锂离子电池复合炭负极材料的制备及性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
锂离子电池以其工作电压高、能量密度大、循环寿命长、自放电率低、“绿色”环保等众多优点而备受人们关注。本文详细分析了锂离子电池及其炭负极材料的研究进展,提出进一步提高性能和降低成本是锂离子电池发展和改进的主要方向。在锂离子电池技术中,炭负极材料作为关键技术,由于研究时间短、种类繁多、性能各异、反应机理不明晰而增大了研究的复杂性,同时也给人们留下了很大的提高性能的空间。本文创新性地在石墨中添加钠盐及采用动态熔融炭化法在石墨及SnO_2-石墨复合材料表面包覆无定形炭并获得了很好的效果。本研究主要的研究内容如下:
     采用XRD、SEM、ICP、激光粒径分析及电化学性能测试等方法,对国内外多种典型石墨样品的结构与性能进行比较,研究了石墨材料的来源、结构、杂质含量、颗粒大小、比表面积等因素对其充放电性能的影响,确定了性能较好、价格低廉、来源广泛的普通天然石墨及天然石墨球作为掺杂改性以及复合结构炭材料研究的原料。
     在石墨中添加钠盐,通过钠盐的掺杂改性,普通天然石墨的可逆容量达到了364.8mAh·g~(-1)。在普通天然石墨中掺入不同的钠盐,并分别以NaCl、NaF、Na_2CO_3的形式存在于石墨材料中,石墨结构没有改变,但电极性能得以提高。经钠盐处理后,天然石墨得到了很好的修饰改性,Na~+与阴离子共同作用,形成了很好的固体电解质膜,从而减小了锂离子电池在界面的极化,离子扩散系数增大了一个数量级。掺杂1%NaCl的石墨可逆容量为364.8mAh·g~(-1),不可逆容量为47.4mAh·g~(-1),首次充放电效率为88.5%,30个周期后容量保持率为91.97%。以掺杂改性石墨为负极的锂离子扣式电池(LiCO_2/C)的放电容量增加,放电中值电压升高,循环性能得到了明显提高。
     以沥青为前驱体,在650℃~950℃温度下热解得到无定形热解炭材料。随着热处理温度的升高和恒温时间的延长,所得炭材料的有序化程度增加,可逆嵌锂容量与不可逆容量均减小,首次充放电效率增大,电压滞后现象得到抑制。
     首创性地采用动态熔融炭化法对石墨进行无定形炭的包覆。采用固相混合-熔融炭化法或液相混合-熔融炭化法在天然石墨表面包覆无定形的沥青炭,并在一定温度下进行热处理制备了具有无定形炭/天然石墨结构的复合炭材料。XRD、SEM及粒径分析结果表明了石墨表面有无定形炭层的存在,随着包覆量的增加,复合炭材料的颗粒粒径增大。5%沥青经固相混合-熔融炭化法或液相混合-熔融炭化法在400℃动态炭化3h,再经850℃热处理2h的复合炭材料可逆容量分别为358.2 mAh·g~(-1)、362.0mAh·g~(-1),首次充放电效率分别为89.3%、92.0%,30个周期后容量保持率分别为95.20%、96.55%。以不同方法包覆沥青炭的复合炭材料作负极的锂离子扣式电池(LiCO_2/C)性能测试结果表明,包覆适量的沥青所得的复合炭材料的充放电性能及循环性能明显得到提高。
     以煤焦油及天然石墨球为原料,经聚合、分离、炭化后得到中间相炭包覆石墨的新型复合炭材料。详细研究了天然石墨球的加入量及热处理温度、时间对复合炭材料的结构、比表面积、电化学性能的影响。天然石墨球添加量为70g/200mL时,充放电性能最佳,700℃2h处理的复合炭材料可逆容量为378mAh·g~(-1),首次充放电效率为91.3%,同时复合炭材料的循环性能得到了充分改善,50个周期容量保持率96.0%。以复合炭材料作负极的锂离子扣式电池(LiCO_2/C)性能测试结果表明,中间相炭包覆石墨所得的复合炭材料的充放电性能及循环性能与天然石墨球相比明显得到提高。
     采用均相沉淀法制备了SnO_2-石墨复合材料,并首次采用液相-动态熔融炭化法在SnO_2-石墨复合材料表面进行沥青炭的包覆。研究了复合材料的结构、表面形貌和电化学性能。结果表明了SnO_2-石墨复合材料表面有无定形炭层的存在,对复合材料的电化学性能进行了研究,沥青量为10%经650℃2h热处理的C-SnO_2-石墨复合材料(SnO_2量为16%)首次可逆容量为485.4mAh·g~(-1),不可逆容量为93.2mAh·g~(-1),首次充放电效率为83.89%,30个周期容量保持率为85.49%。对C-SnO_2-石墨复合材料的交流阻抗数据使用Zsimpwin阻抗模拟软件进行模拟并提出等效电路图,无定形炭包覆后明显减小了SEI膜电阻,而且电化学反应电阻也是随着包覆量的增大而减小。同时对C-SnO_2-石墨复合材料的储锂机理进行了探讨。认为,无定形炭及石墨在复合材料中起到了骨架支撑的作用,在充放电过程中抑制了SnO_2的体积变化及锡颗粒的团聚,从而提高了复合材料的循环性能。
     采用线性极化及恒电位阶跃的方法研究了各种炭材料的嵌锂动力学行为。结果表明,随着嵌锂量的增加,炭电极的交换电流密度及锂在炭材料中的扩散系数增大:本实验研究的几类材料中,SnO_2的交换电流密度最大(53.22mA/g),但扩散系数最小(9.48×10~(-9)cm~2/s),天然石墨的交换电流密度(20.70 mA/g)及扩散系数均较小(2.38×10~(-8)cm~2·s~(-1)),与天然石墨比较,改性石墨及复合炭材料的交换电流密度与锂的扩散系数增加了一个数量级,其中锂在沥青包覆的复合炭材料中具有最大的扩散系数(1.45×10~7cm~2/s)。将天然石墨、改性石墨、复合炭材料在不同倍率电流下放电,随着放电电流倍率的增加,各种炭材料的放电容量减小,其中以沥青炭-石墨的高倍率放电性能最好,其1C放电容量达到0.1C放电容量的99.14%。
Advanced rechargeable lithium ion batteries are attractive for use in consumer electronic and electric vehicle(EV)application because of a favorable combination of voltage,energy density,cycling performance, self-discharge and environmental protection.The development of lithium ion batteries and carbon anode materials are reviewed in details,much attention is attached to the further improvement on performances of lithium ion batteries and reduction in the cost.Carbon anode materials are the key in the lithium ion batteries technologies.The short development, lots of species,different properties and indefinite reaction mechanism leave great promotion probability in performance.By creatively adding sodium salts and adopting dynamic melt-carbonization,the graphite and SnO_(2~-)graphite composites are covered amorphous carbon to gain a better performance.The main contents in this research as follows:
     The structures and characteristics of several graphite samples are measured by means of power X-ray diffraction(XRD),scanning electron microscope(SEM),Brunauer-Emmer-Teller(BET)surface area measurement,inductively coupled plasma(ICP)spectroscopy,particle size analysis and electrochemical measurements.The effects of origin, structures,impurity,particle size,specific surface area of carbon materials on the electrochemical characteristics are studied.The common natural graphite and the spherical natural graphite with abundant resources,low cost and favorable performance are determined as the raw materials for modification of graphite.
