p型透明导电氧化物CuAlO_2薄膜的制备与性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
基于价带化学修饰(CMVB)理论首先被发现的Cu~+基p型透明导电氧化物CuAlO_2薄膜具有独特的光电特性,它的成功开发为实现半导体全透明光电器件如透明二极管、透明晶体管提供了可能性,也推动了传统意义上透明导电氧化物(TCO)薄膜到透明氧化物半导体(TOS)薄膜的发展。然而,制备性能良好的CuAlO_2薄膜一直是一个难题,到目前为止已经有许多方法被用来制备该薄膜,但是所制备的薄膜结构与性能差异很大。针对目前国内外在CuAlO_2薄膜方面的研究现状,结合溅射法所具有的众多优点特别是在工业化大规模生产中所具有的优势地位,我们探索使用射频磁控溅射法在石英和Si衬底上制备高质量p型CuAlO_2薄膜,已经取得了一定的工作进展,归纳起来可以概括为以下几部分。
     1.通过对溅射参数的调节成功抑制了Cu~+的氧化,在石英和Si衬底上沉积了以CuAlO_2相为主、兼有少量Cu_2O相的Cu-Al-O薄膜。厚度为300nm左右的薄膜对可见光的透过率介于60%~70%之间,计算拟合得到直接和间接带隙分别为3.52eV和1.83eV左右。Cu-Al-O薄膜的最低室温电阻率为2.2×10~2Ωcm,在近室温区Cu-Al-O薄膜电导率随温度变化遵从Arrhenius规律,揭示了薄膜导电符合半导体热激活机制。
     2.利用CuAlO_2强烈的各向异性电导率(σ_(ab)>>σ_c)特性,对CuAlO_2薄膜样品进行退火处理(氮气气氛保护900℃退火5h)成功获得了沿(001)晶面优先取向生长薄膜,实现了电阻率三个数量级的降低。退火CuAlO_2薄膜对可见光透过率在60%附近,红外光高于80%,拟合发现CuAlO_2薄膜具有四个不同能量范围的直接带隙,分别是~3.00eV、~3.15eV、~3.50eV和~3.75eV,可能对应布里渊区不同点的直接跃迁。研究发现金属Ag电极与退火CuAlO_2薄膜之间具有良好的欧姆接触,最小接触电阻率为0.32Ωcm~2。该p型薄膜具有最小电阻率37Ωcm,比未退火薄膜下降了3个数量级。优先取向生长CuAlO_2薄膜在近室温区(>190K)符合热激活导电机制,低温区(<185K)以二维变程跳跃导电模型为主。
     3.鉴于富余氧原子在CuAlO_2薄膜导电特性方面所起到的重要作用,不同氧分压CuAlO_2薄膜被制备,发现富余氧原子在提供有利于薄膜p型导电环境的同时,对CuAlO_2薄膜的结构也造成了一定程度的影响。通过使用XRD、Raman和AFM等手段详细研究了不同氧分压CuAlO_2薄膜在经退火处理之后的结构和微结构变化。发现20%氧分压CuAlO_2薄膜表现出了最佳的结构特性。由于富氧原子处入CuAlO_2晶格间隙位加剧了沿c轴方向负热膨胀行为而造成较大的内应力,薄膜在释放内应力的同时导致薄膜表面出现一些微观空洞,而且随着氧分压的增加微观空洞逐渐增多变大变深,最终在60%氧分压时致使薄膜成为非晶态。
     4.实现了n型低阻Si衬底上制备p型CuAlO_2薄膜而构成的突变异质结。在Ag/Si/Ag和Ag/CuAlO_2/Ag测量Ⅰ-Ⅴ特性均显示线形变化的基础上,检测发现p-CuAlO_2/n-Si异质结具有较好的整流特性,开启电压为0.5V左右。由于Si的载流子浓度高出CuAlO_2 3~4个数量级,按照p-n~+单边突变结理论对该异质结进行了计算拟合,发现界面态效应和串联电阻效应是影响该异质结整流特性的重要因素,并且拟合得到串联电阻为13Ω。
     5.鉴于N元素在p型TCO薄膜中所起到的受主杂质作用,采用半导体掺杂技术成功实现了对CuAlO_2薄膜的受主N掺杂。以N_2O气体为N源,按不同流量比混入溅射气体中制备N掺杂CuAlO_2薄膜。AES检测发现CuAlO_2薄膜中Cu、Al原子比符合化学计量比,当N_2O流量比为15%时,薄膜中的N原子含量基本饱和,达到CuAlO_2化学计量比中O原子的5.9at.%左右。N掺杂CuAlO_2薄膜的最小电阻率为10Ωcm,最大载流子浓度为10~(16)cm~(-3),与未掺杂薄膜相比分别降低和提高了一个数量级。掺杂CuAlO_2薄膜光学透明度基本上未发生变化,在可见光范围内透过率介于60-70%之间,对近红外光透过率最高超过85%,而掺杂样品的光学吸收边与未掺杂相比出现了蓝移,可能与掺杂产生空穴载流子造成的Burstein-Moss效应有关。
Based upon the theory of "the chemical modulation of the valence band", was firstly discovered as a p-type transparent conducting oxide (TCO), which has the especial optical and electrical properties. The discovery of p-type TCO made possible the fabrication of transparent oxide optoelectronic devices such as transparent p-n junction diodes and transistors using an appropriate combination of p-and n-type TCO films, which also led TCO material to the frontier of transparent oxide semiconductor (TOS). However, the preparation of CuAlO_2 film with excellent properties always is a very difficult case. Up to now, several techniques, such as pulse laser deposition, plasma enhanced chemical vapor deposition and sputtering, have been used to synthesize CuAlO_2 films, which are very different on the structure and optical/electrical properties. Considering issues about the present developing state of CuAlO_2 film and the superiority of sputtering in the industrialization, the dissertation is aimed at fabricating high-quality p-type CuAlO_2 films on quartz glass and Si substrates using rf magnetron sputtering, the main research processes achieved have been summed up as following:
     1. The optimized parameters have been obtained successfully to deposit Cu-Al-O films on quartz glass and Si substrates. The determination of chemical composition and valence has been solved. CuAlO_2 phase is found the dominator in Cu-Al-O films and a little Cu_2O also exists. The transmittance of Cu-Al-0 film with the thickness around 300 nm is about 60~70 % in the visible light range. The direct and indirect band gaps of the films are estimated by the linear fitting around 3.52 and 1.83 eV, respectively. The minimal resistivity of Cu-Al-0 film is 2.2×10~2Ωcm at room temperature. Temperature dependence of the conductivity is in accord with the Arrhenius rule, indicating that the film is of semiconducting thermal-activation type in the near room temperature range.
     2. Actively utilized the anisotropic conductivity property (σ_(ab)>>σ_c) of CuAlO_2, the decrease of the resisitivity around three orders of magnitude for CuAlO_2 film is realized by the optimized annealing technique (in N_2 ambient at 900℃for 5 h). For the annealed CuAlO_2 film, the transmittance is around 60 % in the visible light range and above 80 % in the near infrared light. It is found that there are four direct band gaps around -3.00, -3.15, -3.50 and -3.75eV, respectively, estimated from the transmittance and reflectance data of the annealed films. They might be related with the different direct transitions in the Brillouin zone. The excellent ohmic contact is obtained between Ag electrodes and the annealed films, and the specific contact resistance can be decreased to 0.32Ωcm-2. The minimal resistivity of the annealed CuAlO_2 film is 37Ωcm, which is lower three orders of magnitude than that of the as-deposited one. Temperature dependence of conductivity for p-type CuAlO_2 film can be described by a thermal-activation theory when the temperature is above 190 K, but below 185 K a two-dimension variable-range hopping mechanism becomes dominant.
     3. For the native p-type CuAlO_2 film, adequate rich-oxygen is in favor of the improvement of the conductivity. However, the effect of the rich oxygen atoms on the structural properties for annealed CuAlO_2 film is also very obvious. The annealed films deposited at different oxygen parital pressures were characterized by XRD, Raman and AFM. It is found that the film prepared at 20 % oxygen partial pressure exhibits the excellent structure property. When the oxygen partial pressure is above 20 %, the anisotropic expansion behavior of CuAlO_2 will be obviously aggravated due to the excess oxygen atoms in interstitial position, which results in some microscopic cavities appeared in the surface of the films to release the internal stress during the annealing treatment. Moreover, the cavities become large with increasing oxygen concentration, which gradually degenerate the CuAlO_2 film to the amorphous state up to 60 % oxygen partial pressure.
