基于功率匹配的挖掘机节能控制技术的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
节能技术研究是挖掘机机电一体化技术的发展趋势,国外挖掘机节能技术主要体现在对柴油机、液压泵和主阀的综合控制上,而国产挖掘机在此方面刚处于起步阶段。技术上的落后造成了国产挖掘机的使用经济性差、操作性不好和可靠性低等缺点。
    论文结合江苏省科技攻关资助项目“液压挖掘机微机控制系统”(BE2001015),通过对挖掘机功率传递与匹配分析,进行了挖掘机节能技术的理论研究与实践应用。论文提出了将泵的功率曲线设定在柴油机的功率曲线之上的匹配方法。以柴油机的额定功率工况、最低油耗工况和最大转矩工况为匹配依据,将挖掘机的功率匹配分为三档功率模式。应用仿真技术,对柴油机油门PID 参数自调整模糊控制算法和液压泵排量单神经元PID 控制算法进行了仿真研究。完成了挖掘机节能控制系统的设计和开发。试验结果表明,研究开发的电控系统工作可靠,具有良好的节能效果。
    论文所做的研究与开发工作对提高国产挖掘机的技术水平具有一定的理论意义和工程应用价值。
Hydraulic excavator, a multi-function construction equipment and typical machine of mechantronics technology, requires higher efficiency of fuel consumption and the leading trend and topic of technology development of excavator is in energy-saving study. The energy-saving controls of hydraulic excavator directly affects the economic-capability and reliability of itself.Integrated control system, which combines engine and main pump and control valve, is installed in foreign excavators and greatly improves the performance of excavator. The research aims at the project (BE2001015) named “Computer-aided control system of excavator”supported by Technology committee of Jiangsu Province and takes into account the technologic level of domestic excavator and foreign technology nowadays. The purpose of this research is in pursuit of high operation efficiency of excavator and to study the energy saving controls of hydraulic excavators, which can reduce heat generation of hydraulic system and fuel consumption.The work of this dissertation is as follows:
    1. First of all, the background of this dissertation and the significance of energy saving controls of hydraulic excavator in China are introduced,the dissertation also summaries the history of mechantronics developments of hydraulic excavator and application of energy saving technology aboard at the present time.The loss of energy occurs while excavator is at operation,and the cause which leads to loss of energy are presented in this dissertation.
    2. Hydraulic transmission and control technology is basic of energy saving system of excavator,the development and progress of excavator are contributed to the progress of hydraulic components and control methods of hydraulic system.The sorts of and control methods of and characteristic of hydraulic system are described in details in the dissertation.And several power control methods and