     The reversible capacity of natural graphite reaches 364.8mAh.g~(-1)by sodium salts modification.Three kinds of sodium salts are doped into graphite and exist in the form of NaCl,NaF,Na_2CO_3 respectively.The structure of the graphite is not changed and the electrochemical characteristics of graphite anode doped with sodium salts are enhanced. The performances of natural graphite are improved by the modification of sodium salts.It is believed that the improvement is attributed to the merged effects of the sodium/negative ions on the SEI(Solid Electrolyte Inter-face).The polarization of lithium diffusion at the interface is reduced and an order of magnitude of diffusion coefficient is gained.The sample modified with 1%NaCl had the best electrochemical performances with a reversible capacity of 364.8mAh·g~(-1),an irreversible capacity of 47.4mAh·g~(-1),and an initial coulombic efficiency of 88.5%.The cycling stability of the Li/C cell with modified graphite as anode was improved.The capacity retention ratio at the 30th cycle was up to 91.97%.Compared with the button lithium ion batteries using untreated graphite as anode material,those using modified graphite as anode materials have larger capacity,higher discharge voltage and better cycling capability.
     For the first time,the dynamic melt-carbonization is adopted to cover amorphous carbon on graphite.Disordered carbon materials are obtained by pyrolysis of pitch at high temperature.As the temperature of pyrolysis and the soak time increasing,the carbon materials become more stacked,the specific surface area reduces,both reversible capacity and irreversible capacity decrease,the initial coulombic efficiency increases, and the hysteresis in the voltage profile between charge and discharge is cut down.The graphite is covered with a thin film of disordered carbon according to the measurements of XRD,SEM and particle size analysis, pitch is used as the precursor of the shell-carbon materials by dynamic melt-carbonization,also the composite carbon materials are heat-treated at high temperature.Structure and performance of the composite structure carbon are studied in detail.The samples of solid-mixed and liquid-mixed for 5%pitch by dynamic melt-carbonization at 400℃for 3 h and heat-treated at 850℃for 2h have the best electrochemical performances with a reversible capacity of 358.2mAh·g~(-1),362.0mAh·g~(-1),and an initial coulombic efficiency of 89.3%,92.0%.The capacity retention ratios at the 30th cycle are up to 95.20%and 96.55%.Electrochemical measurements of button lithium ion batteries show that composite carbon coated with appropriate amount of pitch have improved charge/discharge and cycling performance.
     A mesocarbon-graphite composite is prepared by depositing mesocarbon from the coal tar pitch on the surface of global natural graphite though polymerization,separation,carbonization.The effects of the weight of spherical natural graphite,the temperature and time of heat-treatment on the structure,specific surface area and electrochemistry properties of composite carbon are studied in detail.The sample heat-treated at 700℃for 2h has the best electrochemical performances with a reversible capacity of 378mAh·g~(-1)and an initial coulombic efficiency of 91.3%.The cycling stability of the Li/C cells with carbon composite as anodes is improved,its capacity retention ratio at the 50th cycle is 96%.Electrochemical measurements of button lithium ion batteries show that composite carbon coated with appropriate amount of mesocarbon have improved charge/discharge and cycling performance more than spherical natural graphite.
     SnO_2-graphite composites are prepared by homogeneous precipitation method and for the first time it is modified by dynamic melt-carbonization of the pitch.The structure,morphology and electrochemical properties are studied.The results suggest that SnO_2 is uniformly distributed on the surface of graphite,and the SnO_2-graphite is covered with a thin film of disordered carbon.The composites of C-SnO_2-graphite(16%SnO_2)heat-treated at 650℃for 2h and modified by pitch(10%)have a reversible capacity of 465.4mAh·g~(-1),an irreversible capacity of 103.2mAh·g~(-1),and an initial coulombic efficiency of 81.85%.A mechanism of Li storage in C-SnO_2-graphite composite was proposed.Since the carbon and graphite acts as the framwork of the composite,restraining the volume change of SnO_2 and the reunition of the Sn particles in charge/discharge,the cycling performance is improved obviously.
