热泵区域供热(冷)系统的节能优化与评价
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
热泵系统能够有效地利用自然界或人工环境中许多难以被直接应用的低品位能源,具有节能环保的突出优点。但对于区域规模应用的热泵系统(即:热泵区域供热(冷)系统)而言,由于区域管网系统的存在,使得其整体能效水平一般比单体建筑中应用的热泵系统要低,并很可能因此失去其节能特性,故该区域系统在实际应用前应对其节能性进行评估;同时,作为一种集中用能系统,客观上对该系统的节能优化要求也尤为突出,而现有的研究成果远不能很好地解决热泵区域系统这两方面的问题,所以,本文主要针对热泵区域供热(冷)系统的节能评价与优化问题展开深入研究。
     显然,对热泵区域供热(冷)系统的节能优化并不能确保其节能目标的实现,因而本文首先根据“先预评价再优化”的理念,对热泵区域供热(冷)系统进行了节能预评价研究。在系统的节能预评价研究方面,分别与北方地区传统的锅炉房区域供热系统和分散式单体建筑独立供冷系统在能耗方面进行详细地对比分析,推导出热泵区域供热(冷)系统在供热和供冷时的节能预评价指标,进而总结出各自的节能预评价方法。
     对通过节能预评价筛查的热泵区域系统可以展开进一步的节能优化研究,论文首先从制约该系统能效提高的关键环节——区域管网系统入手,建立了区域管网主干线管径的逐段优选模型,为管网循环泵的选择提供必要依据。研究发现该管径优选与系统整体平均能效比之间的耦联关系极其微弱,在实际中可以实现与系统其余部分的解耦优化。
     热泵机组组合的能耗是热泵区域供热(冷)系统总能耗的最重要组成部分,因此该机组组合的节能优选就成为整个系统能耗优化的核心。本文针对热泵机组组合节能优选中的关键问题,提出并创建了该机组组合节能优选模型,即,首先针对固定机组组合在承担不断变化的系统动态负荷时,如何以最小的机组组合能耗为目标将系统的动态负荷合理地分配给各台热泵机组,构建了基于动态规划原理的机组最优动态负荷分配策略的确定性求解模型;然后再根据实际工程中热泵机组的备选集合,筛选出各种可行的机组组合方案,最终以“优中选优”的方式获得年总能耗最小的机组组合方案。
     通过整合以上究成果,提出热泵区域供热(冷)系统的能耗耦联优化策略,据此可以实现对热泵区域系统节能性的准确评价。最后,根据热泵区域供冷系统相对于分散式单体建筑供冷系统在能效方面的潜在优势与劣势,提出了影响热泵区域供冷系统节能评价的三个关键指标,按其对区域系统能效的影响程度大小排序,分别为:系统的平均负荷率指标(PLRa)、热泵区域系统半径(RⅡ)和系统的设计总负荷指标(Qc)
Heat pump system can utilize various low grade natural or unused energy efficiently. So it usually has distinguished advantages of energy-saving and environmental protection. However, the energy efficiency of the heat pump district heating and cooling system is always lower than the heat pump system used in an individual building, and the system is very likely to lose its energy-saving characteristics because of the existence of the district pipe network. Thus the energy-saving characteristics of the heat pump district heating and cooling system has to be evaluated before its utilization in a project. Meanwhile, as an energy intensive system, it is especially necessary for the heat pump district heating and cooling system to be optimized with regard to the energy consumption. So the energy-saving evaluation and the energy optimization of the heat pump district heating and cooling system was carefully studied in the dissertation.
     Though the energy optimization of the heat pump district heating and cooling system can improve the energy efficiency of the system, it cannot guarantee the energy-saving effect of the system. The energy-saving pre-evaluation was studied on the basic research concept of 'pre-evaluation first and optimization later'. In the study of energy-saving pre-evaluation of the system, the conventional boiler house district heating system and the individual fresh water cooling tower system that is commonly used in independent buildings were chosen to be the comparison systems here. Then the energy-saving pre-evaluation indexes in both heating and cooling modes are deduced after detailed comparison of the heat pump district heating and cooling system with the above mentioned conventional systems. Further, the methodologies of energy-saving pre-evaluation for the heat pump district heating and cooling system are summarized accordingly.