     4. The p-CuAlO_2/n-Si heterojunction has been firstly prepared through sputtering CuAlO_2 film on low resistance Si substrate. Based upon the linear I-V characterizations of Ag/Si/Ag and Ag/CuAlO_2/Ag, the p-CuAlO_2/n-Si junction is detected a good rectifying property with the cut-in voltage of 0.5 V. Because the carrier concentration of n-Si is larger 3-4 orders of magnitude than that of p-CuAlO_2, the heterojunction can be fitted by the theory of p-n~+ one-sided step junction. It is found that the effect of the interface state and series resistance is not neglected for the rectifying property of the junction. Moreover, the series resistance is fitted around 13Ωfor p-CuAlO_2/n-Si heterojunction.
     5. N doped CuA102 films have been prepared successfully by sputtering under the mix ambience of N_2O, O_2 and Ar. N concentration detected by AES is 5.9 at.% for the film doped with 15 % N_2O specific flux, indicating that acceptor impurities N are doped into CuAlO_2 films indeed. The optimal N doped film shows the minimal resistivity of 10Ωcm and the maximal hole concentration of 10~(16)cm~(-3), which are decreased and increased one order of magnitude comparing with the undoped CuAlO_2 thin film, respectively. The transmittance of N doped CuAlO_2 films are 60-70 % in the visible light range and above 85 % in the near infrared light. A blue-shift of optical absorption edge is observed for N doped CuAlO_2 film, which might be due to the Burstein-Moss effect.
引文
[1] H. Kawazoe, H. Yanagi, K. Ueda, H. Hosono, MRS BULLETIN, 8 (2000) 28.
    [2] C. H. Park, S. B. Zhang, S. H. Wei, Phys. Rev. B, 66 (2002) 073202.
    [3] E.C. Lee, Y. S. Kim, Y. G. Jin, K. J. Chang, Phys. Rev. B, 64 (2001) 085120.
    [4] T. Yamamoto, Thin Solid Films, 420-421 (2002) 100.
    [5] J. M. Bian, X. M. Li, X. D. Gao, W. D. Yu, L. D. Chen, Appl. Phys. Lett., 84(2004) 541.
    [6] H. Kawazoe, M. Yasukawa, H. Hyodo, et al., Nature 389 (1997) 939.
    [7] S. Fraga,J. Karwowski, K. M. S. Saxena, Handbook of Atomic Data (Elsevier, Amsterdam, (1976) p. 259.
    [8] H. Mizoguchi, "Electronic Structure and Physical Properties of 6s~2-Metal Oxides," PhD thesis, Tokyo Institute of Technology, 1996.
    [9] R.D. Shannon, J. L. Gilson, R. J. Bouchard, J. Phys. Chem. Solids, 38 (1977)877.
    [10] F. A. Benko, F. P. Koffyberg, J. Phys. Chem. Solids, 45 (1984) 57.
    [11]B. J. Ingram, T. 0. Mason, R. Asahi, K. T. Park, A. J. Freeman, Phys. Rev. B, 64, (2001)155114.
    
    [12]F. A. Benko, F. P. Koffyberg, J. Phys. Chem. Solids, 45 (1984) 57.
    [13]H. Yanagi, S. I. Inoue, K. Ueda, H. Kawazoe, H. Hosono, N. Hamada, J. Appl. Phys., 88 (2000) 4159.
    
    [14] J. P. Perdew, A. Zunger, Phys. Rev. B, 23 (1981) 5048.
    [15]Th. Dittrich, L. Dloczik, T. Guminskaya, et al. Appl. Phys. Lett., 85 (2004) 742.
    [16]K. Tonooka, H. Bando, Y. Aiura, Thin Solid Films, 445 (2003) 327.
    [17]X. G. Zheng, K. Taniguchi, A. Takahashi, et al. Appl. Phys. Lett., 85 (2004) 1728.
    [18] A. N. Banerjee, K. K. Chattopadhyay, Appl. Surf. Science, 225 (2004) 243.
    [19]A. N. Banerjee, C. K. Ghosh, et al. Physica B, 370 (2005) 264.
    [20] A. N. Banerjee, R. Maity, P. K. Ghosh, et al. Thin Solid Films, 474 (2005) 261.