     The kinetics behaviors of carbon anodes are studied by means of linear sweep voltammetry and chronoamperometry measurements.It is found that the exchange current(i_0)and diffusion coefficient of lithium (D_(Li))increase with Li intercalation into carbon anodes,SnO_2 has larger i_0 (53.22mA/g)and smaller D_(Li)(9.48×10~(-9)cm~2/s)than other materials.The natural graphite has smaller i_0(20.70 mA/g)and D_(Li)(2.38×10~(-8)cm~2·s~(-1)). The i_0 and D_(Li)for modified graphite and composite carbon materials improve an order of magnitude compared with natural graphite with the best value reaching 1.45×10~(-7)cm~2/s for pitch covered carbon composites. The discharge capacities of carbon electrodes decrease with the increase of current rate,the composite carbon of modified by pitch has the best fast discharge capability among the untreated graphite,modified graphite by sodium salts,other composite carbon materials,its discharge capacity at 1C is up to 99.14%of that at 0.1C.
引文
[1]郭炳昆,李新海,杨松青.化学电源--电池原理及制造技术[M],长沙:中南大学工业大学出版社,2000年
    [2]吕鸣详,黄长保,宋玉谨.化学电源[M],天津:天津大学出版社,1992:306-307
    [3]Nagaura T,Tazawa K.Prog.Batteries Sol.Cell,1990(9):20
    [4]Fujimoto H,Mabuchi A,Tokumitsu K.Effect of crystallite size on the chemical composition of stage metal-graphite intercalation compounds[J].Carbon,1994,32(2):193-202
    [5]Aurbach D,Ein-eli Yai.The correlation between the surface chemistry and the performance of Li-carbon intercalation anodes for rechargeable "rocking-chair"type batteries[J].J Electrochem Sot.,1995,142(5):1746-1755
    [6]Verbrugge M W,Koch B J.Lithium intercalation of carbon-fiber microelectrodes [J].J Electrochem Soc.,1996,143(1):2410-2420
    [7]Tossici R,Berrettoni R,Roseden M.Electrochemistry of KC_8 in lithium containing electrolytes and its use in lithium-ion cells[J].J Electrochem Sot.,1997,144(1):1861-1864
    [8]庄林,陆君涛.分离锂离子嵌入碳过程中的离子与电子因素的尝试[J].第九届全国电化学会议论文集,山东泰安,1997:137-140
    [9]Gerischer H,Noguchi M,Scrosati B.The electronic and the ionic contribution to the free energy of alkali metal sin intercalation compounds[J].J.Electrochem.Soc.,1994,141:2297-2235
    [10]Fong R,Saken U.V,Dahn J.R.Studies of lithium intercalation into carbons using nonaqueous electrochemical cells[J].J.Electrochem Soc.,1990,137(7):2009-2013
    [11]Zheng T,Amtomi S G,Amatueel G G.Reactivity of the solid electrolyte interface on carbon electrodes at elevated temperatures[J]J.Electrochem.Soc.,1999,146(11):4014-4018
    [12]Nakamura H,Komatsu H,Yoshio M.Suppression of electrochemical decomposition of propylene carbonate at graphite anode in lithium-ion cells[J].J.Power Sources,1996,62:219-228
    [13]Komaba S,Watanabe M,Groult H,Impact of Sodium Salt Coating on a Graphite Negative Electrode for Lithium-Ion Batteries[J].Electrochemical and Solid State Letters,2006,9(3):A130-A133
    [14]Megahed S,Scrosati B,Lithium-ion rechargeable batteries[J].J.Power Sources,1994,51:79-104
    [15]阚素荣,吴国良,卢世刚等.国产石墨作为锂离子蓄电池负极材料的性能[J].电源技术,2002,26(2):66-68
    [16]李春鸿.锂离子二次电池用碳负极材料[J].电池,1998,28(3):132-134
    [17]董桑林,刘人敏.锂离子电池碳阳极材料的研究进展[J].电源技术,1996,2:84-89
    [18]Okuno G,Kodayokawa K,Sato Y.Characteristics of coke carbon modified with mesophase pitch as a negative electrode for lithium ion Batteries[J].Denki Kaga -ku,1997,65(3):296-230
    [19]Mori Y,Iriyama T,Hashimoto T.Lithium doping/undoping in disordered coke carbons[J].J.Power Sources,1995,56(2):205-208
    [20]Yashinori K,Katsunori Y,Atsuhiro F,et al.Electrochemical characteristics of graphite,coke,and graphite/coke hybrid carbon as negative electrode materials for lithium secondary Batteries[J].J.Power Source,2001,11(2):74-77
    [21]尹鸽平,周德瑞,王庆等.锂离子电池碳负极材料的结构与嵌锂行为[J],炭素,1999,4:31-36
    [22]Kikuch M,Ikezawa Y,Takamuru T.et al.Surface modification of pitch-based carbon fiber for the improvement of electrochemical intercalation[J].J.Electrochem Soc.,1995,396:451-455
    [23]Xue J,Dahn J.Anode performance of vapor-grown fibers in secondary lithium ion batteries[J].J.Electrochem.Soc.,1995,142:1090-1096