     The energy optimization of he heat pump district heating and cooling system can be further proceeded if the pre-evaluation of the system shows its energy-saving potential. It is the district pipe network that mainly prevent the energy efficiency of the heat pump district heating and cooling system from increasing. So a pipe diameter optimization model is established for the main pipeline of the district pipe network. This provides the vital basis for the selection of the circulation pump of the district pipe network. It is found that only a very slight correlation exists between the pipe diameter optimization and the energy efficiency ratio of the whole heat pump district heating and cooling system. Therefore the pipe diameter optimization of the main pipeline of the district pipe network can be done separately from other parts of the system.
     The heat pump units consume the largest portion of energy in the whole heat pump district heating and cooling system. So the selection of the most energy efficient combination of heat pump units becomes the core of the energy optimization of the whole system. In the research, an optimization model was set up for the selection of the most energy efficient combination of heat pump units. Firstly, a determinant mathematical model to search the optimized heat pump loading strategy for a given combination of heat pump units was established. That is, the dynamic heating/cooling load of the system can be allocated to each heat pump unit in the most energy efficient way by the mathematical model. And the minimum annual energy consumption of the given heat pump units combination can be calculated at he same time. Then all the feasible combinations of heat pump units that meet the system heating/cooling load were searched out from the candidate heat pump units set for an actual project. So the most energy efficient combination of heat pump units can be found out by comparing the minimum annual energy consumption of all the feasible heat pump units combination schemes.
     The energy optimization strategy was put forward for the heat pump district heating and cooling system by integrating the above research results, and the accurate energy-saving evaluation of the heat pump district system can then be made. In the end, after the analysis of the advantages and disadvantages of the heat pump district system over the individual heat pump system, three key indexes that influence the energy-saving evaluation result of the heat pump district cooling system were brought out. They are the average part-load ration (PLRa), district radius of the system (R11) and the total design cooling load of the system (Qc) respectively in the order of their impacts on the energy efficiency of the heat pump district system.
引文
[1]何淮,刘振忠.哈尔滨市燃煤锅炉大气污染物排放分析[J].黑龙江环境通报,2004,28(4):37-39.
    [2]DUAN Y X, XU X F. The pollution characteristics of SO2 and meteorological conditions analysis in Beijing[J]. Scientia Meteorological Sinica,2001,29(4):11-14.
    [3]孙丽雪.区域污染对北京市采暖期SO2污染的影响分析[J].安全与环境通报,2006,6(5):83-87.
    [4]付雪婷,薛静,王青,葛淼.城市热岛效应与健康[J].国外医学医学地理分册,2004,25(1):43-47.
    [5]谭辉平.对解决空调系统热污染问题的分析探讨[J].广州师院学报(自然科学版),2000,21(8):97-99.
    [6]邵冬海,张树深,郑洪波,赵明慧.大连市水资源承载力研究[J].化工装备技术,2004,25(2):59-62.
    [7]迟宝明,易树平,李治军,周彦章.大连地区水资源人工调控研究fJ].吉林大学学报(地球科学版),2005,35(5):632-636.
    [8]建设部工程质量安全监督与行业发展司,中国建筑标准设计研究所.全国民用建筑工程设计技术措施暖通空调·动力[M].北京:中国计划出版社,2003.
    [9]朱颖心,工刚,江亿.区域供冷系统能耗分析[J].暖通空调,2008,38(1):36-40.
    [10]寿青云,陈汝东.借鉴国外经验积极发展我国的区域供冷供热[J].流体机械.2003,31(11):47-50.
    [11]惠荣娜,徐奇,李德英,许文发.我国区域供冷的现状及发展[J].建筑节能,2007,35(3):47-50.
    [12]王刚.瑞典区域供冷技术对中国的启示[J].建筑热能通风空调,2004,23(3):24-29.
