释放负离子的居室功能材料研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文综述了国内外功能高分子材料的发展与趋势,尤其是建筑功能材料的发展及发展趋势,阐述了建筑功能材料给人类生活带来的污染以及人类对生态建筑和高质量生活环境的迫切需求,提出了利用天然矿物海鸥石制备负离子功能添加剂,以苯丙乳胶为载体,充分开发利用天然矿物没有放射性,能释放负离子的特点,对苯丙涂料进行改性研究,来增加人们生活环境中的负离子含量,进而提高人类生活环境的空气质量。
     本文采用纳米粒子添加剂对苯丙涂料进行改性,制备了纳米粒子生态健康涂料,利用XRD、SEM、TEM、抗菌实验对涂料成分、结构、性能进行分析,对涂料的常规性能进行检测分析。结果表明:在海鸥石(Health)中存在着变价Fe元素,这些变价的Fe原子会产生微电场,当空气中的水分子进入海鸥石(Health)的微孔时,水分子被电离,产生负离子;另外,海鸥石含有的TiO2具有光电催化作用,能把细菌和病毒等有机物彻底氧化为CO2和H2O;海鸥石内部具有20-60nm的孔隙结构;纳米助剂的最佳添加量为m(CaCO3): m(ZnO): m(Anion) = 2:2:3,生态健康涂料对金黄色葡萄球菌、大肠杆菌、白色念珠菌、枯草杆菌具有很好的抗菌作用,抗菌率均在90%以上,水洗50次后,抗菌率依然达到90%;当海鸥石负离子添加剂添加量为3%时,生态健康涂料的常规性能均符合国家标准,而且负离子释放量最大达到1700个/cm3,满足了人们对健康的基本需求。
The paper has focused on the development of functional materials in domestic and abroad especially the development of building materials. The pollution brought by functional materials and the demands for high-qualified life are also illustrated. The benzedrine dope was modified with natural Heath functional additives. The modified dope was able to release anions and to improve ecotype environment for human beings.
     The benzedrine dope was modified with nano-particles to prepare ecotypic and healthy dope. The XRD, SEM, TEM and anti-bacteria testing were performed on Health-modified benzedrine dope to analyze the chemical properties, structure, properties and routine performances upon application. The results show that valence-variable Fe atoms locate in Health, producing micro-electric field. As water molecules pass through Health holes, they are dissociated into H+ and OH-. H+ ions with positive charge function with each other, and anions remained. TiO2 contained in Health break down organic substance into CO2 and H2O due to phonic-catalytic effects, fundamentally killing bacteria and virus. Some holes with size of 20-60 nm exist in Health. The optimum nano-additives content is m(CaCO3): m(ZnO): m(Anion) = 2:2:3. The modified benzedrine dope showed excellent anti-bacteria functions to golden staphylococcus, E. coli, Candida alb cans and B. subtitles, and the anti-bacteria ratio is more than 90% even after 50 times water bath. When 3% additives are added, the benzedrine dope achieves national standard and released 1700 anions/cm3, meeting demands for human health.