    [24]Xing W,Xue J.S,Zheng T,et al.Correlation between lithium intercalation capacity and microstructure in hard carbons[J]J.Electrochem.Soc.,1996,143(11):3482-3491
    [25]刘建睿,王猛,尹大川等.高能锂离子电池的研究进展[J],材料导报,2001,15(7):32-35
    [26]Zheng T,Liu Y,Fuller E.W.Lithium insertion in high capacity carbonaceous materials[J].J.Electrochem.Soc.,1995,142(8):2581-2590
    [27]Yata S,Kinoshita H,Komori M,et al.Structure and properties of deeply Li doped polyacenic semiconductor materials beyond C_6Li stage[J].Synth.Met.,1994,62(2):153-158
    [28]Stao K,Noguchi M,Demachi A,et al.A mechanism of lithium storage in disord -ered carbons[J].Science,1994,264:556-558
    [29]Zheng T,Mckinnon W.R,Dahn J.R..Hysteresis during lithium insertion in hydrogen-containing carbons[J].J.Electrochem.Soc.,1996,143(7):2137-2145
    [30]Xing W,Xue J.S,Dahn J.R.Optimizing pyrolysis of sugar carbons for use as anodes materials in lithium-ion batteries[J],J.Electrochem.Soc.,1996,143(10):3046-3052
    [31]Xing W,Dahn.J.R.Study of irreversible capacities for Li insertion in hard and graphite carbons[J].J.Electrochem.Soc.,1997,144(4):195-201
    [32]Buiel E,George A.E,Dahn J.R.On the reduction of lithium insertion capacity in hard-carbon anode material with increasing heat-treatment temperature[J].J.Electrochem.Soc.,1998,145(7):2252-2257
    [33]Xiang H.Q,Fang S.B,Jiang Y.Y.Carbonaceous anodes for lithium-ion batteries prepared from phenolic resins with different cross-linking desities[J]J Electrochem.Soc.,1997,L187-L190
    [34]吴宇平.锂二次电池炭负极材料的研究--以含氮聚合物为基体[D],中国科学院化学研究所,1997
    [35]相红旗.锂二次电池聚合物炭负极材料的研究[D],中国科学院化学研究所,1997
    [36]汪树军,赵飞明.糠醇树脂炭化产物作为锂离子电池炭电极材料的研究[J].新型炭材料,2000,15(3):47-51
    [37]Brooks J D,Taylor G H.Chemistry and physics of carbon[M].Dekker,New Yok:Marcel Dek kerInc,1968:243
    [38]Lewis I C.Thermo tropic mesophase pitch[J].Carbon,1978,16:503-507
    [39]Mabuchi A,Tokimitsu,Fujimoto H,et al.Charge-discharge characteristics of the mesocarbon microbeads heat-treated at different temperature[J].J.Electrochem Soc.,1995,142(4):1041-1046
    [40]薛锐生,沈曾民,宋怀河.热缩聚工艺条件对中间相炭微球形成的影响[J].炭素,1999(3):8-13
    [41]吕永根,凌立成,刘朗等.原生吡啶不溶物在煤焦油聚合制备中间相炭微球过程中的作用[J].新型炭材料,1998,13(1):38-41
    [42]Kodama M,Fujiura T,Elkawa,et al.Characterization of mesocarbon microbeads prepared by emulsion method[J].Carbon,1991,29(1):43-49
    [43]宋怀河,沈曾民.添加碳黑对催化裂化渣油中间相沥青炭微球制备的影响[J]. 石油学报(石油加工),1999,15(6):63-67
    [44]Korai Y,Wang Y G,Yoon S H,et al.Effects of carbon black addition on preparation of meso-carbon microbeads[J].Carbon,1997,35(7):875-884
    [45]Takami N,Sataoh A,Hara M,et al.Structural and kinetic characterization of lithium intercalation carbon anodes for secondary lithium batteries[J].J.Electrchem.Soc.,1995,142(2):371-379
    [46]尤金跨,杨勇,舒东等.锂离子电池纳米电极材料的研究[J],电化学,1998,4(1):94-100
    [47]王红强,李新海,郭华军等.中间相炭微球的结构对其电化学性能的影响[J].中南工业大学学报(自然科学版),2003,34(2):140-143
    [48]Esumi K,Nishina S,Sakuarda S,et al.Plasma treatment of heat-treated mesocarbon misrobeads[J].Carbon,1987,25(6):821-825
    [49]Kodama M,Shimizu N,Fujiura T,et al.Preparation and characterization of cation-exchange using meso-carbon microbeads prepared by emusion method [J].Carbon,1990,28(1):199-205
    [50]Kodama M,Fujiura T,Kesumi,et al.Preparation of mesocarbon microbeads with an arrow size distribution[J].Carbon,1998(26):595-598
    [51]Inagaki M.Textures in carbon materials[J],新型炭材料,1999,14(2):13
    [52]Tatsumi K,Iwashita N,Sakaebe H,et al.The influence of the graphitic structure on the electrochemical characteristics for anode of secondary lithium batteries[J].J.Electrochem.Soc.,1995,142(3):761-720
    [53]Osaki T,Satob A,Hara M,et al.Abstract of 34~(th)Battery Symoposium,Japan,1993:79
    [54]王红强.中间相炭微球的制备及其电化学性能的研究[D],中南大学,2003年
    [55]李宝华,李开喜,吕永根等.中间相炭微球的制备及嵌锂性能考察[J].材料科学与工艺,2003,11(4):389-391
    [56]李宝华,李开喜,吕春祥等.热处理时间对锂离子电池阳极用中间相炭微球充放电性能的影响[J].石油大学学报,2001,25(6):81
    [57]Kim C,Fujino T,Miyashita K,et al.Microstructure and Electrochemical Properties of Boron-Doped Mesocarbon Microbeads[J].J.Electrochem Soc.,2000.147(2):1257
    [58]翟秀静,张爱黎,符岩等.碳纳米管用于锂离子电池负极材料的嵌锂机理研究[J].功能材料,2004,35(5):621-623