    [13]CHOW T T, AU W H, YAU R, et al. Applying district cooling technology in Hong Kong [J]. Applied Energy,2004,79(3):275-289.
    [14]DAVID H. District cooling reaches Hong Kong. [EB/OL]. [2011,12,30]. http://www.cospp. com/articles/print/volume-12/issue-4/features/district-cooling-reaches-hong-kong.html
    [15]惠荣娜,徐奇,李德英,许文发.我国区域供冷的现状及发展[J].建筑节能,2007,35(3):47-50.
    [16]顾铭,马宏权,王勇.江水源热泵的技术关键与工程案例分析[J].建筑热能通风空调,2010,29(4):38-42.
    [17]马宏权,郁松涛,张巍巍,张建忠.江苏省最大的江水源热泵区域供冷供热项目——南京鼓楼国际服务外包产业园DHC [J].建建设科技,2011,(4):42-43.
    [18]龙惟定,马宏权,梁浩,张文宇,张思柱,吴筠.上海世博园区江水源热泵应用研究[J].建筑科学,2010,26(10):155-159.
    [19]马微. 重庆市结合水源热泵技术发展区域能源系统的研究[J].建筑节能,2011,39(3):22-25.
    [20]冷艳锋,赵辉,原如冰,吴蕾.重庆市CBD总部文化创意经济区——节能效益分享型合同能源管理[J].建建设科技,2011,(4):46-48.
    [21]单莉,曲道久.可再生能源建筑应用示范项目——大连星海湾污/海水源热身泵系统[J].建设科技,2009,(16):65.
    [22]马宏权,龙惟定.区域供冷系统的能源效率[J].暖通空调,2008,38(11):59-65.
    123] NAGOTA T, SHIMODA Y, MIZUNO M. Verification of the energy-saving effect of the district heating and cooling system-mimulation of an electric-driven heat pump system [J]. Energy and Buildings,2008,40(5):732-741.
    [24]SONG Y H, AKASHI Y, YEE J J. Effects of utilizing seawater as a cooling source system in a commercial complex[J]. Energy and Buildings,2007,39(10):1080-1087.
    [25]OKAMOTO S. A heat pump system with a latent heat storage utilizing seawater installed in an aquarium [J]. Energy and Buildings,2006,38(2):121-128.
    [26]URCHUEGUIA J F, ZACARES M, CORBERAN J M, et al. Comparison between the energy performance of a ground coupled water to water heat pump system and an air to water heat pump system for heating and cooling in typical conditions of the European Mediterranean coast [J]. Energy Conversion and Management,2008,49(10):2917-2923.
    [27]OZGENER O, HEPBASLI A. Modeling and performance evaluation of ground source (geothermal) heat pump systems[J]. Energy and Buildings,2007,39(1):66-75.
    [28]OZYURT O, EKINCI D A. Experimental study of vertical ground-source heat pump performance evaluation for cold climate in Turkey [J]. Applied Energy,2011,88(4):1257-1265.
    [29]INALLI M, ESEN H. Seasonal cooling performance of a ground-coupled heat pump system in a hot and arid climate [J]. Renewable Energy,2005,30(9):1411-1424.
    [30]HEPBASLI A, TOLGA B M. A study on modeling and performance assessment of a heat pump system for utilizing low temperature geothermal resources in buildings [J]. Building and Environment,2007.42(10):3747-3756.
    [31]HEPBASLI A, AKDEMIR O. Energy and exergy analysis of a ground source (geothermal) heat pump system[J]. Energy Conversion and Management,2004,45(5):737-753.
    [32]HEPBASLI A. Thermodynamic analysis of a ground-source heat pump system for district heating[J]. International Journal of Energy Research,2005,29(7):671-687.
    [33]YIK F W H, BURNETT J, PRESCOTT I. Study on the energy performance of three schemes for widening application of water-cooled air-conditioning systems in Hong Kong [J]. Energy and Buildings,2001,33(2):167-182.