引文
1任云卯,李涛,侯智.森林、空气负离子与人居环境.绿化与生活, 2004, 4(116): 15-16
    2山本良一.エコマテリアルのすベて.东京:日本实业出版社, 1994: 30-36
    3张立德.纳米材料研究的新进展及在21世纪的战略地位.中国粉体技术, 2000, 6(1): 1-9
    4李国栋. 1998~1999年金属磁性功能材料新进展.金属功能材料, 2000, 7(3): 1-4
    5蒲健,肖建中.大块纳米晶材料的制备、性能及应用前景.金属功能材料, 2000, 7(1):11-15
    6 F. C. Luisa, S Gustav, H. Stefan. Thermal Performance of Sodium Acetate Trihydrate Thicke- ned with Different Materials as Phase Change Energy Storage Material. Appl Therm Eng, 2003, 23: 1697-1699
    7 Y. Du, Y. Yuan, D. Jia. Experimental Investigation on Melting Characteristics of Ethanolam -ine Water Binary Mixture Used as PCM. Int Commun Heat Mass Transfer, 2007(7): 8-10
    8 A. Tukker, S. Jasser, K. leijin. Material Suppliers and Industrial Metabolism. Environ SciPollut ResInt, 1997, 4(2): 113-120
    9 T. X. Li, D. Shu, Z. M. Xu. Physicalsimulation and Theoretical Analysis of Migrating Rate of Inclusions in Aluminum Melt in Electromagnetic Field. Transactions of Nonferrous Metals Society of China, 2001, 11(1): 30-34
    10 X. W. Wang, E. Lu, W. X. Lin, Micromechanism of Heat Storage in a Binary System of two Kinds of Polyalcohols as a Solid-solid Phase Change Material. Energy Convers Manage, 2000, 41: 135-138
    11 G. Lanzavecchia,. Materials and Sciety. Adv. Sci. Technol, 1995, 4: 3-10
    12 M. Harsch. Life-cycleassessment. Adv. Mater. Processes, 1996, 149(6): 43-46
    13 Y. U. Kaichi, H. Kohmei. Materials Development for a Sustainable Society. Materials and Design, 2001, 22: 143-146
    14 V. Cannillo, L. Esposito, E. Rambaldi, et al. Microstructural and Mechanical Changes
    1任云卯,李涛,侯智.森林、空气负离子与人居环境.绿化与生活, 2004, 4(116): 15-16
    2山本良一.エコマテリアルのすベて.东京:日本实业出版社, 1994: 30-36
    3张立德.纳米材料研究的新进展及在21世纪的战略地位.中国粉体技术, 2000, 6(1): 1-9
    4李国栋. 1998~1999年金属磁性功能材料新进展.金属功能材料, 2000, 7(3): 1-4
    5蒲健,肖建中.大块纳米晶材料的制备、性能及应用前景.金属功能材料, 2000, 7(1):11-15
    6 F. C. Luisa, S Gustav, H. Stefan. Thermal Performance of Sodium Acetate Trihydrate Thicke- ned with Different Materials as Phase Change Energy Storage Material. Appl Therm Eng, 2003, 23: 1697-1699
    7 Y. Du, Y. Yuan, D. Jia. Experimental Investigation on Melting Characteristics of Ethanolam -ine Water Binary Mixture Used as PCM. Int Commun Heat Mass Transfer, 2007(7): 8-10
    8 A. Tukker, S. Jasser, K. leijin. Material Suppliers and Industrial Metabolism. Environ SciPollut ResInt, 1997, 4(2): 113-120
    9 T. X. Li, D. Shu, Z. M. Xu. Physicalsimulation and Theoretical Analysis of Migrating Rate of Inclusions in Aluminum Melt in Electromagnetic Field. Transactions of Nonferrous Metals Society of China, 2001, 11(1): 30-34
    10 X. W. Wang, E. Lu, W. X. Lin, Micromechanism of Heat Storage in a Binary System of two Kinds of Polyalcohols as a Solid-solid Phase Change Material. Energy Convers Manage, 2000, 41: 135-138
    11 G. Lanzavecchia,. Materials and Sciety. Adv. Sci. Technol, 1995, 4: 3-10
    12 M. Harsch. Life-cycleassessment. Adv. Mater. Processes, 1996, 149(6): 43-46
    13 Y. U. Kaichi, H. Kohmei. Materials Development for a Sustainable Society. Materials and Design, 2001, 22: 143-146
    14 V. Cannillo, L. Esposito, E. Rambaldi, et al. Microstructural and Mechanical Changes
    33倪军,徐琼,石登荣.城市绿地空气负离子相关研究:以上海公园为例.中国城市林业, 2004, (3): 30-33
    34姚成胜.岳麓山空气负离子分布规律及开发利用研究. [湖南师范大学硕士学位论文], 2005.
