水电机组状态检修中若干关键技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
状态检修能最大限度地延长检修间隔,降低水电厂的运行成本,保证安全生产,为国民经济的持续发展保驾护航,水电厂的检修体制逐步由计划检修向状态检修过渡。然而由于水电机组是一个涉及到水力、电气和机械的复杂系统,人们对其故障机理、诊断策略、监测诊断系统数据通道、机组寿命评估体系、检修决策支持系统等的研究力度不足。水电机组状态检修围绕降低机组设备维护成本,提高设备利用率和检修的预见性,它不仅涉及到电力设备各个专业、多学科的技术问题,还涉及到一系列的管理科学上的问题。目前我国还没实现完全意义上的状态检修系统,因此对状态检修的若干关键技术的研究还是有着十分重大的现实意义。结合课题组多年来关于水电机组性能试验和在线监测故障诊断的课题,对水电机组故障机理、诊断方法、监测诊断系统数据通道、信号提取识别及预测展开研究,为最终实现水电厂状态检修提供一定的技术支撑。
    故障机理的研究是开展故障诊断的基础,水电机组故障机理的研究力度不足以让人们辨识故障类型,开展状态检修。通过理论分析、数值模拟和真机测试相结合的方法,对天荒坪电站异常抬机、三峡左岸电站6 号机组小开度异常振动、水轮机转轮裂纹机理展开研究。研究表明:天荒坪电站抬机现象的主要原因是密封环泄漏量的变化导致轴向力发生变化,而引起泄漏量变化的可能原因是密封部位的堵塞或者损坏; “负流量”不可能是三峡小开度异常振动的原因,分析了“水体共振”是一种可能的原因; 作用在叶片上的静应力和动应力达到叶片材料的疲劳极限,并累计损伤造成的微裂纹和裂纹的扩展,是造成叶片振动疲劳断裂的原因之一,其中动应力值较大是引起转轮叶片产生疲劳裂纹的主要原因。
    故障诊断方法关系到状态检修系统中对机组当前性能的合理评价,当前诊断方法不是很完善,传统方法或多或少在某些方面存在一些局限性。尝试引入CBR (Case Based Reasoning)诊断方法到水电机组故障诊断领域,降低了知识获取的难度; 对水电机组轴系模型进行一定改进,将轴系仿真结果作为故障诊断知识库,可缓解知识库瓶颈问题,通过对油膜力数据库插值获取油膜力,降低时间复杂度; 给出一种基于多方法诊断联盟的诊断策略,提高诊断精度。
According to condition based maintenance can mostly prolong the maintenance intervals and reduce operation cost, it can ensures safety operating of hydropower plants and the successive development of national economy. Nowadays, maintenance model is transferring from plan maintenance to condition based maintenance step by step. Since hydropower generator unit is a very complicated system that involving hydraulic, electrical and mechanical factors, such as the fault mechanism, diagnosis methods, data channel, evaluation principle of life and maintenance decision supporting system are not fully researched. Condition based maintenance system focuses on such fields as reducing units’maintenance cost, improving devices’operating efficiency and maintenance predictive. Since it is a difficult engineering includes electricity fields and management fields, there is no actual condition based maintenance system in real life. In line with performance test and monitoring diagnosis project that research team responded for, such key technologies for condition based maintenance as: fault mechanism, diagnosis methods, data channels, signal extracting, symptom identification and trend-based forecasting. All of these research can do some good for the eventually implementation of condition based maintenance.
    Fault reasons analysis is essential for fault diagnosis. It does some research on the extraordinary runner hang-up in Tian Huangping Hydropower Station, the abnormal vibration of Three Gorges Hydropower Station left bank #6 generator unit under 4% guide vane opening and the mechanism of turbine runner crack. By means of theoretical analysis, numerical simulation and prototype test. Research results indicate: the main cause of hang-up is the variety of leakage discharge of sealing ring, which results in the change of axial force of shaft, and the jam or damage of seal parts may lead to the leakage discharge variation; “negative discharge”can not be the cause of abnormal vibration under small opening and possible reason of “fluid structure resonance”is also analyzed; when static and dynamic stress acted on runner blade reach fatigue limitation, accumulated fatigue damage may leads to the micro crack or extend of crack, is responsible for runner blade fracture, and excessive dynamic stress is the main cause.
