed Matter and Materials Physics, 2004, 70 (19), art. no. 195207, pp. 1-10.
    [16] Liu Y L, Liu Y C, Feng W, et al. The optical properties of ZnO hexagonal prisms grown from poly (vinylpyrrolidone)-assisted electrochemical assembly onto Si (111) substrate[J]. Journal of Chemical Physics, 2005, 122 (17), art. no. 174703, pp. 1-4.
    [17] Tong Y, Liu Y, Shao C, Growth and optical properties of faceted hexagonal ZnO nanotubes[J]. Journal of Physical Chemistry B, 2006, 110 (30): 14714-14718.
    [1] Asahi R, Morikawa T, Ohwaki T, et al.Visible-light photocatalysis in nitrogen-doped titanium oxides[J]. Science, 2001, 293 (5528): 269-271.
    [2] Daneshvar N, Salari D, Khataee A R, Photocatalytic degradation of azo dye acid red 14 in water on ZnO as an alternative catalyst to TiO2[J]. Journal of Photochemistry and Photobiology A: Chemistry, 2004, 162 (2-3) : 317-322.
    [3] Yamamoto, Tetsuya, Katayama-Yoshida, Hiroshi, Solution using a codoping method to unipolarity for the fabrication of p-type ZnO[J]. Japanese Journal of Applied Physics, Part 2: Letters, 1999, 38 (2 B) : L166-L169.
    [4] Bian J M, Li X M, Gao X D, et al.Deposition and electrical properties of N-In codoped p-type ZnO films by ultrasonic spray pyrolysis[J]. Applied Physics Letters, 2004, 84 (4) : 541-543.
    [5] Nakahara K, Takasu H, Fons P, et al.Growth of N-doped and Ga + N-codoped ZnO films by radical source molecular beam epitaxy[J]. Journal of Crystal Growth, 2002, 237-239 (1-4 I) : 503-508.
    [6] Yuan G D, Ye Z Z, Zhu L P, et al.Control of conduction type in Al- and N-codoped ZnO thin films[J]. Applied Physics Letters, 2005, 86 (20) : 202106-1-202106-3.
    [7] Maeda K, Takata T, Hara M, et al.GaN:ZnO solid solution as a photocatalyst for visible-light-driven overall water splitting[J]. Journal of the American Chemical Society, 2005, 127 (23) : 8286-8287.
    [8] Maeda K, Teramura K, Takata T, et al.Overall water splitting on (Ga1-xZnx)(N 1-xOx) solid solution photocatalyst: Relationship between physical properties and photocatalytic activity[J]. Journal of Physical Chemistry B, 2005, 109 (43) : 20504-20510.
    [9] Yang X, Wolcott A, Wang G, et al.Nitrogen-doped ZnO nanowire arrays for photoelectrochemical water splitting[J]. Nano Letters, 2009, 9 (6) : 2331-2336.
    [10] Yuan G D, Zhang W J, Jie J S, et al.p-type ZnO nanowire arrays[J]. Nano Letters, 2008, 8 (8) : 2591-2597.
    [11] Ahn K S, Yan Y, Shet S, et al.Enhanced photoelectrochemical responses of ZnO films through Ga and N codoping[J]. Applied Physics Letters, 2007, 91 (23) : 231909 .
    [12] Mapa M, Sivaranjani K, Bhange D S, et al . Structure, electronic structure, optical, and dehydrogenation catalytic study of (Zn1-zInz)(O1-xNx) solid solution[J]. Chemistry of Materials, 2010, 22 (2) : 565-578.
    [13] Mapa M, Gopinath C S, Combustion synthesis of triangular and multifunctional ZnO1-xNx (x = 0.15) materials[J]. Chemistry of Materials, 2009, 21 (2) : 351-359.
    [14] CuscóR, Alarcón-LladóE, Ibá?ez J, et al.Temperature dependence of Raman scattering in ZnO[J]. Physical Review B - Condensed Matter and Materials Physics, 2007, 75 (16) : 165202 .
    [15] Artús L, CuscóR, Alarcón-LladóE,, et al.Isotopic study of the nitrogen-related modes in N+ -implanted ZnO[J]. Applied Physics Letters, 2007, 90 (18) : 181911 .