    35王层林.黄山风景区负离子旅游资源分布成因及开发利用的研究. [安徽农业大学硕士学位论文], 2003.
    36徐昭晖.安徽省主要森林旅游区空气负离子资源研究. [安徽农业大学硕士学位论文], 2004.
    37 N. Hideo, A. Osamu, Y. Yukio. Effect of Negative Air Ions on Computer Operation, Anxiety and Salivary Chromogranin A—Likeimmuno Reactivity. Int J Psychop Hysiology, 2002, 46: 85-89
    38 T. Ryushi, I. Kita, T. Saurai. The Effect of Exposure to Negative Air Ions on the Recovery of Physiological Responses Aftermoderate Endurance Exercise. Int J Biometeorology, 1998, 41: 132-136
    39刘勇,李安伯,雷义明.空气负离子生物学效应.国外医学地理分册, 1991, 12(2): 55-57
    40夏廉博.有益于人体健康的负离子.大众医学, 1981(7): 36-37
    41李安伯.我国空气负离子研究所面临的挑战.工业卫生与职业病, 1991, 17(6): 372-373
    42吴楚材,郑群明,钟林生.森林游憩区空气负离子水平研究.林业科学, 2001, 37(5): 75-81
    43金梅.合肥市不同生态环境空气离子时空分布及其影响因素的研究. [安徽农业大学硕士学位论文], 2005.
    44石强,钟林生,吴楚材.森林环境中空气负离子浓度分级标准.中国环境科学, 2002, 22 (4): 320-323
    45王继梅.空气负离子及负离子材料的评价与应用研究. [中国建筑材料科学研究院硕士学位论文], 2004.
    46吕健,徐锦海.昆明世博园空气离子测定及评价.广东园林, 2000, (2): 11-14
    47李青山,刘军,狄有波.北戴河负离子观测与标准.中国环境管理干部学院学报, 2008,23(4): 1-4
    48鲁彦,朴尚宪,赵坤宇.空气环境中的空气离子对人体健康的影响.黑龙江医药科学, 2000, 23(3): 38-40
    49梁星权.城市林业.北京:中国林业出版社, 2001
    50毛云章.中国奇石-天然六环石.石材, 2004, 6: 50-52
    51郭晓峰,李青山,马会鹏,等.释放负离子PP合成纸制备与性能研究.塑料制造, 2008, (08): 102-104
    52周光举,李青山,高丽君,等.负离子添加剂及保健防臭鞋垫的研制.产业用纺织品, 2007, (6): 41-43
    53高洁,李青山,周可富,等.负离子添加剂在纺织品中的应用.纺织科学研究, 2004, (1): 27-30
    54周晓香.空气负离子及其浓度观测简介.江西气象科技, 2002, 25(2): 46-47
    55石强,舒惠芳,钟林生.森林游憩区空气负离子评价研究.林业科学, 2004(1): 36-40
    56 L. G. Blackwood. The Application of Standard Normal Logarithm Transformation in Statistics. Environmental Monitoring and Assessment, 1995, 35(1): 55-75
    57林忠宁.空气负离子在卫生保健中的作用生态科.生态科学, 1999, 18(2): 87-90
    58李青山,姚刚,邹宏霞.燕大奇才负离子添加剂的研究与应用.第五届功能性纺织品及纳米技术研讨会论文集.北京, 2005(5): 221-225
    59 C. C. Wu, G. W. M. Lee. Oxidation of Volatile Compounds by Negative Air Ions. Atmospheric Environment, 2004, (38): 6287-6295
    60 A.P. Krueger, D.S. Sobel. Air Ions and Health. New York: Ways of Health, 1979
    61日尧.带来健康和环保的负离子涂料.北京质量与市场, 2003, (2): 31-31
    62苍风波,蔡怀福.负离子添加剂在涂料的应用.中国涂料, 2003, (2): 1-3

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700