    And traditional diagnosis methods are not adequately. CBR (Case Based Reasoning) is introduced into hydropower generator sets fault diagnosis, and it lowers the difficulty of
    knowledge acquisition; also shafting model of hydropower generator units is modified to relief the bottleneck of knowledge repository by implementing shafting simulation results as the fault diagnosis knowledge database. Since oil film force acquisition by interpolating the oil film force database, time complexity is reduced. A diagnosis strategy based on multi method diagnosis league is also introduced to improve the diagnosis accuracy. Equipments’operating conditions can be obtained through axis orbit and conventional identification algorithm of axis orbit is low accuracy or too complex. A new method of axis orbit automatic identification base on moment invariant is proposed. It acquires the axis orbit shape parameters to help operation personnel to deeper diagnosis by ways of optimization method. Since signal extract algorithm is critical to determine whether symptom reflects current operating conditions and signal trend-based forecasting algorithm effects the decision of future operating conditions, local weak signal is extracted based on harmonic wavelet and prediction in line with maximal Lyapunov exponent is introduced into hydro-generator unit fields Data channels are also analyzed: a hybrid network transmission model of B/S (Browser/Server) and C/S (Client/Server) is used to consist of distributed monitoring and diagnosis system; memory database is adopted to decrease the times of operation of hard disk and improve the real–time performance; a new intelligent data store algorithm is brought forward to reduce the data size that stored in database and also assures sufficient data to analyze; Matlab Web Server is the first time introduced into hydro-generator sets faults diagnosis to implement distributed remote monitoring and diagnosis system.
引文
[1] 贺恭. 中国水电未来之路:加快开发与可持续发展. 水利水电技术, 2005, 36(2): 5-8.
    [2] 徐长义. 水电开发在我国能源战略中的地位浅析. 中国能源, 2005, 27(4): 26-30
    [3] 陆佑楣. 中国水电开发与可持续发展. 水利水电技术, 2005, 36(2): 1-4.
    [4] 周大兵. 抓住机遇开拓进取为促进水电建设事业更大发展而努力——在国家电力公司水电发展研讨会上的讲话. 贵州水力发电, 1999, (增刊): 2-10.
    [5] 李平诗. 浅谈水电厂的状态检修. 水力发电, 2002, 28(6): 1-3.
    [6] Schade H, Scheil H. Cost-effective Operation of Generators by Optimizing Maintenance Cycles. International Journal on Hydropower & Dam. 1997, 4(4): 83-87.
    [7] Changyu Liu, B Lung, Luqing Ye, et al, An Innovative Hydraulic Turbine Governor for Predictive Maintenance of Hydropower Plant. Proceedings of the 41st IEEE Conference on Decision and Control, Las Vegas, Nevada USA, December 2002: 925-929.
    [8] Bernhard P.Betting, Ray P.S.Han. Predictive Maintenance Using the Rotodynamic Model of a Hydraulic Turbine-Generator Rotor. Journal of Vibration and Acoustics. 1998, Vol.120: 441-448.
    [9] Chen Xiyang, Zhang Kewei, Peng Yucheng. Research On Multi Diagnosis Methods For Hydro-Generator Sets. 7th Biennial ASME Conference Engineering Systems Design and Analysis, Manchester, UK, July 19-22, 2004.
    [10] Amalia S, Kostas, K. A fuzzy knowledge based method for maintenance planning in a power system. Reliability Engineering and System Safety. 2002, 77:19-30.
    [11] Benati, Frigeri C, Siloestri G C. Vibration monitoring and mechanical diagnostics on large rotating machinery in ENEL power plants. Symposium on Diagnostics Rotating Machines in Power Plants, IFToMM/CISM, Udine, Oct.27-29, 1993.