    [16] Wang J B, Zhong H M, Li Z F, et al.Raman study of N+-implanted ZnO[J]. Applied Physics Letters, 2006, 88 (10) : 101913 .
    [17] Nickel N H, Friedrich F, Rommelùre J F, et al.Vibrational spectroscopy of undoped and nitrogen-doped ZnO grown by metalorganic chemical vapor deposition[J]. Applied Physics Letters, 2005, 87 (21) : 211905-1-211905-3.
    [18] Sun X J, Maeda K, Faucheur M L, et al. Preparation of (Ga1-xZnx) (N1-xOx) solid-solution from ZnGa2O4 and ZnO as a photo-catalyst for overall water splitting under visible light[J]. Applied Catalysis A: General, 2007, 327: 114–121.
    [19] Friedricha F, Nickel N H, Resonant Raman scattering in hydrogen and nitrogen doped ZnO[J]. Applied Physics Letters, 2007, 91: 111903.
    [20] Jing L Q, Sun X J, Shang J, et al. Review of surface photovoltage spectra of nano-sized semiconductor and its applications in heterogeneous photocatalysis[J]. Solar Energy Materials and Solar Cells, 2003, 79 (2) : 133-151.
    [21]王长华.一维半导体氧化物纳米结构的制备及光催化性能研究[D]:[博士学位论文].长春:中国科学院长春光学精密机械与物理研究所,2009.
    [1] Yim W M, Solid solutions in the pseudobinary (III-V)-(II-VI) systems and their optical energy gaps[J]. Journal of Applied Physics, 1969, 40:2617-1623.
    [2] Glicksman M, electronic transport properties in the semiconductor alloy (GaP)0.95(ZnSe)0.05[J]., Applied Physics Letters, 1970, 16: 366-368.
    [3] Bloom S, Bandgap variation in quaternaty alloys[J]. Journal of Applied Physics, 1969, 41: 1864-1865.
    [4] Wang L G, Zunger A, Dilute nonisovalent II-VI-III-V semiconductor alloys: Monodoping, codoping, and cluster doping in ZnSe-GaAs[J]. Physical Review B, 2003, 68: 125211.
    [5] Maeda K, Takata T, Hara M, et al. GaN:ZnO Solid Solution as a Photocatalyst for Visible-Light-Driven Overall Water Splitting[J]. Journal of the American Chemical Society, 2005, 127: 8286-8287.
    [6] Jensen L L, Muckerman J T, Newton M D, First-Principles Studies of the Structural and Electronic Properties of the (Ga1-xZnx)(N1-xOx) Solid Solution Photocatalyst[J]. Journal of Physical Chemistry C, 2008, 112: 3439-3446.
    [7] Maeda K, Teramura K, Takata T, et al. Overall Water Splitting on (Ga1-xZnx)(N1-xOx) Solid Solution Photocatalyst: Relationship between Physical Properties and Photocatalytic Activity[J]. Journal of Physical Chemistry B, 2005, 109: 20504-20510.
    [8] Huda M N, Yan Y F, Wei S H, et al. Electronic structure of ZnO:GaN compounds: Asymmetric bandgap engineering[J]. Physical Review B, 2008, 78: 195204.
    [9] Sun X J, Maeda K, Faucheur M L, et al. Preparation of (Ga1-xZnx) (N1-xOx) solid-solution from ZnGa2O4 and ZnO as a photo-catalyst for overall water splitting under visible light[J]. Applied Catalysis A: General, 2007, 327: 114–121.
    [10] Huang Z M, Zhang Y Z, Kotaki M, A review on polymer nanofibers by electrospinning and their applications in nanocomposites[J]. Composites Science and Technology, 2003, 63 (15): 2223-2253.
    [11] Li D, Xia Y, Electrospinning of nanofibers: Reinventing the wheel?[J]. Advanced Materials, 2004, 16 (14): 1151-1170.
    [12] Liu Z, Sun D D, Guo P, et al. An efficient bicomponent TiO2/SnO2 nanofiber photocatalyst fabricated by electrospinning with a side-by-side dual spinneret method[J]. Nano Letters, 2007, 7 (4): 1081-1085.
    [13] Pophristic M, Long F H, Schurman M, et al. Raman microscopy of lateral epitaxial overgrowth of GaN on sapphire[J]. Applied Physics Letters, 1999, 74: 3519-3521.