    [21] K. Park, K. Y. Ko, et al. Mater. Sci. Engin. B, 129 (2006) 1.
    [22]N. Koriche, A. Bouguelia, et al. International J. Hydrogen Engery, 30 (2005) 693.
    [23] R. E. Stauber, J. D. Perkins, et al. Electrochem. Solid-State Lett, 2 (1999) 654.
    [24] H. Yanagi, H. Kawazoe, A. Kudo, et al. J. Electroceramics, 4 (2000) 407.
    [25] A. N. Banerjee, S. Kundoo, K. K. Chattopadhyay, Thin Solid Films, 440 (2003) 5.
    
    [26] A. N. Banerjee, R. Maity, K. K. Chattopadhyay, Mater. Lett., 58 (2003) 10.
    [27] C. H. Ong, H. Gong, Thin Solid Films, 445 (2003) 299.
    [28] A. N. Banerjee, K. K. Chattopadhyay, J. Appl. Phys., 97 (2005) 084308.
    [29] A. N. Banerjee, C. K. Ghosh, et al. Solar Energy Materials & Solar Cells, 89 (2005) 75.
    
    [30] J. H. Shy, B. H. Tseng, J. Physics and Chemistry of Solids, 66 (2005) 2123.
    [31] Y. Wang, H. Gong, Adv. Mater. CVD, 6 (2000) 285.
    [32] H. Gong, Y. Wang, Y. Luo, Appl. Phys. Lett., 76 (2000) 26.
    [33] J. L. Cai, H. Gong, J. Appl. Phys., 98 (2005) 033707.
    [34] S. M. Gao, Y. Zhao, P. P. Gou, et al. Nanotechnology, 14 (2003) 538.
    [35]H. Gong, Y. Wang, Y. Luo, Appl. Phys. Lett., 76(2000) 3959.
    [36] D. Y. Shahriari, A. Barnabe, D. Ko, et al. Chem. Mater., 16 (2004) 5616.
    [37]K. Tonooka, K. Shimokawa, et al. Thin Solid Films, 411 (2002) 129.
    [38]C. Bouzidi, H. Bouzouita, et al. Mater. Sci. Engin. B, 118 (2005) 259.
    [39] A. Kudo, H. Yanagi, K. Ueda, et al. Appl. Phys. Lett., 75 (1999) 2851.
    [40]H. Ohta, K. Kawamura, M. Orita, et al. Appl. Phys. Lett., 77 (2000) 475.
    [41]H. Hosono, H. Ohta, K. Hayashi, et al. J. Cryst. Growth, 237 (2002) 496.
    [42] E. S. Vlakhov, T. I. Donchev, A. Y. Spasov, K. D. Orr, K. A. Nenkov, A. Handstein, S. Pignard, H. Vincent, Vacuum, 69 (2003) 249.
    [1] R. Kumar, J. P. Sharma, S. S. Sekhon, Eruopean Polymer Jouranl, 41 (2005)2718.
    [2] T. Ohmi, J. Vac. Sci. Technol. A, 13 (1995) 1665.
    [3] G Birmig, C. EQuate, Phys. Rev. Lett., 56 (1986) 930.
    [4] P. E. J. Flewitt, R. K. Wild, Physical Methods for Materials Characterization, Published by Institute of Physics Publishing.
    [1] T. Ishiguro, A. Kitazawa, N. Mizutani, and M. Kato, J. Solid State Chem., 40(1981) 170.
    [2] H. Kawazoe, M. Yasukawa, H. Hyodo, et al., Nature 389 (1997) 939.