    [12] Tanaka M. The diagnostic technologies in power plants in Japan. Symposium on Diagnostics Rotating Machines in Power Plants, IFToMM/CISM, Udine, Oc.27-29, 1993.
    [13] G.K.Ashley, P.E.Duggan, S.WW.Shoe, and et al. Expert systems provide help in life extension, availability improvement. Power Engineering. 1988,92(5): 46-50.
    [14] Donglas J.Smith. Artificial intelligence-today's new design and diagnostic tool. Power Engineering. 1989, 93(1): 26-30.
    [15] 王海. 水轮发电机组状态检修系统设计及其相关技术研究. 博士后研究工作报告, 华中科技大学, 2003.
    [16] Bendat J S, Piersol A G. Plant vibration monitoring at Loviisa nuclear power plant. Noise and Vibration, 1991, 22(8): 34-37.
    [17] Yan T, Ota J, Nakamura, and et al. Concept Design of Remote Fault Diagnosis System for Autonomous Mobile Robots. Proceedings of International Conference on Intelligent Robots and Systems. California, USA, 2000, 2:931-936.
    [18] Li Hongsheng, Shi Tielin, Yang Shuzi, and et al. Internet-based Remote Diagnosis: Concept, System Architecture and Prototype. Proceedings of the 3rd World Congress on Intelligent Control and Automation. Hefei, China, 2001, 1:719-723.
    [19] Joussellin Agnes, Chevalier Roger. Diagnosis of faults in EDF power plants: From monitoring to diagnosis. American Society of Mechanical Engineers, Pressure Vesselsand Piping Division. 1994, 14:19-23.
    [20] NICHOLAS HMC, HOLBUM. Remote instrument diagnosis on the Internet. IEEE EXPERT Intelligent Systems & Their Applications, 1998, 13(3): 70-76.
    [21] A.W.Lees, M.I.Friswell. Fault Diagnosis of Rotating Machinery. Shock and Vibration Digest, 1998, 30(1): 4-13.
    [22] 陈喜阳, 张克危彭玉成. 水电机组在线监测系统实时数据智能存储策略. 电力系统自动化, 2004, 28(7): 67-70.
    [23] 沈东, 褚福涛, 陈思. 水轮发电机组振动故障诊断与识别. 水动力学研究与进展(A 辑), 2000, 15(1): 129-133.
    [24] 沈东, 褚福涛, 陈思. 水轮发电机组振动故障诊断方法研究. 红水河, 2000,19(1): 61-63.
    [25] Rheingans, W.J., Power Swings in Hydroelectric Power Plants, ASME, Philadelphia, USA, 1904.
    [26] Driaz, P., A Contribution to the Understanding of Flow in Draft Tube of Francis Turbine, IAHR Symposium. Nice, France, 1960.
    [27] Kubota, T., Cavitation Characteristics of Force Core in the Flow of Francis Turbine, Fuji Electric Co., Review, 1972, 18(3).
    [28] Nlith, P., Contribution to Clarifying the Incepting of Non-stationary Flow Phenomena in the Draft tube of High Specific Speed Francis Turbines at Partly Load Operation. Voith, Heidenheim, Frg, 1973.
    [29] Hosoi, Y., Contributions to Model Test of Draft Tube Surges of Francis Turbines, ISCE/IAHR/ASME joint Symposium, Forts Collins, USA, 1978.
    [30] W.Shyy., EBaaten.. Three Dimensional analysis of the Flow in the Curved Hydraulic Turbine Draft tube. Int.J Num. Meth. in Fluid. 1986, 6 :861-882.
    [31] T C Vu., W Shyy., Viscous Flow Analysis for the hydraulic Turbine Draft tube. Proceedings of the 19th IAHR Symposium, Trondheim, Norway, 1998.
    [32] Wang X M, Nish M, Tsukamoto H, A Simple model for Predicting the Draft tube Surge, Proceedings of the 17th IAHR Symposium, Beijing, China, 1994:95-106.