    [14] Parayanthal P, Pollak F H, Raman scattering in alloy semiconductors: "spatial correlation" model[J]. Physical Review Letters, 1984, 52: 1822.
    [15] Friedricha F, Nickel N H, Resonant Raman scattering in hydrogen and nitrogen doped ZnO[J]. Applied Physics Letters, 2007, 91: 111903.
    [16] Kim Y I, Cadars S, Shayib R, et al. Local structures of polar wurtzites Zn1?xMgxO studied by Raman and 67Zn/25Mg NMR spectroscopies and by total neutron scattering[J]. Physical Review B, 2008, 78: 195205.
    [17] Chang I F, Mitra S S, Application of a modified random-element-isodisplacement model to long-wavelength optic phonons of mixed crystals[J]. Physical Review, 1968, 172: 924.
    [1] Look D C, Claflin B, Alivov Ya I, et al. The future of ZnO light emitters[J]. Physica Status Solidi (a), 2004, 201(10): 2203–2212.
    [2] Tsukazaki A, Ohtomo A,Onuma T, et al. Repeated temperature modulation epitaxy for p-type doping and light-emitting diode based on ZnO[J]. Nature Materals, 2005, 4:42-46
    [3] Limpijumnong S., Zhang S B, Wei S H, et al. Doping by Large-Size-Mismatched Impurities: The Microscopic Origin of Arsenic- or Antimony-Doped p-Type Zinc Oxide[J]. Physical review letters, 2004, 92:155504.
    [4] Hwang D K, Oh M S, Lim J H, et al. Effect of annealing temperature and ambient gas on phosphorus doped p-type ZnO[J]. Applied Physics Letters, 2007, 90: 021106
    [5] Ye H B, Kong J F, Shen W Z, et al. Origins of shallow level and hole mobility in codoped p-type ZnO thin films[J]. Applied Physics Letters, 2007, 90: 102115.
    [6] Xiu F X, Yang Z, Mandalapu L J, et al. High-mobility Sb-doped p-type ZnO by molecular-beam epitaxy[J]. Applied Physics Letters, 2005, 87: 152101.
    [7] Pan C J, Pong B J, Chou B W, et al. Photoluminescence of nitrogen-doped ZnO[J]. Physica Status Solidi (c), 2006, 3: 611–613.
    [8] B. J. Kwon, H. S. Kwack, S. K. Lee, et al. Optical investigation of p-type ZnO epilayers doped with different phosphorus concentrations by radio-frequency magnetron sputtering[J]. Applied Physics Letters, 2007, 91: 061903.
    [9] Barnes T M, Olson K, Wolden C A, On the formation and stability of p-type conductivity in nitrogen-doped zinc oxide[J]. Applied Physics Letters, 2005, 86: 112112.
    [10] Xiao Z Y, Liu Y C, Mu R, et al. Stability of p-type conductivity in nitrogen-doped ZnO thin film[J]. Applied Physics Letters, 2008, 92: 052106.
    [11] Kim K K, Kim H S, Hwang D K, et al. Realization of p-type ZnO thin films via phosphorus doping and thermal activation of the dopant[J]. Applied Physics Letters, 2003, 83: 63.
    [12] Allenic A, Guo W, Chen Y B, et al. Amphoteric Phosphorus Doping for Stable p-Type ZnO[J]. Advanced Materials, 2007, 19: 3333–3337.
    [13] Look D C, Renlund G M, Burgener R H, et al. As-doped p-type ZnO produced by an evaporation?sputtering process[J]. Applied Physics Letters, 2004, 85: 5269.
    [14] Kang H S, Kim G H, Kim D L, et al. Investigation on the p-type formation mechanism of arsenic doped p-type ZnO thin film[J]. Applied Physics Letters, 2006, 89: 181103.
    [15] Prze?dziecka E, Kamińska E, Pasternak I, et al. Photoluminescence study of p-type ZnO:Sb prepared by thermal oxidation of the Zn-Sb starting material[J]. Physical Review B, 2007, 76: 193303.
    [16] Zeng Y J, Ye Z Z, Xu W Z, et al. Realization of p-type ZnO films via monodoping of Li acceptor[J]. Journal of Crystal Growth, 2005, 283: 180-184.