    [59]Iijima S.Helica microtubules graphite carbon[J].Nature,1991,354:56-58
    [60]Che G L,Lakshmi B B,Fisher E R,et al.Carbon nanotubule membranes for electrochemical energy storage and production[J].Nature,1998,393(28):346
    [61]陈卫祥,吴国涛,王春生等.纳米碳管的电化学贮锂性能[J].化学物理学报,2001,14(1):88-93
    [62]吴国涛,王春生,齐仲甫等.巴基管嵌锂电极性能的研究[J]电化学,1998,4(3):313-318
    [63]刘春燕,唐致远,赵秉英.纳米碳管作为锂离子电池负极材料的研究[J].天津大学学报,2001,34(1):31-35
    [64]李志杰,梁奇,陈栋梁等.碳纳米管和石墨在电化学嵌锂过程中的协同效应[J].应用化学,2001,18(4):269-273
    [65]Yang Zhan-hong,Wu Hao-qing.Electrochemical intercalation of lithium into carbon nanotubes[J].Materials Chemistry and Physics,2001,71:7-11
    [66]Leroux F,Metenier K,Gautier S,et al.Electrochemical insertion of lithium in catalytic multi2walled carbon nanotubes[J].J.Power Sources 1999,81/82:317-322
    [67]成会明.纳米碳管-制备、结构、物性及应用[M].北京:化学工业出版社,2002年
    [68]Endo M,Kim Y A,Hayashi T,et al.Vapor-grown carbon fibers(VGCFs):basic properties and their battery applications[J].Carbon,2001,39(9):1287
    [69]Nishimura K,Kim YA,Matushita T,et al.Structural characterization of borondoped submicron vapor-grown carbon fibers and their anode performance[J].J.Mater.Res.,2000,15(6):1303-1308
    [70]Fan YY,Li F,Cheng H M,et al.Preparation,morphology,and microstructure of diameter-controllable vapor-grown carbon nanofibers[J].J.Mater Res,1998,13(8):2342-2346
    [71]黄辉,张文魁,马淳安等.纳米碳管的制备及其在化学电源中的应用[J].化学通报,2002,2:96-100
    [72]Salver-Disma F,Lenain C,Beaudion B,et al.Uniqe effect of mechanical milling on the lithium intercalation properties of different carbons[J].Solid State Ionics,1997,98:145-148
    [73]陈继涛,周恒辉,常文保等.粒度对石墨负极材料嵌锂性能的影响[J].物理化学学报,2003,19(3):278-282
    [74]Sato Y,Nakano T,Kobayakawa K.Particle-size effect of carbon powders on the discharge capacity of lithium ion batteries[J].J.Power Sources,1998,75:271-276
    [75]张宝,郭华军,李新海等.中间相炭微球的粒径对其结构和性能的影响[J].中南大学学报(自然科学版),2005,36(3):443-447
    [76]Disma F,Aymard L,Dupont L,et al.Effect of mechanical grinding on the lithium intercalation process in graphite and soft carbons[J].J.Electrochem.Soc.,1996,143(12):3959-3872
    [77]Xing W,Dunlap R.A,Dahn J.R.Studies of lithium insertion in ball-milled sugar carbons[J].J.Electrochem.Soc.,1998,145(1):62-70
    [78]Natarajan C,Fujimoto H,Mabuchi A,et al.Effect of mechanical milling of graphite power on lithium intercalation properties[J].J.Power Sources,2001,92:187-192
    [79]范壮军,李建刚,翟更太等.球磨时间对硼掺杂石墨材料抗氧化行为的影响[J].新型炭材料,2003,18(1):60-64
    [80]杨杭生,张孝彬.机械球磨对石墨结构的影响[J].物理学报,2000,29(3):522-526
    [81]Salver-Disma F,Du Pasquier A,Tarascon J M,et al.Physical characterization of carbonaceous materials prepared by mechanical grinding[J].J Power Sources,1999,81-82:291-295
    [82]GUO Hua-jun,LI Xin-hai,WANG Zhi-xing,et al.Mild oxidation treatment of graphite anode for Li-ion batteries[J].J Cent South Univ Technol,2005,12(1):50-54.
    [83]Pled E,Menachem C,Baryow D.et al.J.Electrochem.Soc.,1996,143:L4-L7
    [84]Kumar T P,Stephan A M,Thayananth P.et al.Thermally oxidized graphites as anodes for lithium-ion cells[J].J.Power Sources,2001,97-98:118-121
    [85]吴宇平,万春荣,姜长印等.锂离子电池负极材料的制备[J].电池,2000,30(4):143-146.
    [86]Fukuda K,Kikuya K,Isono K,et al.Foliated natural graphite as the anode material for rechargeable lithium-ion cells[J].J.Power Sources,1997,69:165-168
    [87]Yoshio M.The 60th Anniversary Meeting of Electrochemical Society of Japan,Tokyo,1993,4:1-2
    [88]马树华,国汉举,李季等.锂离子电池负极碳材料的表面改性与修饰[J].电化学,1996,2:413-419
    [89]郭华军,李向群,王志兴等.锂掺杂对石墨电化学性能的影响[J].中国有色金属学报,2003,13(5):1112-1115
    [90]Kim C,Fujino T,Hayashi,et al.Structural and electrochemical properties of pristine and B-doped materials for the anode of li-ion secondary[J],J.Electrochem.Soc.,2000,47(4):1265-1270
    [91]#12
    [92]#12
    [93]Scanlon L G,Sandi G.Layered carbon lattices and their influence on the nature of lithium bonding in lithium intercalated carbon anodes[J].J.Power Sources,1999,81-82:176-181
    [94]Way B M,Dahn J R.The effect of boron substitution in carbon on the intercalation of lithium in Li_x(B_xCl_x)_6[J].J Electrochem Society,1994,141(4):907-912