    their complex are also introduced and power loss of negative control system is analyzed in quantum of proof. The negative control system produced by Kawasaki Corp., which applies in domestic excavator at large, is analyzed in details as well. 3. Taking medium class crawler-typed excavator as an example, the models and mathematics equations of the components and system of excavator power system are built in this dissertation.The models include engine model, pump model, engine-pump match model. Based on test data, the dissertation builds Cummins 6BT diesel timing curves and pressure-displacement curves of K3V112 pump. The most of domestic excavator adopt constant power hydraulic system which set power value is under that of engine. A scheme has been put forward, which is that the power value of the pump is above that of the engine, according to the analysis of the power match of excavator. The main controller controls the output of the pump while the load pressure changes and the pump can absorb the output of the engine totally, and then engine runs steadily and follows the measured speed. The output of pump varies with the wok conditions and the excavator mainly operations under the conditions of the heavy task, standard task and light load. And engine runs in different speeds when rated power, lowest oil consumption and top torque are aimed at respectively. So the match of engine and pump come into being three power modes:heavy work mode(engine runs at the rated power speed), standard work mode(engine runs at lowest oil consumption speed) and lower load mode(engine runs at top torque speed). Attentions to bad conditions of excavator operation are referred to in design of throttle controller. The DC servo motor is adopted as core component of throttle controller and the equation of DC servo motor is deduced in the dissertation. 4. Being combined theory with practical function of excavator, the electronic energy saving control system, which based on the variable displacement control of pump and throttle control of engine, is designed and developed. The control system comprises main controller (pump controller) and engine throttle controller. The pump controller regulates the displacement of pump according to the variety of engine speed and the throttle controller. The main controller receives inputs from engine speed dial and the speed sensor, power mode selector switch. The controller processes these inputs and sends a control signal to proportional reducing valve solenoid. The proportional reducing valve changes the electric signal to a hydraulic
引文
[1] 同济大学. 单斗液压挖掘机[M]. 北京: 中国建筑工业出版社,1986.12
    [2] 徐绳武. 柱塞式液压泵[M]. 北京:机械工业出版社,1985
    [3] 刘连山. 流体传动与控制(上册)[M]. 北京:人民交通出版社,1983
    [4] 路甬祥,胡大纮. 电液比例控制技术[M]. 北京:机械工业出版社,1988
    [5] 黎启柏. 电液比例控制与控制系统[M]. 北京:机械工业出版社,1997
    [6] 董敬,庄志等. 汽车拖拉机发动机[M]. 北京:机械工业出版社,1995