    [34]YIK F W H, BURNETT J, PRESCOTT I. Predicting air-conditioning energy consumption of a group of buildings using different heat rejection methods [J]. Energy and Buildings,2001,33(2): 151-166.
    [35]陆耀庆.实用供热空调设计手册(上册)(第二版)[M].北京:中国建筑工业出版社.2007.
    [36]张思柱.上海世博园区域供冷系统的最佳供冷半径研究[D].上海:同济大学硕士学位论文,2007.
    [37]李嵘.空调冷热源能耗分析及对环境影响的生命周期评价[D].西安:西安建筑科技大学硕士学位论文,2005.
    [38]MENDRINOS D, KARYTSAS C. Use of geothermal energy and seawater for heating and cooling of the new terminal building in the airport of Thessaloniki[J]. Geo-Heat Center Bulletin, 2003,24(4):16-22.
    [39]李震,端木琳,舒海文等.大连某疗养院海水热泵系统与传统空调方案的技术经济对比分析[J].建筑科学,2007,3(2):92-95.
    [40]ZOGOU O, STAMATELOS A. Optimization of thermal performance of a building with ground source heat pump system[J]. Energy Conversion and Management,2007,48(11):2853-2863.
    [41]张心刚.城市街区区域供冷供热系统优化研究[D].上海:同济大学硕士学位论文,2007.
    [42]黄建恩.区域供冷系统经济性和节能性分析[D].北京:华北电力大学硕士学位论文,2006.
    [43]MURAKAMI S, MARK D, YOSHINO H, et al. Energy consumption, efficiency, conservation, and greenhouse gas, mitigation in Japan's building sector[R]. Lawrence Berkeley Laboratory, 2006.
    [44]马宏权,贺孟春,龙惟定.区域供冷系统的两类能源效率研究[J].暖通空调,2011,41(4):24-31,5.
    [45]吴筠.上海世博园区域供冷冷源方案的技术经济分析与研究[D].上海:同济大学硕士学位论文,2007.
    [46]肖后强.南京地区高层住宅小区区域供冷系统的优化分析[D].北京:南京理工大学硕士学位论文,2009.
    [47]王宇剡,张建忠,黄虎.南京鼓楼软件园区域供冷供热系统优化[J].暖通空调,2009,39(7):95-98.
    [48]蔡龙俊,胡立蛟.区域供冷/热系统的优化设计[J].暖通空调,2008,38(1):95-98.
    [49]CHOW T T, CHAN A L S, SONG C L. Building-mix optimization in district-cooling system implementation [J]. Applied Energy,2004,77(1):1-13.
    [50]BOULOS P, ALTMAN T. A graph-theoretic approach to explicit nonlinear pipe network optimization[J]. Applied Mathematical Modelling,1991,15(9):459-466.
    511 CUNHA M C, SOUSA J. Water Distribution Network Design Optimization:Simulated Annealing Approach[J]. Journal of Water Resource Planning and Management.1999,125(4): 215-221.
    [52]IZQUIERDO J, PEREZ R, IGLESIAS P L. Mathematical Models and Methods in the Water Industry [J]. Mathematical and Computer Modelling,2004,39(11-12):1353-1374.
    [53]CUNHA M C, RIBEIRO L. Tabu search algorithms for water network optimization[J] European Journal of Operational Research,2004,157(3):746-758.
    [54]DOBERSEK D, GORICANECS D. Optimization of tree path pipe network with nonlinear optimization method [J] Applied Thermal Engineering,2009,29(8-9):1584-1591.
    [55]冯小平,邓波,龙惟定.基于单亲遗传算法的区域供冷系统管网的布置优化[J].西安建筑科技大学学报(自然科学版),2008,40(1):142-148.
    [56]李祥立,邹平华.基于模拟退火算法的供热管网优化设计[J].暖通空调,2005,35(4):77-81.
    [57]冯小平,龙惟定.基于遗传算法的集中空调水系统管网优化设计[J].流体机械,2007,35(3):80-85.