    [95]Kim C,Fujino T,Miyashita K,et al.Microstructure and Electrochemical Properties of Boron-Doped Mesocarbon Microbeads[J].J.Electrochem.Soc.,2000,147(2):1257-1261
    [96]GUO Hua-jun,LI Xin-hai,WANG Zhi-xing,et al.Si-doped composite carbon as anode of lithium ion batteries[J].Trans.Nonferrous Met.Soc.China,2003,13(5):1062-1065
    [97]Wang G.X,Ahn J.H,Yao J,et al.Nanostructured Si-C composite anodes for lithium-ion batteries[J].Electrochemistry Communications,2004,6:689-692
    [98]Tran T D,Feikert J H,Song X,et al.J.Electrochem.Soc.,1995,142(10):3297-3302
    [99]Rodriquez N.J.Mater.Res.,1993,8:2879-2885
    [100]吴宇平,方世璧,江英彦等.磷的掺杂对碳负极材料性能的影响[J].应用化学,1998,15(6):37-40
    [101]Kuribayashi I,Yokoyama M,Yamashita M.Battery characteristics with various carbonaceous materials[J].J.Power Sources,1995,54:1-5
    [102]宋文生,胡成秋,尚尔超等.酚醛树脂包覆石墨作为锂离子二次电池炭负极材料的研究[J].炭素技术,2002,120(3):10-15
    [103]王国平,张伯兰,瞿美臻等.改性球形天然石墨锂离子电池负极材料的研究[J].合成化学2005,13(3):249-253
    [104]杜翠薇,赵煜娟,陈彦彬等.天然石墨的复合改性研究[J].电池,2002,32(1):13-15
    [105]杨瑞枝,张东煜,张红波等.树脂炭包覆石墨作为锂离子电池负电极的研 究[J].无机材料学报,2000,15(4):711-716
    [106]刘先龙,宁怀河,陈晓红.树酯包覆对石墨化中间相炭微球电化学性能的影响[J]炭素技术,2004,23(1):6-11
    [107]Wang H,Yoshio M.Carbon-coated natural graphite prepared by thermal vapor decomposition process,a candidate anode material for lithium-ion battery [J].J.Power Sources,2001,93:123-129
    [108]Sato Y,Tanuma K,Takayama T.et al.~7Li-nuclear magnetic resonance observations of lithium insertion into coke carbon modified with mesophase-pitch[J].J.Power Sources,2001,97-98:165-70
    [109]Matsui K,Andoh H,Suzuki S.et al.Development of 10Wh class lithium secondary cells in the 'New Sunshine Program'[J].J.Power Sources,1997,68:13-18
    [110]Tanaka T,Ohta K,Arai N.Year 2000 R&D status of large-scale lithium ion secondary batteries in the national project of Japan[J].J.Power Sources,2001,97-98:2-6
    [111]Lampe C,Shi J,Onnerud P.et al.Improved carbon anode properties:pretreat -ment of particles in polyelectrolyte solution[J].J.Power Sources,2001,97-98:67-69
    [112]Leea H,Baeka J,Janga S.et al.Characteristics of carbon-coated graphite prepared from mixture of graphite and polyvinylchloride as anode materials for lithium ion batteries[J].J.Power Sources,2001,101:206-212
    [113]周向阳,胡国荣,李庆余等.化学镀银鳞片石墨作锂离子电池负极材料[J].电池,2002,32(5):255-260
    [114]王红强,李新海,余顺义等.中间相炭微球表面镀铜银合金的电化学性能[J].电源技术,2004,28(8):156-159
    [115]Yamada K,Tanaka H,Mitate T.Method for manufacturing carbon composite electrode material[P].USP:5595838,1997
    [116]Takamura T,Sumiya K,Suzuki A,et al.Enhance of Li doping/undoping reaction rate of carbonaceous materials by coating with an evaporated metal film[J].J Power Sources,1999,81-82:368-372
    [117]Liu Zhaolin,Yu Aishui,Lee Jim Y.Modifications of synthetic graphite for secondary lithium-ion battery applications[J].J.Power Sources,1999,81/82:187
    [118]Courtney I A,Dahn J R.Electrochemical and in situ X-ray diffraction studies of the reation of lithium with tin oxide composites[J].J.Electrochem Soc.,1997, 144:2045-2052
    [119]Lin C,Martin C R,Scrosatib et al.Nanom aterial-based Li-ion battery electrodes [J].J.Power Sources,2001,97-98:240-244
    [120]Scrosatib.Recent advances in lithium ion battery materials[J].Electrochimical Acta.2000,45:2461-2466
    [121]HE Ze-qiang,LI Xin-hai,WU Xian-ming,et al.Preparation and electrochemical properties of nanosized tin dioxide electode material by sol-gel process[J].Transaction of Nonferrous Metals Society of China,2003,13(4):998-1002.
    [122]Stefan M,Takahisa S.Electrochemical characterization of tin based composite oxides as negative electrodes for lithium batteries[J].J.Power Sources,1998,73:216-231
    [123]黄峰,卢献忠,雷雪梅等.纳米SnO_2锂二次电池负极材料的性能研究[J].武汉科技大学学报(自然科学版),2006,29(2):129-132
    [124]Subramanian V,Gnanasekar K.I,Rambabu B.Nanocrystalline SnO_2 and Indoped SnO_2 as anode materials for lithium batteries[J].Solid State Ionics.,2004,175:181-184
    [125]Li H,Shi L H,Lu W,et al.Studies on capacity loss and capacity fading of nano -sized SnSb alloy anode for Li-ion batteries[J].J.Electrochem Soc.,2001,148(8):A915-A922.