    [7] 陶永华, 尹怡欣等. 新型PID 控制及其应用[M]. 北京:机械工业出版社,1998
    [8] 赵林明等编著. 多层前向人工神经网络[M]. 郑州:黄河水利出版社,1999
    [9] 姚俊,马松辉. Simulink 建模与仿真[M]. 西安:西安电子科技大学出版社,2002.4
    [10] 高峰. 液压挖掘机节能控制技术的研究[D]. 杭州:浙江大学博士学位论文,2001.3
    [11] 龚向东. 机电一体化液压挖掘机控制策略研究[D]. 杭州:浙江大学博士学位论文,1996
    [12] CATERPILLAR?. Systems Operation. SENR5464,May, 1992
    [13] 韩向彪. 液压传动动力机械系统节能控制硬件研制[D]. 北京:中国农业大学硕士学位论文,1998.3
    [14] 邓星钟,周祖德等. 机电传动控制[M]. 武汉:华中理工大学出版社,1998
    [15] 宫本克己. 挖掘机动臂升降回路的节能. 国外工程机械,1987.3
    [16] 川崎重工. 川崎斜板型轴向活塞泵K3V 系列用调节器(KR3*-2N09)使用说明书.
    [17] 南英. 日立建机的机电一体化. 国外工程机械,1992,5
    [18] 闫季常,钟灵敏. WY20-YC 机电一体化液压挖掘机工程机械,1996.5
    [19] 高峰,冯培恩等. 液压挖掘机节能控制. 工程机械与维修,2001.12
    [20] 伏志和. 当代液压挖掘机功率控制技术的分析. 工程机械,2003.3
    [21] 王晨,应富强. 液压挖掘机的智能化节能控制策略. 浙江工业大学学报,2000.6
    [22] 王伟,张晶涛等. PID 参数先进整定方法综述. 自动化学报,2000.5
    [23] 须田信英. PID 制御. システム制御情报ライブラリ-6[M]. 朝仓书店,1992
    [24] 官忠范. 液压传动系统[M]. 北京:机械工业出版社,1996
    [25] 郭晓方,李伟哲等. 液压挖掘机的发动机—泵的联合控制系统研究. 同济大学学报,1999.6
    [26] 景铜山. CAT300B 系列液压挖掘机. 工程机械,1998.10
    [27] 陈正利. 我国液压挖掘机发展的几个重要阶段和前景展望. 建筑机械,1999(1)
    [28] 周谋福. CAT320C 液压挖掘机. 工程机械,2001.2
    [29] 黄种惠. 新老Sitemaster 型液压挖掘机现场对比试验. 国外工程机械,1991.1
    [30] 日立建机. EX200—2 使用说明书
    [31] 牛兴容. 拖拉机发动机节能减污的最佳运转规律研究[D]. 北京:北京农业工程大学硕士学位论文,1992
    [32] 伍先安. 拖拉机发动机节能增加运转规律及监控装置的研究[D]. 北京:北京农业工程大学硕士学位论文,1994
    [33] 赵代柱. PC200—6、PC220—6EXCEL 型履带式液压挖掘机. 工程机械,1997.10
    [34] 朱建新,邹湘伏等. 谈国产液压挖掘机未来的发展趋势. 凿岩机械气动工具, 2003.3
    [35] 卢新田. 履带式推土机自动变速控制技术的研究[D]. 长春: 吉林工业大学博士学位论文,1999.10
    [36] 王学峰.工程车辆自动变速系统的模糊神经网络控制技术研究[D].长春:吉林大学博士学位论文,2002.3
    [37] 王卓.工程车辆自动变速系统的智能控制研究[D].长春:吉林大学博士学位论文,2003.3
    [38] 叶伟,黄宗益等. 挖掘机液压系统泵阀组合. 建筑机械化,2003.7
    [39] 徐丽娜. 神经网络控制[M]. 北京:电子工业出版社,2003.2
    [40] 耿德根, 宋建国等. AVR 高速嵌入式单片机原理与应用[M]. 北京:北京航空航天大学出版社,2002.10
    [41] 余永权. ATMEL89 系列单片机应用技术[M]. 北京:北京航空航天大学出版社,2002.4
    [42] 金力生. 液压挖掘机电子节能控制系统研究[D]. 长春:吉林大学博士学位论文,2003.3
    [43] 黄宗益,叶伟等. 液压挖掘机液压系统概述. 建筑机械化,2003.9
    [44] 曹恒, 孙宝元等. 柴油机模糊自校正PID 控制器. 大连理工大学学报,Vol.40, No.4, Jul.2000
    [45] 陈新轩,谷乾龙. 现代控制技术在工程机械上应用的探讨. 建筑机械化,2004.8
    [46] 祁冠芳,薛鑫. 日本建筑机械液压技术现状与动向. 建筑机械化,2004.8
    [47] 赵旭东, 韩玉生等. 液压挖掘机中各种液压泵源的研究分析. 液压气动与密封, 1998.2
    [48] 吴根茂, 邱敏秀等. 实用电液比例技术[M]. 杭州: 浙江大学出版社,1993.9
    [49] 韩启纲. 计算机模糊控制技术与仪表装置[M]. 北京:中国计量出版社,1998
    [50] 卢文祥, 杜润生. 机械工程测试?信息?信号分析[M]. 武汉:华中理工大学出版社,1990.3
    [51] 华北水利水电学院. 工程机械用内燃机[M]. 北京:电力工业出版社,1981.12
    [52] 黄骏, 刘斌. JY320 型履带式液压挖掘机的技术特点. 工程机械,1998.2
    [53] 陈士教,红昌银等. 现代全液压挖掘机多路阀的功能. 重庆建筑大学学报,1999.6
    [54] 川崎重工. K3V112KT-151R 液压泵结构原理图
    [55] 陆森林, 和卫星等. 单斗液压挖掘机发动机微机节能控制系统. 江苏理工大学学报,1999(6)
    [56] 段滨,陈世教. WY403 型全液压挖掘机. 建筑机械化,1998.5
    [57] 黄宗益,李兴华等. 分流比负载敏感阀系统. 建筑机械,2004.5
    [58] 林德(中国)液压技术保障中心. Linde 液压产品.