    [58]曾光.枝状管网离散优化设计的研究[D].哈尔滨:哈尔滨工业大学硕士学位论文,2006.
    [59]韦节廷,金洪文,姜洁.大型供热管网优化方案的确定[J].煤气与热力,2003,23(2):80-82.
    [60]刘守亮,吕谋,李培刚.遗传算法在给水管网优化设计中的应用[J].青岛理工大学学报,2005,26(6):99-102.
    [61]周荣敏,雷延峰,林性粹.压力输水树状管网遗传优化布置和神经网络优化设计[J].农业工程学报,2002,18(1):41-45.
    [62]罗忠贤,禹华谦.基于分类遗传算法的给水管径优化设计[J].兰州交通大学学报(自然科学版),2005,24(3):72-74.
    [63]范刚龙.供热管网设计计算模型优化研究[J].郑州大学学报(理学版),2005,37(3):61-63.
    [64]潘永昌,王军.基于蚁群算法的输水树状管网优化布置[J].节水灌溉,2007,(8):40-42.
    [65]CHANG Y C. Optimal chiller loading by evolution strategy for saving energy[J]. Energy and Buildings,2007,39(4):437-444.
    [66]CHANG Y C, LEE C Y, CHEN C R, et al. Evolution strategy based optimal chiller loading for saving energy[J]. Energy Conversion and Management,2009,50(1):132-139.
    [67]CHANG Y C, CHEN W H, LEE C Y, et al. Simulated annealing based optimal chiller loading for saving energy[J]. Energy Conversion and Management,2006,47(15-16):2044-2058.
    [68]CHANG Y C, LIN J K, CHUANG M H. Optimal chiller loading by genetic algorithm for reducing energy consumption[J]. Energy and Buildings,2005,37(2):147-155.
    [69]CHANG Y C. Sequencing of chillers by estimating chiller power consumption using artificial neural networks [J]. Building and Environment,2007,42(1):180-188.
    [70]LEE W S, LIN L C. Optimal chiller loading by particle swarm algorithm for reducing energy consumption [J]. Applied Thermal Engineering,2009,29(8-9):1730-1734.
    [71]YAN Y M, ZHOU J, LIN Y L, et al. Adaptive optimal control model for building cooling and heating sources [J]. Energy and Buildings,2008,40(8):1394-1401.
    [72]YU F W, CHAN K T. Optimum load sharing strategy for multiple-chiller systems serving air-conditioned buildings[J]. Building and Environment,2007,42(4):1581-1593.
    [73]施灵.多台冷水机组空调系统的优化控制[J].暖通空调,2005,35(5):79-81.
    [74]闫秀英,孟庆龙,任庆昌等.联合运行冷水机组负荷优化分配及仿真研究[J].暖通空调,2007,37(11):18-21.
    [75]施志钢,胡松涛,李安桂.多台冷水机组的负荷最优化分配策略[J].建筑科学,2007,23(10):36-39.
    [76]陈丹丹,晋欣桥,杜志敏,肖晓坤.多台冷水机组联合运行空调系统的负荷优化分配[J].上海交通大学学报,2007,41(6):974-977.
    [77]陈晓,张国强,文进希.区域供冷系统中制冷机系统的优化配置探讨[J].流体机械,2003,31(6):55-59.
    [78]左政,胡文斌.基于建筑全年动态冷负荷的冷水机组优化配置方案[J].暖通空调,2009,39(2):96-100.
    [79]清华大学建筑节能研究中心.中国建筑节能年度发展研究报告2008[M].北京:中国建筑工业出版社,2008
    [80]中国建筑科学研究院,中国建筑业协会建筑节能专业委员会.公共建筑节能设计标准(GB50189-2005)[S].北京:中国建筑工业出版社,2005
    [81]建设部工程质量安全监督与行业发展司,中国建筑科学标准设计研究院.全国民用建筑工程设计技术措施:节能专篇2007—暖通空调·动力[M].北京:中国计划出版社,2007.