    [126]Marten G B,Alexander J B,Peter P E,et al.Novel layered lithium nitridon nickelates:effect of Li vacancy concentration on N co-ordination geometry and Ni oxidation state[J].Chem Commum,1999,1187-1188
    [127]Niew A R,Disalvo F J.Recent developments in nitrides chemisty[J].Chem Mater,1999,10:2733-2752
    [128]Nishijima M,Tadokoro N,Takeda Y,et al.Li deintercalation-intercalation reaction and structural change in lithium transition metal nitride Li_7MnN_4[J].J.Elec -trochem.Soc.,1994,141:2996-2971
    [129]Nishijima M,Tadokoro N,Takeda Y,et al.Anode performance of new-layered nitrides[J],Solid State Ionics,1996,83:107-117
    [130]Tsuyoshi N,Katsuouori Y.Surface fluorination and oxidation of carbon materialx for negative electrode of lithium ion secondary battery[J].Denki Kagaka,1996,64:922-923
    [131]Pralong V,Souzad C S,Leung K T,et al.Reversibe lithium uptake by C_oP_3 at low potentials:role of the anion[J].Electrochemisty Communication,2002,4: 516-520
    [132] Fong R, Sahen U.V, Dahn J.R. Studies of lithium intercalation intocarbons using nonaqueous electrochemical cells[J].J.Electrochem.Soc,1990,137(7): 2009- 2013
    [133] Aurbach D, Zinigrad E, Cohen Yaron, et al. A short review of failure mechanisms of lithium metal and lithiated graphite anodes in liquid electrolyte solutions[J].Solid State Ionics, 2002, 148: 405- 416
    [134] Yang C R, Wang Y Y, Wan C C.et al. Composition analysis of the passive film on the carbon electrode of a lithium-ion battery with an EC-based electrolyte [J].J.Power Sources, 1998,72: 66-70
    [135] Ohzuku T, Iwakoshi Y,Sawai K. Formation of Lithium-graphite intercalation compounds in nonaqueous electrolytes and their application as a negative electrode for a lithium (shuttlecock) cell[J] J.Electrochem Soc,1993,140(8): 2490-2498
    [136] Shi H, Barker J, Saidi M Y, et al. Structure and lithium intercalation properties of synthetic and natural graphite[J].J. Electrochem Soc.,1996,143(11): 3466-3472
    [137] Takami N, Satoh A, Ohsaki T, et al. Large hysteresis during lithium insertion into and extraction from high-capacity disordered carbons[J]. J. Electrochem Soc.,1998, 145(2): 478-482
    
    [138] Sato K, Noguchi M, Demachi A, et al. A Mechanism of lithium storage in disordered carbons [J]. Science, 1994, 264: 556-560
    [139] Matsumura Y, Wang S, Kasuh T, et al. The dependence of reversible capacity of lithium ion rechargeable batteries on the crystal structure of carbon electro -des [J].Synth. Met., 1995, 71: 1755-1758
    [140] Wang S, Matsumura Y, Maeda T. A model of the interactions between disorder -ed carbon and lithium[J].Synth. Met., 1995, 71: 1759-1762
    [141] Matsumura Y, Wang S, Mondori J. Interactions between disordered carbon and lithium in lithium ion rechargeable batteries [J]. Carbon, 1995, 33: 1457-1460
    [142] Mabuchi A, Tokumitsu K, Fujinoto H, et al. Charge-discharge characteristics of the mesocarbon microbeads heat-treated at different temperatures [J]. J. Electrochem Soc, 1995,142(4): 1041-1046
    
    [143] Tokumitsu K, Mabuchi A, Fujimoto H, et al. Electrochemical insertion of lithium into carbon synthesized from condensed aromatics. J Electrochem Soc, 1996,143:2235-2239
    [144]Dahn J R,Zheng T,Liu Y,et al.Mechanisms for lithium insertion in carboniceous materials[J].Science,1995,270:590-593
    [145]郭华军.锂离子电池炭负极材料的制备与性能及应用研究[D].长沙:中南大学冶金科学与工程学院,2001
    [146]Megahed S,Scrosati B.Lithium-ion rechargeable batteries[J].J.Power Sources,1994,51:79-104
    [147]蔡克群,次世代.二次电池--锂金属二次电池开发展望[J].工业材料,1999,146:127-133
    [148]Murphy D.W,Broodhead J,Steel B.C.Materials for advanced batteries[M],New York:Plenum Press,1980
    [149]赵健,杨维芝,赵佳明.锂离子电池的应用开发[J],电池工业,2000,5(1):31-36
    [150]戴永年,杨斌,姚耀春等;锂离子电池发展状况[J].中国储能电池与动力电池及其关键材料学术研讨会,湖南,长沙,2005年5月
    [151]毕道治.电动车电池的开发现状及展望[J].电池工业,2000,2:56-63
    [152]金明钢.我国固态锂离子电池工业发展近况[J].电池工业,2000,2:88-92
    [153]杜翠薇,赵煜娟,张刚等.用于锂离子电池的国产天然石墨性能研究[J].电化学2002,8(4):4-8
    [154]Yi Zonghui,Liang Yongguang,Lei Xuefeng,et al.Low-temperature synthesis of nanosized disordered carbon spheres as an anode material for lithium ion batteries[J].Materials Letters,2007:1-5
    [155]王红强,李新海,郭华军等.中间相炭微球的结构对其电化学性能的影响[J].中南工业大学学报(自然科学版),2003,34(2):140-143
    [156]He Ze-Qiang,Li Xin-Hai,Xiong Li-Zhi,et al.Wet chemical synthesis of tin oxide-based material for lithium ion battery anodes[J].Materials Research Bulletin,2005(40):861-868
    [157]Chung G C,Jun S H,Lee K Y,et al.Effect of surface structure on the irreversible capacity various graphitic carbon electrodes[J].J.Electrochem.Soc.,1999,146(5):1664-1671
    [158]Suzuki K,Hamada T,Sugiura T.Effect of graphite structure on initial irreversible reaction in graphite anodes[J].J.Electrochem.Soc.,1999,146(3):890
    [159]Cao F,Barsukov I V,Bang H J,et al.Evalution of graphite materials as anodes for lithium-ion batteries[J].J.Electrochem.Soc.,2000,147(10):3579-3583
    [160]Xing W,Wilson M,Zank G,et al.Pyrolysed pitch-polysilane blends for use as anode materials in lithium ion batteries[J],Solid State Ionics,1997,93:239-244
    [161]Wu Y,Fang S,Jiang Y.Carbon anodes for a lithium secondary battery based on polyacry-lonitrile[J],J.Power Sources,1998,75:201-206
    [162]Wu Y S,Wang Y H,Lee Y H.Performance enhancement of spherical natural graphite by phenol resin in lithium ion batteries[J].Journal of Alloys and Com -pounds,2006,426:218-222
    [163]盛世雄.X射线衍射技术[M],北京:冶金工业出版社,1986:314-453
    [164]俞政洪,吴锋.锂离子电池炭负极材料的研究-包覆对天然石墨容量衰减的影响[J].新型炭材料,2002,17(4):30-32.