    [59] 王世明,孙铁成等. 工程机械远程网络监测与诊断系统. 建筑机械化,2004.5
    [60] 黄宗益,李兴华等. 液压传动的负载敏感和压力补偿. 建筑机械,2004.4
    [61] F.C.Chen. Back-Propagation Neural Networks for Nonlinear Self-Tuning Adaptive Control. IEEE Control System Magazine, No.4, 1990
    [62] Astrom, K.J.; Hagglund, T. PID Controllers:Theory, Design, and Tuning. Instrument Society of America. Research Triangle Park, NC, 1995
    [63] Chen, F.C. Back-Propagation Neural Networks for Nonlinear Self-Tuning Adaptive Control. IEEE Control System Magazine, No.4, 1990
    [64] Tessmann, R.K.; Hong, I.T. Hydraulic Pump Performance as a Function of Speed and Pressure. SAE961741
    [65] KATO 公司. HD 820 SERVICE MANUAL
    [66] Bosch Group Rexroth. 行走机械用液压及电子控制元件. RC64017/09.01
    [67] Kazuo Uehara; Hiroyoshi Tominaga. Energy Saving on Hydraulic Systems of Excavators. SAE821057
    [68] Russ Henke, P.E. Hydraulic System Trends:Hydraulic Excavator Technology. Diesel Progress: Engine & Drives, V54.n9 ,sep 1988.4
    [69] Walt Peterson. Growing Acceptance For Pressure Compensated Valves—Control and Efficiency Fuel Growth in Mobile Applications. Diesel progress: Engine & Drives,
    March, 1992
    [70] Robert H. Breeden. Development of a High Pressure Load Sensing Mobile Valve. SAE810697
    [71] Philip L. Nine; L. Akins. Electronic Control of Hydraulics for Earthmoving Equipment. SAE840787
    [72] Paul Johnson. Load Sensing, Synchronizing Hydraulic Control System—Linde’s LSC System Designed to Provide Load-independent Operation of Actuators. Diesel progress: Engine & Drives, March, 1992
    [73] Russ Henke, P.E. Hydraulic Technology in 1995: It’s Deja vu All Over Again. Diesel Progress: Engine & Drives, December, 1994
    [74] Anon. Excavators More, More, More. Mining, Quarrying and recycling. v32, n4 July/August 2003
    [75] Peterson, Henrik (Linkoping Univ); Krus,Petter; Jansson,Arne; Palmberg,Jan-ove. Design of Pressure Compensators for Load Sensing Hydraulic Systems. IEE Conference Publication, n427/2, 1996, p1456~1461
    [76] Russ Henke, P.E. Back To The Basics—All-Hydraulic Systems? Diesel Progress: Engine & Drives, July,1990
    [77] John Brebeck. Total Vehicle Control System for Lieberherr Excavator. Diesel Progress: Engine & Drives, April, 1990
    [78] Russ Henke, P.E. Dealing with the “Other”Contaminant; Thermal Management in Mobile Hydraulic Systems. Diesel Progress: Engine & Drives, April, 1997
    [79] Russ Henke, P.E. The Evolution of Load-sensing Hydraulics. Diesel Progress: Engine & Drives, July-August, 1998
    [80] Russ Henke, P.E. Proper Definition of Operating Parameters Key to Optimizing Hydraulic System Design. Diesel Progress: Engine & Drives, August, 1998
    [81] Allen Myers. Controlling Variable Displacement Hydraulic Pumps for Energy Conservation. SAE 750807
    [82] Nakamura; Kazunori (Ibaraki, JP); Takahashi; Ei (Tsuchiura, JP); Toyooka; Tsukasa (Ibaraki-ken, JP); Ishikawa; Kouji (Ibaraki-ken, JP); Nakamura; Tsuyoshi (Ibaraki-ken, JP); Kowatari; Yoichi (Ibaraki-ken, JP); Shimamura; Tadatoshi (Ishioka, JP); Sugiyama; Genroku (Ibaraki-ken, JP); Hirata; Toichi (Ushiku, JP). Control System for
    Prime Mover and Hydraulic Pump of Hydraulic Construction Machine. U.S. Patent