    [82]SHU H W,DUANMU L,ZHU Y X,et al.The proper scale and energy efficiency requirement of seawater source heat pump district heating system.//The First International Conference on Building Energy and Environment Proceedings 2008[C],Dalian,China: Tianjin University & Dalian University of Technology,2008,101-107.
    [83]中国建筑科学研究院.严寒和寒冷地区居住建筑节能设计标准(JGJ26-2010)[S].北京:中国建筑工业出版社,2010.
    [84]HYDEMAN M,GILLESPIE K.Tools and techniques to calibrate electric chiller component models[J].ASHRAE Transactions,2002,108(1):733-741.
    [85]MENDES N,BARBOSA R M,FREIRE R Z,OLIVEIRA R C.A simulation environment for perfomlance analysis of HVAC systems.Building Simulation,2008,1(2):129-143.
    [86]LI Z,DUANMU L,SHU H W,JIANG S,ZHU Y X.District cooling and heating with seawater as heat source and sink in Dalian,China[J].Renewable energy,2007,32(15):2603-2616.
    [87]孟祥路.700℃超超临界燃煤发电技术蓄势待发[J].化工管理,2011,(9):46-48.
    [88]北京市煤气热力工程设计院.城镇供热管网设计规范(CJJ34-2010)[S].北京:中国建筑工业出版社,2010.
    [89]ASHRAE,ASHRAE Applications Handbook[M].ASHRAE,Atlanta:American Society of Heating,Refrigerating and Air-Conditioning Engineers,Inc.US.]999.
    [90]辽宁省建筑科学研究院.辽宁省居住建筑节能设计标准(DB21/T1476-2011)[S].辽宁省科学技术出版社,沈阳,2011.
    [91]李德英.供热工程[M].中国建筑工业出版社,北京,2004.
    [92]李百战.重庆市江水源热泵技术应用基础数据库建设[J].暖通空调,2011,41(1):95-98.
    [93]刘洋,刘金祥,丁高.水源热泵机组变工况运行的数学模型研究[J].暖通空调,2007,37(3):21-24.
    [94]刘金平.区域供冷系统枝状冷水输送管网的优化设计[J].暖通空调,2006,36(7):18-22.
    [95]姜海洋.供水系统的费用函数、理想管径与经济流速[J].哈尔滨工业大学学报,2004,36(1):84-90.
    [96]李祥立.考虑事故工况限额供热的复杂供热管网优化设计研究[D].哈尔滨:哈尔滨工业大学博士学位论文,2005.
    [97]贺平,孙刚.供热工程[M].北京:中国建筑工业出版社,1993.
    [98]工萧,董重成.低温热水地面辐射供暖系统调节的研究[G]//全国暖通空调制冷2006年学术文集,北京:中国建筑工业出版社,2006:30-33.
    [99]中国建筑科学研究院.地面辐射供暖技术规程(JGJ142-2004)[S].北京:中国建筑工业出版社,2004.
    [100]DOBERSEK D, GORICANEC D. Optimization of tree path pipe network with nonlinear optimization method [J]. Applied Thermal Engineering,2009,29(8-9):1584-1591.
    [101]曾光.枝状管网离散优化设计的研究[D].哈尔滨工业大学硕士学位论文,2006.
    [102]吴飞.集中供热管网的设计方法分析与改进[D].哈尔滨工业大学硕士学位论文,2006.
    [103]罗传义,时景荣,戴传波.解超越方程的电子表格法[J].吉林化工学院学报,2003,20(3):60-62.
    [104]周维.运筹学[M].北京:科学出版社,2007.
    [105]SHIMODA Y, NAGOTA T, ISAYAMA N, MIZUNO M. Verification of energy efficiency of district heating and cooling system by simulation considering design and operation parameters [J]. Building and Environment,2008,43(4):569-577.
    [106]STEVEN T T. Degrading Chilled Water Plant Delta-T:Causes and Mitigation[J]. ASHRAE Transactions,2002,108(1):641-653.
    [107]朱伟峰.空调冷冻水系统特性研究[D].清华大学博士学位论文,2002.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700