    [165]尹笃林,范长岭,徐仲榆.锂离子电池首次充、放电时石墨负电极与电解液界面所发生的反应[J].炭素技术,2005,24(6):10-16.
    [166]Yamada Y,Imamura T,Kakiyama H,et al.Characteristics of meslxarbon microbeads separated from pitch[J].Carbon,1974,12:307-319
    [167]Ishikawa M,Kamobara H,Morita M,et al.Li(CF_6SO_2)_2N as an electrolytic salt for rechargeable lithium batteries with graphitized mesocarbon microbeads anodes[J].J.Power Sources,1996,62:229-232
    [168]时志强,樊丽萍,王成扬.商业化的锂离子电池石墨负极材料的研究进展.[J].炭素,2006,125(1):3-6
    [169]徐仲榆,范长岭,尹笃林.锂离子电池中电解液与石墨类负极活性材料的相容性.[J].新型碳材料,2004,19(4):241-247
    [170]Beguin.F,Chevallier.F,Vix.C,et al.A better understanding of the irreversible lithium insertion mechanisms in disordered carbons.[J].Journal of Physics and Chemistry of Solids,2004,65:211-217
    [171]赵海,胡成秋.石墨添加对中间相炭微球电化学性能的影响.[J].炭素,2005,122(2):30-34
    [172]齐智,吴锋.SnO_2石墨复合材料作为锂离子电池负极材料研究[J].无机化学学报,2005(21):257-260
    [173]Read J,Foster D,Wolfenstine J,et al.SnO_2-carbon composites for lithium-ion battery anodes[J].J.Power Sources,2001,96:277-281
    [174]Courtney I A,Dahnj R.Key Factors Controlling the Reversibility of the Reaction of Lithium with SnO_2 and Sn_2BPO_6 Glass[J].J.Electrochem.Soc.,1997,144(9):2943-2948.
    [175]Brousse T,Retoux R.Thin-film crystalline SnO_2-lithium electrodes[J].J Electrochem. Soc.,1998,145(1):31-41
    [176]Yoshio I,Tadahiko K.Tin-based amorphous oxide:a high-capacity Lithium-ion storage material[J].Science,1997,276:1395-1397
    [177]Wang Y,Lee J Y,Chen B H.Microemulsion synthesis of tin oxide-graphite nanocomposites as negative electrode material for lithium-ion batteries[J].Electrochemical and Solid-State Letters,2003,6(1):A19-22
    [178]史美伦编著.交流阻抗谱原理及应用[M].北京:国防工业出版社,2001年
    [179]谷书华,王红芳,李荣福等.锂离子电池LiCoO2正极的交流阻抗研究[J].郑州轻工业学院学报(自然科学版),2006,21(2):19-22.
    [180]曹楚南,张鉴清.电化学阻抗谱导论[M].北京:科学出版社,2002,24-36.
    [181]Z.P.Guo,D.Z.Jia,L.Yuan,et al Optimizing synthesis of silicon/disordered carbon composites for use as anode materials in lithium-ion batteries[J].Journal of Power Sources,2006,159:332-335
    [182]Yeon Bok Jeong,Dong Won Kim.Effect of thickness of coating layer on polymer-coated separatoron cycling performance of lithium-ion polymer cells [J].Journal of Power Sources,2004,128:256-262
    [183]殷学峰,刘贵昌.锂离子电池炭负极材料表面改性的研究进展[J].碳素,2005,4:31-34.
    [184]张汉平,付丽君,吴宇平,吴浩青,高村勉.锂离子电池负极材料的研究进展[J].电池,2005,35(4):274-275.
    [185]宋文生,胡成秋,尚尔超.锂离子二次电池炭负极材料--沥青包覆石墨改性研究[J].冶金能源,2001,20(6):27-31.
    [186]Zonghai Chen,Qingzheng Wang,K.Amine.Improving the performance of soft carbon for lithium-ion batteries[J]Electrochimica Acta.,2006,51:3890-3894
    [187]Arai H,Okada S,Sakurai Y,et al.Electrochemical and structural study of Li_2CuO_2,LiCuO_2 and NaCuO_2[J].Solid State Ionics,1998,106:45-53
    [188]Huang H,Kelder E M,Schoonman J.Graphite-metal oxide composites as anode for Li-ion bqatteries[J].J.Power Sources,2001,97-98:114-117
    [189]曹高萍.锂离子电池炭负析材料及其改性研究[D],天津大学,1998
    [190]Basoukov E,Kim J H,Yoon C O,et al.Kinetics of lithium intercalation into carbon anodes:in situ impedance investigation of thickness and potential dependences[J].Solid State Ionics,1999,116:249-261
    [191]Chang Y C,Sohn H J.Electrochemical impedance analysis for lithium ion inter -calation into graphitized carbons[J].J.Electrochem.Soc.,2000,147(1):50-58
    [192]Uchida T,Morikawa Y,Ikuta H,et al.Chemical diffusion coefficient of lithium in carbon fiber[J].J.Electrochem.Soc.,1996,143(8):2606-2610
    [193]查全性.电极过程动力学导论[M].北京:科学出版社,1987:150-162
    [194]龚竹青.理论电化学导论[M].长沙:中南工业大学出版社,1988:272-290
    [195]舒余德,陈白珍.冶金电化学研究方法.长沙:中南工业大学出版社,1990:73-94
    [196]田昭武.电化学研究方法[M].北京:科学出版社,1986:4-27
    [197]谷林瑛,吕鸣详,宋诗哲.电化学原理及应用[M].北京:化学工业出版社,1986:168-170
    [198]林美云.日本新阳光计划中的锂二次电池开发概况[J],工业材料,1999,146:162-169

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700