    5911506, June 15, 1999
    [83] Maurizio Abate; et al. Use of Fuzzy Logic for Engine Idle Speed Control. SAE900594
    [84] Izumi; Eiki (Ibaraki, JP); Watanabe; Hiroshi (Ibaraki, JP); Aoyagi; Yukio (Ibaraki, JP); Honma; Kazuo (Ibaraki, JP); Nakajima; Kichio (Shimoinayoshi, JP), Control Method of a System of Internal Combustion Engine and Hydraulic Pump. U.S. Patent 4359199, July 26, 1983
    [85] Yasuo Aoki; Kazuo Uehara; Kazuyuki Hirose; Tadao KaraKama; Kouichi Morita; Teruo Akiyama; Yosuke Oda. Load Sensing Fluid Power System. SAE941714
    [86] Brigitta Lantto; Jan-Ove Palmberg; Petter Krus. Static and Dynamic Performance of Mobile Load-Sensing Systems with Two Different Types of Pressure-Compensated Valves. SAE901552
    [87] W.Backé; B.Z?he. Electron-hydraulic Load Sensing. SAE911814
    [88] Werner Herfs. LUDV/LIFD Systems for Excavators. Mannesmann Roexroth 1997.10
    [89] Cetinkunt,S.; Pinsopon,U.; Chen,C.; Egelja,A.; Anwar,S. Positive Flow Control of Closed-Center Electro Hydraulic Implement-by-Wire System for Mobile Equipment Application. Mechatronics, v14, n4, May, 2004, p403~420
    [90] Lunzman; Stephen V. (Chillicothe, IL); Krone; John J. (Dunlap, IL); Devier; Lonnie J. (Dunlap, IL). On-off Pressure Cutoff Control for a Variable Displacement Hydraulic Pump. U.S. Patent 5197864, March 30, 1994
    [91] Fuchita; Seiichi (Katano, JP); Takamura; Fujitoshi (Hirakata, JP); Tanaka; Junichi (Hirakata, JP). Controller of Engine and Variable Capacity Pump. U.S. Patent 6161522, December 19, 2000
    [92] Devier; Lonnie J. (Dunlap, IL); Lunzman; Stephen V. (Chillicothe, IL), Power Management Control System for a Hydraulic Work Machine. U.S. Patent 5967756, October 19, 1999
    [93] Azam S.; Qureshi. Energy Conservation and Proportional Control with Load Sensing Hydraulic Systems. SAE810929
    [94] Kamada; Seiji (Hiratsuka, JP). Control Device for Hydraulic Drive Machine. U.S. Patent 6173573, January 16, 2001
    [95] Nam; Sang-Yop (Seoul, KR). Multiprocessor System for Hydraulic Excavator. U.S. Patent 5347448, September 13, 1994
    [96] Lee; Jin-Han (Chungchongnam-do, KR). Flow Rate Control Apparatus for Oil-hydraulic Pump. U.S. Patent 5303551, April 19, 1994
    [97] Toyooka; Tsukasa (Ibaraki-ken, JP); Hirata; Toichi (Ushiku, JP); Sugiyama; Genroku (Ibaraki-ken, JP); Nakamura; Kazunori (Ibaraki-ken, JP); Ishikawa; Kouji (Ibaraki-ken, JP); Nakamura; Tsuyoshi (Ibaraki-ken, JP). Hydraulic Circuit System for Hydraulic Working Machine. U.S. Patent 5940997, August 24, 1999
    [98] Toyooka; Tsukasa (Ibaraki-ken, JP); Hirata; Toichi (Ibaraki-ken, JP); Sugiyama; Genroku (Ibaraki-ken, JP); Ishikawa; Kouji (Ibaraki-ken, JP); Nakamura; Tsuyoshi (Ibaraki-ken, JP). Hydraulic Control System for Construction Machine. U.S. Patent 5907951, June 1, 1999
    [99] Tohji; Yutaka (Hiroshima, JP). Hydraulic Control System. U.S. Patent 5743089, April 28, 1998
    [100] Uehara; Kazuo (Tokyo, JP); Tohma; Hideaki (Yokohama, JP); Sato; Yoshito (Hirakata, JP). Hydraulic Control System for Variable Displacement Pump. U.S. Patent 4248573, February 3, 1981