    [33] Wang X M, Nishi M. Swirling Flow with Helical Vortex Core in a Draft Tube Predicted by a Vortex Method [C]. E Cabrera, V Espert and F Martinez. 18th IAHR Symposium. Dordrecht: Kluwer Academic Publishers Incorporates, 1996: 965-974.
    [34] Ales Skotak. Of the Helical Vortex in the Turbine Draft Tube Modeling. Proceedings of the 20th IAHR Symposium, Charlotte, United States, 2000.
    [35] Albert RUPRECHT, Thomas HELMRICH, Thomas SCHERER. Simulation of Vortex Rope in a Turbine Draft Tube. Proceedings of the 22th IAHR Symposium, Lausanne, Switzerland, 2002.
    [36] Mirjam SICK, Peter DOERFLER, Michael CASEY. CFD Simulation of the Draft Tube Vortex. Proceedings of the 22th IAHR Symposium, Lausanne, Switzerland, 2002.
    [37] Fisher, R.K. An overview of root causes and solutions to runner crack problems at the XiaoLangDi project. Shanghai Hydro-Power Equipment Company, Ltd. Seminar: December 12-14, 2001 Shanghai, China.
    [38] Richard.K.FISHER, JR., Ulrich SEIDEL, Gilbert GROSSE, Werner GFELLER, and et al. A Case Study In Resonant Hydroelastic Vibration: The Causes For The XiaoLangDi Hydroelectric Project. Proceedings of the XXIst IAHR Symposium on Hydraulic Machinery and Systems. September 9-12, 2002, Lausanne.
    [39] 罗永要, 王正伟, 梁权伟. 混流式水轮机转轮动载荷作用下的应力特性. 清华大学学报(自然科学版), 2005, 45(2): 235-237, 257.
    [40] 钟苏. 关于水轮机抗振与防裂纹设计的建议. 水力发电, 2005, 31(2): 54-57.
    [41] 于纪幸, 徐抱朴. 大朝山水电站水轮机转轮制造和质量分析. 大电机技术,2004, 2:46~51.
    [42] 梁武科, 赵道利. 水电机组监测与诊断技术的现状及发展. 水利水电技术, 2003, 34(4): 41-43.
    [43] M.Stefik. The Organization of Expert Systems. AI, 1982,18(2): 62-69.
    [44] 黄可鸣. 专家系统二十年. 计算机科学, 1984, 3: 26-32.
    [45] Minakawa, Kunugi. Development and implementation of a power system fault diagnosis expert system. IEEE Transactions Power Systems. 1995, 10(2): 932-939.
    [46] Heung-Jae Lee, Bok-Shin Ahn, Young-Moon Park. A Fault Diagnosis Expert System for Distribution Substations. IEEE Transactions on Power Delivery, 2000, 1:92-97.
    [47] Angeli Chr, Chatzinikolaou A. Expert system approach to fault diagnosis in hydraulic systems. Expert System, 1995, 12(4): 323-330.
    [48] 陈卫钢, 周建中, 常黎. 基于专家系统的水电机组振动故障诊断研究. 华中科技大学学报(自然科学版), 2002, 30(6): 102-104.
    [49] 胡守仁, 余少波, 戴葵. 神经网络导论. 北京:国防科技大学学出版社,1993: 1-10
    [50] 董聪. 人工神经网络:当前的进展与问题. 科技导报, 1999, 7:85-89
    [51] Rumerhart D.E, Hinton G.E, Williams R.J. Learning Internal Representations by Error Propagation in Parallel Distributed Processing.Vol.1 MIT Press, Cambridge, MA, 1986:318-362
    [52] I.A.Basheer, M.Hajmeer. Artificial Neural Network. Journal Microbiological Methods, 2000, (43): 3-31.
    [53] Zhang Ren, Jie Chen, Xiaojing Tang, and et al. A combined method based on neural network for control system fault detection and diagnosis. Proceedings of the 2000 IEEE International Conference on Control Applications, 2000, 104-108.