    [3] 高善民,张江,王群,戴瑛,黄柏标,功能材料,37(2006)118。
    [4] 赵大庆,姚为,粉末冶金技术,22(2004)333。
    [1] T. Dittrich, L. Dloczik, T. Guminskaya, and M. Ch. Lux-Steiner, Appl. Phys. Lett.85 (2004) 742-744
    [2] B. Mahrov, G. Boschloo, A. Hagfeldt, L. Dloczik and Th. Dittrieh, Appl. Phys. Lett. 84 (2004) 5455-5457
    [3] K. Tonooka, H. Bando, Y. Aiura, Thin Solid Films 445 (2003) 327-331
    [4] X. G. Zheng, K. Taniguchi, A. Takahashi, Y. Liu and C. N. Xu, Appl. Phys. Lett.85 (2004) 1728-1730
    [5] A. N. Banerjee, K. K. Chattopadhyay, Applied Surface Science 225 (2004)243-249
    [6] A. N. Banerjee, R. Malty, P.K. Ghosh, K.K. Chattopadhyay, Thin Solid Films474(2005)261-266
    [7] H. Kawazoe, M. Yasukawa, H. Hyodo, M. Kurita, H. Yanagi and H. Hosono, Nature 389(1997)939-942
    [8] H. Yanagi, S. Inoue, K. Ueda, H. Kawazoe, H. Hosono, N. Hamada, J. Appl. Phys., 88(2000)4159
    [9] H. Gong, Y. Wang, and Y. Luo, Appl. Phys. Lett. 76 (2000) 3959-3961
    [10] J. L. Cai and H. Gong, J. Appl. Phys. 98, (2005) 033707.
    [11] A. N. Banerjee, K. K. Chattopadhyay, J. Appl. Phys. 97 (2005) 084308-084315
    [12] S. Gao, Y. Zhao, P. Gou, N. Chen and Y. Xie, Nanotechnology 14 (2003)538-541
    [13] K. Tonooka, K. Shimokawa , O. Nishimura, Thin Solid Films 411(2002)129-133
    [14] C. Bouzidi, H. Bouzouita, A. Timoumi, B. Rezig, Mater. Sci. Eng. B 118(2005)259-263
    [15] 陈光华,邓金祥等,新型电子薄膜材料,北京:化学工业出版社,2002,pp.428。
    [16] A. N. Banerjee, S. Kundoo, K. K. Chattopadhyay, Thin Solid Films, 440 (2003)5.
    [17] Farmer VC. The infrared spectra of minerals, Beijing, Science press, 1982.
    [18] 刘恩科,朱秉升,罗晋生等,半导体物理学,第四版,长沙:国防工业出版社,1994 pp.271-273。
    [19] 甄汉生等,全国固体薄膜学术会议论文集,1988.
    [20] K. L. Chopra, Thin Film Phenomenon, Mc Graw-Hill, New York, 1969.
    [21] F. Demichelis, G. Kaniadakis, A. Tagliaferro, and E. Tresso, Appl. Opt. 26 (1987)1737.
    [22] J. I. Pankove, Optical Processes in Semiconductors, Prentice-Hall, Englewood Cliffs, NJ, 1971.
    [23] Y. Wang, H. Gong, F. R. Zhu, et al. Mater. Sci. Eng. B, 85 (2001) 131.
    [24] A. N. Banerjee, R. Maity, P. K. Ghosh, et al. Thin Solid Films, 474 (2005) 261.
    [25] H. Katayama-Yoshida, T. Koyanagi, H. Funashima, et. al, Solid State Commun.126(2003)135-139;
    [26] Y. Wang, H. Gong, Adv. Mater. CVD 6(2000)285.
    [27] 黄华,朱长飞,刘卫,化学物理学报,17(2004)161.
    [1] H. Kawazoe, H. Yanagi, K. Ueda, and H. Hosono, MRS BULL 8(2000)28.
    [2] T. Ishiguro, A. Kitazawa, N. Mizutani, M. Kato, J. Solid State Chem., 40(1981)170.
    [3] T. Ishiguro, N. Ishizwa, N. Mizutani, M. Kato, K. Tanaka, F. Marumo, Acta Crystallogr., Sect. B: Struct. Sci. B, 39 (1983) 564.
    [4] A. Buljan, P. Alemany, and E. Ruiz, J. Phys. Chem. B, 103 (1999) 8060.
    [5] M. S. Lee, T. Y. Kim, and D. Kim, Appl. Phys. Lett.,79(2001)2028.
    [6] Hiromichi Ohta and Hideo Hosono, materialstoday, 6(2004)42.
    [7] Kenneth Barbalace, Periodic Table of Elements, EnvironmentalChemistry.com.1995-2006. Accessed on-line: 12/9/2006 http://EnvironmentalChemistry.com//yogi/periodic/
    [8] K.T. Jacob, C. B. Alcock, Thermodynamics of copper aluminates (CuAlO_2 and CuAl_2O_4) and phase equilibriums in the system Cu_2O-CuO-Al_2O_3, J. Am. Ceram. Sot., 1975, 58(5-6): p.192.