    [101] Moriya; Yukio (Hirakata, JP); Yoda; Tadashi (Komatsu, JP); Fukumoto; Hisashi (Hirakata, JP). Hydraulic Circuit System for Use in swivel Type Excavators. U.S. Patent 4531366, July 30, 1985
    [102] Ishikawa, Koji (Ibaraki, JP), Hirata, Toichi (Ushiku, JP), Sugiyama, Genroku (Ibaraki, JP). Hydraulic Drive System for Hydraulic Working Machines. U.S. Patent 5447027, September 5, 1995
    [103] Aoyagi, Yukio (Ibaraki, JP), Yasuda, Tomohiko (Kashiwa, JP). Hydraulic Drive System with Pressure Compensating Valve. U.S. Patent 5277027, January 11, 1994
    [104] Izumi; Eiki (Ibaragi, JP); Tanaka; Yasuo (Tsukuba, JP); Watanabe; Hiroshi (Ushiku, JP); Yoshida; Kuniaki (Tsuchiura, JP); Hirata; Toichi (Ushiku, JP). Control System for Load-sensing Hydraulic Drive Circuit. U.S. Patent 4967557, November 6, 1990
    [105] Yasuda; Gen (Ibaraki, JP). Hydraulic Drive System with Pressure Compensating Valve. U.S. Patent 5289679, March 1, 1994
    [106] Kamikawa; Nobuhisa (Neyagawa, JP); Nishida; Kimio (Hirakata, JP). Constant Power Displacement Control Cut-off System with Adjustable Relief Valve. U.S. Patent 5077974, January 7, 1992
    [107] Takamura; Fujitoshi (Osaka, JP). Fine Operation Mode Changeover Device for Hydraulic Excavator. U.S. Patent 5469646, November 28, 1995
    [108] Park; Hee W. (Seoul, KR). Hydraulic Control System for Excavations with an Improved Flow Control Valve. U.S. Patent 5609088, March 11, 1997
    [109] Ochiai; Masami (Atsugi, JP); Kanai; Takashi (Kashiwa, JP). Hydraulic Drive System and Valve Apparatus. U.S. Patent 5251444, October 12, 1993
    [110] Ito; Daijiro (Hirakata, JP); Imai; Hiroshi (Tsuzuki, JP). Circuit Capable of Varying Pump Discharge Volume in Closed-center load sensing system. U.S. Patent 5317871, June 7, 1994
    [111] Lukich; Michael S. (Peoria, IL). Hydraulic Power Control System. U.S.Patent 5468126, November 21, 1995
    [112] Watanabe; Hiroshi (Ushiku, JP); Tanaka; Yasuo (Tsukuba, JP); Izumi; Eiki (Ibaraki, JP); Onoue; Hiroshi (Ibaraki, JP); Nakamura; Shigetaka (Tsuchiura, JP). Load Sensing Control System for Hydraulic Machine. U.S. Patent 5285642, February 15, 1994
    [113] Tsuruga; Yasutaka (Ryugasaki, JP); Nakatani; Kenichiro (Tsuchiura, JP); Kawamoto, Junya (Tsuchiura, JP); Kanai; Takashi (Chiba-ken, JP). Engine Speed Control System for Construction Machine. U.S. Patent 6176126, January 23, 2001
    [114] Nakamura; Kazunori (Ibaraki-ken, JP). Engine Control System for Construction Machine. U.S. Patent 6021756, February 8, 2000
    [115] Lee Si Cheon (Changwon, KR); Song Myung Hoon (Changwon, KR). Method for Controlling RPM of Engine in Hydraulic Construction Machine. U.S.Patent 5682855, November 4, 1997
    [116] Nakamura; Kazunori (Ibaraki-ken, JP); Takahashi; Ei (Tsuchiura, JP); Toyooka, Tsukasa (Ibaraki-ken, JP); Ishikawa; Kouji (Ibaraki-ken, JP); Nakamura; Tsuyoshi (Ibaraki-ken, JP); Kowatari; Yoichi (Ibaraki-ken, JP); Shimamura; Tadatoshi (Ishioka, JP); Sugiyama; Genroku (Ibaraki-ken, JP); Hirata; Toichi (Ushiku, JP). Auto-acceleration System for Prime Mover of Hydraulic Construction Machine and Control System for Prime Mover and Hydraulic Pump. U.S. Patent 5930996, August 3,

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700