    [17] Tan S T, Suna X W, Yu Z G, et al. P-type conduction in unintentional carbon-doped ZnO thin films[J]. Applied Physics Letters, 2007, 91: 072101.
    [18] Kang H S, Ahn B D, Kim J H, et al. Structural, electrical, and optical properties of p-type ZnO thin films with Ag dopant[J]. Applied Physics Letters, 2006, 88: 202108.
    [19] Jiao S J, Zhang Z Z, Lu Y M, et al. ZnO p-n junction light-emitting diodes fabricated on sapphire substrates[J]. Applied Physics Letters, 2006, 88: 031911.
    [20] Liu W, Gu S L, Ye J D, et al. Blue-yellow ZnO homostructural light-emitting diode realized by metalorganic chemical vapor deposition technique[J]. Applied Physics Letters, 2006, 88: 092101.
    [21] Xu W Z, Ye Z Z, Zeng Y J, et al, ZnO light-emitting diode grown by plasma-assisted metal organic chemical vapor deposition[J]. Applied Physics Letters, 2006, 88: 173506.
    [22] Gu Q L, Ling C C, Brauer G, et al. Deep level defects in a nitrogen-implanted ZnO homogeneous p-n junction[J]. Applied Physics Letters, 2008, 92: 222109.
    [23] Sun J W, Lu Y M, Liu Y C, et al. Nitrogen-related recombination mechanisms in p-type ZnO films grown by plasma-assisted molecular beam epitaxy[J]. Journal of Applied Physics, 2007, 102:043522.
    [24] Damen T C, Porto S P S, Tell B, Raman Effect in Zinc Oxide[J]. Physical Review, 1966, 142: 570-574.
    [25] Friedricha F, Nickel N H, Resonant Raman scattering in hydrogen and nitrogen doped ZnO[J]. Applied Physics Letters, 2007, 91: 111903.
    [26] Kaschner A, Haboeck U, Strassburg M, et al. Nitrogen-related local vibrational modes in ZnO:N[J]. Applied Physics Letters, 2002, 80: 1909-1911.
    [27] Artús L, CuscóR, Alarcón LladóE, et al. Isotopic study of the nitrogen-related modes in N+-implanted ZnO[J]. Applied Physics Letters, 2007, 90: 181911.
    [28] Chen Y W, Liu Y C, Lu S X, et al. Optical properties of ZnO and ZnO:In nanorods assembled by sol-gel method[J]. Journal of Chemical Physics, 2005, 123: 134701.
    [29] Xiang B, Wang P W, Zhang X Z, et al. Rational Synthesis of p-Type Zinc Oxide Nanowire Arrays Using Simple Chemical Vapor Deposition[J]. Nano Letters, 2007, 7(2):323-328.
    [30] Guo B, Qiu Z R, Wong K S, Intensity dependence and transient dynamics of donor–acceptor pair recombination in ZnO thin films grown on (001) silicon, Applied Physics Letters, 2003, 82: 2290.
    [31] Jeong T S, Kim J H, Han M S,et al. Room-temperature luminescence study on the effect of Mg activation annealing on p-GaN layers grown by MOCVD[J]. Journal of Crystal Growth, 2005, 280: 401–407.
    [32] B?rseth T M, Svensson B G, Kuznetsov A Y, et al. Identification of oxygen and zinc vacancy optical signals in ZnO[J]. Applied Physics Letters, 2006, 89: 262112 .
    [33] Lina Y J, Tsai C L, Lu Y M,et al. Optical and electrical properties of undoped ZnO films[J]. Journal of Applied Physics, 2006, 99: 093501.
    [34] Cao B Q, Cai W P, Zeng H, Temperature-dependent shifts of three emission bands for ZnO nanoneedle arrays[J]. Applied Physics Letters, 2006, 88: 161101.
    [1] Tsukazaki A, Ohtomo A, Onuma T,et al. Repeated temperature modulation epitaxy for p-type doping and light-emitting diode based on ZnO[J]. Nature Materials,2005,4 (1):42-45.
    [2] Jiao S J, Zhang Z Z, Lu Y M, et al. ZnO p-n junction light-emitting diodes fabricated on sapphire substrates[J]. Applied Physics Letters, 2006, 88 (3), art. no. 031911, pp. 1-3.