    [9] K. Kato, K. Tanaka, K. Suzuki, T. Kimura, K. Nishizawa, and T. Miki, Appl. Phys. Lett. 86 (2005)112901.
    [10] W. Lan, X. Q. Liu, C. M. Huang, G, M. Tang, Y. Yang and Y. Y. Wang, Acta Phys. Sin. 55 (2006) 748.
    [11] H. Yanagi, S. Inoue, K. Ueda, H. Kawazoe, H. Hosono, N. Hamada, J. Appl. Phys. 88(2000)4159.
    [12] H. Gong, Y. Wang, and Y. Luo, Appl. Phys. Lett. 76 (2000) 3959.
    [13] S. N. Mott, Conduction in Non-crystalline Materials, (Oxford University Press, New York, 1987).
    [14] N. Tsuda, K. Nasu, A. Yanase, and K. Siratori, Electronic Conduction in Oxides (Springer, Berlin, 1991).
    [15] W. D. Kingery, H. K. Bowen, D. R. Uhlmann, Introduction to Ceramics Chap 4, 2nd Ed., John Wiley, NY, 1976,157.
    [16] M. H. Sukkar, H. L. Tuller, Adv. Ceramics 7 (1984) 71-90.
    [17] J. H. Lee, B. W. Yeo, B. O. Park, Thin Solid Films 457 (2004) 333-337.
    [18] Kh. A. Abdullin, A. B. Aimagambetov, N. B. Beisenkhanov, A. T. Issova, B. N. Mukashev, S. Zh. Tokmoldin, Materials Science and Engineering B 109(2004)241-244.
    [19] O. Porat, I. Riess, Solid State Ionics 81(1995)29-41.
    [20] H. Kawazoe, M. Yasukawa, H. Hyodo, M. Kurita, H. Yanagi and H. Hosono, Nature 389(1997)939-942.
    [21] A. N. Banerjee, R. Maity, P. K. Ghosh, et al. Thin Solid Films, 474(2005)261.
    [22] H. Katayama-Yoshida, T. Koyanagi, H. Funashima, et al., Solid State Commun.126(2003)135-139.
    [23] I. Hamada, H. Katayama-Yoshida, Physica B 376-377 (2006) 808.
    [24] F. A. Kr6ger, A. H. Vink, Relations between the concentrations of imperfections in crystalline solids in Solid State Physics, Academic Press, Inc., San Diego, CA1956, pp.307-435.
    [25] P. Kofstad, Nonstoichiometry, Diffusion and Electrical Conductivity in Binary Metal Oxides. Wiley-Interscience, New York, 1972, p.19.
    [26] K. Koumoto, H. Koduka, and W. S. Seo, J. Mater. Chem. 11,251(2001)21.
    [27] H. Yanagi, S. Inoue, K. Ueda, H. Kawazoe, H. Hosono, N. Hamada, J. Appl. Phys.88(2000)4159.
    [28] B. J. Ingram, T. O. Mason, R. Asahi, K. T. Park, and A. J. Freeman, Phys. Rev. B64,(2001)155114.
    [29] J. P. Perdew, A. Zunger, Phys. Rev. B 23(1981)5048.
    [30] X. Nie, S. H. Wei, S. B. Zhang, Phys. Rev. Lett. 88(2002)066405.
    [31] J. Pellicer-Porres, A. Segura, A. S. Gilliland, A. Munoz P. Rodriguez-Hernáindez, D. Kim, M. S. Lee, and T. Y. Kim, APPLIED PHYSICS LETTERS 88,(2006)181904.
    [32] W. Shockley. Report No. AL2TOR2642207,Air Force Atomic Lab, Wright-Patterson Air Force Base ,Ohio ,Sep.1964.
    [33] H. H. Berger. Solid-State Electronics 15(1972)145.
    [34] G. K. Reeves. Solid-State Electronics 23(1980)487.
    [35] C. Y. Chang, Y. K. Fang, S. M. Sze, Solid-State Electronics, 14 (1971) 541; 王印月,甄聪棉,龚恒翔,阎志军,王亚凡,刘雪芹,杨映虎,何山虎,物理学报49(2000)1348.
    [36] J. Pellicer-Porres, D. Martinez-Garcia, A. Segura, P. Rodriguez-Hernández, A. Munoz, J. C. Chervin, N. Garro, and D. Kim, Phys. Rev. B 74 (2006) 184301.