    [54] 梁业国, 王乘. 人工神经网络在水电机组故障诊断中的应用研究. 四川水力发电, 2003, 22(1): 57-59.
    [55] 杨晓萍, 解建宝, 孙超图. 水轮发电机组振动故障诊断的神经网络方法研究. 水利学报, 1998.4(增刊): 94-97.
    [56] 刘光临, 程宏举. 大型水轮机组故障诊断的神经网络方法研究. 水力发电学报, 2001, 2:86-92.
    [57] 符向前, 刘光临, 蒋劲. 神经网络在水轮发电机组状态监测与诊断系统中的应用. 武汉大学学报(工学版), 2002, 35(1):24-28.
    [58] Cunningham P. Knowledge Engineering Issues In Developing A Case-based Reasoning Application. Knowledge-Based Systems, 1999, 12(7): 371-379.
    [59] Kolodner J. Maintaining organization in a dynamic long-term memory. Cognitive Science, 1983, 7(4): 243-280.
    [60] B.P.Allen. Case-Based Reasoning: Business Applications. Communications of the ACM, 1994, 37(3):40-42.
    [61] 程瑞琪, 杨文栋. 基于事例与因果模型的故障诊断程. 机械科学与技术, 18(5): 783-785.
    [62] 阮跃. 案例推理在汽轮发电机组故障诊断中的应用. 热能动力工程, 2000, 15(87): 301-303.
    [63] Horstad. Rotodynamic Behaviour of Hydropower Units. Proceedings of the 22nd IAHR Symposium on Hydraulic Machinery and Systems. July 2, 2004, Sweden.
    [64] Dara Childs. Turbomachinery Rotodynamic. John Wiley & Sons, Inc., pp 364-368, 1993.
    [65] An improved Method for Calculating Critical speeds and Rotodynamic Stability of Turbomachinery. ASME Journal of Engineering for Power, Vol 105, 1983.
    [66] B.P.Betting, R.P.S.han. Modeling the Lateral Vibration of Hydraulic Turbine-Generator Rotor. ASME Journal of Vibration and Acoustics, 1999, Vol 121: 322-327.
    [67] 李苹, 窦海波, 王正. 水轮发电机组主轴系统的建模及其非线性瞬态响应. 清华大学学报(自然版), 1998, 38 (6) :123-128.
    [68] 杨晓萍, 解建宝. 水轮发电机组的事故停机分析与故障诊断专家系统的研究. 西安理工大学学报, 1998, 14(2): 201-205.
    [69] Karen A. Reay, John D. Andrews. A fault tree analysis strategy using binary decision diagrams. Reliability Engineering & System Safety. 2002, 78: 45-56.
    [70] 洪治, 蔡维由. 模糊故障树诊断及应用.武汉大学学报(工学版), 2001, 34(1):93-105.
    [71] 陈铁华, 陈启卷. 模糊聚类分析在水电机组振动故障诊断中的应用. 中国电机工程学报, 2002, 22(3): 43-47.
    [72] Yongyong He, Fulei Chu, Binglin Zhong. A study on group decision-making based fault multi-symptom-domain consensus diagnosis. Reliability Engineering & System Safety. 2001, 74: 43-52.
    [73] 石为人, 罗雪松, 胡宁. 基于小波多分辨率分析的信号消噪. 重庆大学学报(自然科学版), 2002, 25(6): 59-62.
    [74] 赵华, 刘荣林, 于艳红. 小波包分析在电机信号消噪处理中的应用. 中国民航学院院报, 2004, 22(2): 13-16.
    [75] 胡国胜, 任震. 短期电力负荷非线性预测模型的比较. 电气应用, 2005, 24(1): 48-53.
    [76] 彭志科, 何永勇, 卢青等. 小波局部极大模方法在轴心轨迹辨识中的应用研究. 机械工程学报, 2002, 38(7): 6-11.