    [3] Liu W, Gu S L, Ye J D, et al. Blue-yellow ZnO homostructural light-emitting diode realized by metalorganic chemical vapor deposition technique[J]. Applied Physics Letters, 2006, 88 (9), art. no. 092101.
    [4] Xu W Z, Ye Z Z, Zeng Y J, et al. ZnO light-emitting diode grown by plasma-assisted metal organic chemical vapor deposition[J]. Applied Physics Letter, 2006, 88: 173506.
    [5] Xiao Z Y, Liu Y C, Mu R, et al. Stability of p -type conductivity in nitrogen-doped ZnO thin film[J]. Applied Physics Letters, 2008, 92 (5), art. no. 052106.
    [6] Sun J W, Lu Y M, Liu Y C, et al. Nitrogen-related recombination mechanisms in p -type ZnO films grown by plasma-assisted molecular beam epitaxy[J]. Journal of Applied Physics, 2007, 102 (4), art. no. 043522.
    [7] Perkins C L, Lee S H, Li X, et al. Identification of nitrogen chemical states in N-doped ZnO via x-ray photoelectron spectroscopy[J]. Journal of Applied Physics, 2005, 97 (3), art. no. 034907, pp. 034907-1-034907-7.
    [8] Tabet N, Faiz M, Al-Oteibi A, XPS study of nitrogen-implanted ZnO thin films obtained by DC-Magnetron reactive plasma[J]. Journal of Electron Spectroscopy and Related Phenomena, 2008, 163 (1-3): 15-18.
    [9] Futsuhara M, Yoshioka K, Takai O, Optical properties of zinc oxynitride thin films[J]. Thin Solid Films, 1998, 317 (1-2): 322-325.
    [10] Wang J, Elamurugu E, Sallet V, et al. Effect of annealing on the properties of N-doped ZnO films deposited by RF magnetron sputtering[J]. Applied Surface Science, 2008, 254 (22): 7178-7182.
    [11] Zou C W, Yan X D, Han J, et al. Study of a nitrogen-doped ZnO film with synchrotron radiation[J]. Applied Physics letter, 2009, 94: 171903.
    [12] Futsuhara M, Yoshioka K, Takai O, Structural, electrical and optical properties of zinc nitride thin films prepared by reactive rf magnetron sputtering[J]. Thin Solid Films, 1998, 322 (1-2): 274-281.
    [13] Xiao Z, Liu Y, Zhang J, et al. Electrical and structural properties of p-type ZnO:N thin films prepared by plasma enhanced chemical vapour deposition[J]. Semiconductor Science and Technology, 2005, 20 (8): 796-800.
    [14] Cao P, Zhao D X, Zhang J Y, et al. Optical and electrical properties of p-type ZnO fabricated by NH3 plasma post-treated ZnO thin films[J]. Applied Surface Science, 2008, 254 (9): 2900-2904.
    [15] Zhang J P, Zhang L D, Zhu L Q, et al. Characterization of ZnO:N films prepared by annealing sputtered zinc oxynitride films at different temperatures[J]. Journal of Applied Physics, 2007, 102 (11), art. no. 114903.
    [16] Mei Y F, Fu R K Y, Siu G G, et al. Nitrogen binding behavior in ZnO films with time-resolved cathodoluminescence[J]. Applied Surface Science, 2006, 252 (23): 8131-8134.
    [17] Maki H, Sakaguchi I, Ohashi N, Nitrogen ion behavior on polar surfaces of ZnO single crystals[J]. Japanese Journal of Applied Physics, Part 1: Regular Papers and Short Notes and Review Papers, 2003, 42 (1): 75-77.
    [18] Jokela S J, McCluskey M D, Unambiguous identification of nitrogen-hydrogen complexes in ZnO[J]. Phys. Rev. B, 2007, 76: 193201.
    [19] Liu W, Gu S L, Ye J D, et al. High temperature dehydrogenation for realization of nitrogen-doped p-type ZnO[J]. Journal of Crystal Growth, 2008, 310 (15): 3448-3452.
    [20] Senthil Kumar O, Watanabe E, Nakai R, et al. Growth of nitrogen-doped ZnO films by MOVPE using diisopropylzinc and tertiary-butanol[J]. Journal of Crystal Growth, 2007, 298 (SPEC. ISS): 491-494.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700