    [37] G. G. Siu, M. J. Stokes, Y. L. Liu, Phys. Rev. B 59 (1999) 3173.
    [38] T. Ishiguro, N. Ishizawa, N. Mizutani, M. Kato, J. Solid State Chem. 41(1982)132-137.
    [39] J. Li, A. Sleight, C. Jones, and B. Toby, J. Solid State Chem. 178, (2005) 285.
    
    [40] A. W. Sleight, Inorganic Chemistry, 37 (1998) 2855.
    
    [41]L. F. Johnson and M. B. Moran, Proceedings of SPIE 4375 (2001) 289.
    [1] K. Tonooka, H. Bando, Y. Aiura, Thin Solid Films, 445(2003)327.
    [2] Edmund Dobrocka, Jozef Osvald, Appl. Phys. Lett. 56(1994)575-577;
    [3] S.K. Cheung, N. W. Cheung, Appl. Phys. Lett. 49 (1996) 85-87;
    [4] H. Norde, J. Appl. Phys. 50(1979)5052-5053;
    [5] V. Aubry, F. Meyer, J. Appl. Phys. 76(1994)7973-7984.
    [6] H. Kawazoe, M. Yasukawa, H. Hyodo, M. Kurita, H. Yanagi and H. Hosono, Nature 389(1997)939-942.
    [7] H. Katayama-Yoshida, T. Koyanagi, H. Funashima, et al., Solid State Commun.126(2003)135-139.
    [8] I. Hamada, H. Katayama-Yoshida, Physica B 376-377(2006)808.
    [9] M. L. Tu, Y. K. Su, C. Y. Ma, J. Appl. Phys. 100(2006)053705.
    [10] X. Guo, H. Tabata, T. Kawai, J. Crystal Growth 223 (2001)135.
    [11] Y. Nakano, T. Morikawa, T. Ohwaki, Y. Taga, Appl. Phys. Lett. 88(2006)172103.
    [12] Z. G. Ji, C. X Yang, K. Liu, Z. Z. Ye, J. Crystal Growth 253(2003)239-242
    [13] W. Z. Xu, Z. Z. Ye, T. Zhou, B. H. Zhao, L. P. Zhu, J. Y. Huang, J. Crystal Growth 265(2004)133-136;
    [14] Z. Z. Ye, J. G. Lu, H. H. Chen, Y. Z. Zhang, L. Wang, B. H. Zhao, J. Y. Huang, J. Crystal Growth 253(2003)258-264;
    [15] J. G Lu, Y. Z. Zhang, Z. Z. Ye, L. Wang, B. H. Zhao, J. H. Huang, Materials Letters 57(2003)3311-3314.
    [16] A. N. Georgobiania, A. N. Gruzintsevb, V. T. Volkovb, M. O. Vorobieva, V. I. Demina, V. A. Dravina, Nuclear Instruments and Methods in Physics Research A 514(2003)117-121.
    [17] G T. Dua, Y. Ma, Y. T. Zhang, T. P. Yang, Appl. Phys. Lett. 87(2005)213103.
    [18] 左燕声,陈文哲,梁位,材料现代分析方法,北京工业大学出版社,2000pp.223.
    [19] M. S. Lee, T. Y. Kim, and D. Kim, Appl. Phys. Lett.79(2001)2028.
    [20] A. N. Banerjee, R. Malty, P.K. Ghosh, K.K. Chattopadhyay, Thin Solid Films 474(2005)261-266.
    [21] E A. Kroger, A. H. Vink, Relations between the concentrations of imperfections in crystalline solids in Solid State Physics, Academic Press, Inc., San Diego, CA1956, pp. 307-435.
    [22] P. Kofstad, Nonstoichiometry, Diffusion and Electrical Conductivity in Binary Metal Oxides. Wiley-Interscience, New York, 1972, p.19.
    [23]K. Kournoto, H. Koduka, and W. S. Seo, J. Mater. Chem. 11,251 (2001) 21.
    [24] B. J. Ingrain, T. O. Mason, R. Asahi, K. T. Park, and A. J. Freeman, Phys.Rev. B64,(2001)155114.
    [25] O. Porat and I. Riess, Solid State Ionics 81,(1995)29-41.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700