    [77] 王海, 郑莉媛. 水轮发电机组轴心轨迹自动识别方法研究. 水力发电学报, 2002, 3: 73-80.
    [78] 付波, 周建中, 陈文清等. 一种基于傅立叶描述子的轴心轨迹自动识别方法. 电力系统自动化, 2004, 28(12): 40-44, 50.
    [79] 倪传坤, 周建中. 基于SVD 的水电机组轴心轨迹自动识别. 水电自动化于大坝监测, 2003, 27(6): 22-24.
    [80] 戴勇峰, 王海, 张克危等. 混流可逆式转轮轴向水推力研究. 水力发电学报, 2005, 24(2): 105-109, 113.
    [81] 戴勇峰, 王海, 张克危等. 混流可逆式转轮密封装置的泄漏量及其对机组运行的影响. 水力发电学报, 2005, 24(2): 100-104.
    [82] 张克危. 流体机械原理(上册). 北京:机械工业出版社, 2000: 291-294.
    [83] 王者昌, 陈怀宁. 水轮机叶片裂纹的产生及对策. 大电机技术, 2003, 6: 51-57.
    [84] Barletta R. An introduction to case-based reasoning. AI Expert, 1991, 8: 43-49.
    [85] Takashi Ishikawa. Analogy by Abstraction: Case Retrieval and Adaptation for Inventive Design Expert Systems. Expert System with Application, 1996, 10(3):351-356.
    [86] 闻邦椿, 夏松波, 王正等. 高等转子动力学——理论、技术与应用. 北京: 机械工业出版社. 2000 年1 月. 35-39.
    [87] Ratan S, Rodriguez J. Transient dynamic analysis of rotor using SMAC techniques. Journal of Vibration and Acoustics ASME, 1992, 114(3): 477-488.
    [88] Lee Anchen, Kang Yuan, Liu Shinli. A modified transfer matrix method for linear rotor-bearing systems. Journal of Applied Mechanics ASME, 1991, 58(19): 776-783.
    [89] Cardinali R, Nordmann R, Sperber A. Dynamic Simulation of Non-linear Models of Hydroelectric Machinery. Mechanical System and Signal Processing, 1993, 7(1):29-44.
    [90] Yongyong He, Fulei Chu, Binglin Zhong. A study on group decision-making based fault multi-symptom-domain consensus diagnosis. Reliability Engineering and System Safety, 2001, 74: 43-52.
    [91] Hu M K. Visual pattern recognition by moment invariants. IRE Trans. Information Theory. 1962, 8: 179-187.
    [92] Wood J. Invariant pattern recognition: a review. Pattern recognition, 1996, 29(1): 1-17.
    [93] 柳松青. MATALAB 神经网络BP 网络研究与应用. 计算机工程与设计, 2003, 24(11): 81-83.
    [94] 卿湘运, 段红, 魏俊民. 谐波小波在动平衡机不平衡量信号提取中的应用, 浙江工程学院学报. 2003, 20(2):100-103.
    [95] 李舜酩. 谐波小波包方法及其对转子亚频轴心轨迹的提取, 机械工程学报. 2004, 40(9):133-137.
    [96] 吕金虎, 陆君安, 陈士华. 混沌时间序列分析及其应用, 湖北武汉: 武汉大学出版社, 2002.1
    [97] 伍友利, 董福安, 李世飞. 基于混沌理论的太阳黑子时间序列预测, 陕西师范大学学报(自然科学版). 2004,32 (专辑): 81-83.
    [98] J Stankovic, S H Son, J Hansson. Misconceptions about Real-time Database. IEEE Computer, 1999, 32(6): 29-36.
    [99] 江浩. 火电厂实时系统数据通道的设计与实现. 电力系统自动化, 2002.1: 62~64, 74.
    [100] Jose Garcia, Leif Sornmo, Salvador Olmos. Remote Processing Server for ECG-Based Clinical Diagnosis Support. IEEE Transactions on Information Technology in Biomedicine, 6(4), 2002, 277-284.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700