船舶电力推进模拟平台的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着全球能源的紧缺和环保的要求,船舶电力推进技术受到了世界各国的重视。由于船舶电力推进系统存在多变量、强耦合和非线性等特性,其推进控制己成为一个具有挑战性问题,本文在船舶电力推进系统建模与仿真和螺旋桨负载模拟等方面进行了深入研究,主要研究内容如下:
     1)以船舶电力推进系统为研究对象,对电力推进平台的组成、控制和功能进行了分析,进行了系统设计,电力推进平台由动力系统和控制系统组成,动力系统包括推进电机、负载电机、制动电阻等,采用机械负载电动模拟技术,推进电机与负载电机同轴连接,推进电机采用转速控制方式,负载电动机采用转矩控制方式,用于模拟螺旋桨的动态负载;控制系统由变频器、PLC、上位监控计算机和实时仿真控制器组成,采用Profibus现场总线技术构成现场总线控制系统,控制系统软件设计包括PLC程序设计、通信程序设计、监控程序设计等。
     2)采用基于模型的设计方法,构建了基于硬件在环技术的电力推进模拟平台,建立了四象限的船桨仿真模型,dSPACE实时仿真控制器实时采集推进电动机的转速信号,经船桨模型计算出螺旋桨的转矩信号,作为变频器的给定转矩信号,控制负载电动机的转矩,实现螺旋桨负载的模拟,并对实验数据进行实时监控,该模拟平台为电力推进系统的研究提供了良好的开发环境和研究对象,在此基础上进行半实物的仿真实验,研究了螺旋桨负载模拟技术、监控系统集成技术。
     3)对实时硬件在环仿真系统中实系统(小比例模拟系统)和虚系统(原型系统)之间的参数等效缩放及数据通信等问题进行研究,根据相似性理论和量纲分析方法,以及物理量等效缩放原则,确定了选取转动惯量的方法及惯性转矩的计算公式。
     4)采用模块化编程方法,建立柴油发电机组并联运行的控制模型,包括自动并网控制、负荷转移和功率均衡控制等模块,进行了并联运行同步发电机的自动并网控制、负载转移控制和功率均衡控制的仿真研究,仿真结果表明所建立的柴油发电机组双机并联运行数学模型的正确性。建立电力推进系统的仿真模型,对推进电机在启动、制动、紧急反转时推进系统的暂态及其对电网的影响进行仿真,仿真结果表明推进电机在直接起动、制动及紧急反转时,推进电动机的负载波动大,为了减少推进电机对电网的冲击,需综合考虑船舶电站的功率裕量和螺旋桨的转矩特性和推进电机的性能,对推进电机进行相应的限制,包括加、减速率的限制、最大转速限制、最大转矩限制和最高转速限制等。
     5)从三相VSR主电路的拓扑结构出发,分析了三相静止坐标系以及两相同步旋转坐标系的VSR系统模型,阐述了基于电压矢量定向控制的三相VSR控制策略,分析和推导基于该方法的定向角的检测方法和在不平衡条件下电网电压的正负序分量的检测方法,进行仿真研究,验证该方法的可行性和有效性。
     通过开展船舶电力推进系统建模和仿真研究,可再现系统的稳态及动态行为,从而揭示系统的内在规律,对船舶电力推进系统的设计及性能分析具有理论和实际应用意义。
     本论文受到国家“211”建设项目“武汉理工大学船舶电力推进仿真实验室建设”、教育部博士点基金项目“舰船电力推进系统仿真”(基金号20040497012)以及高速船舶工程教育部重点实验室开放课题基金项目“船舶电力推进系统的建模与仿真”(基金号HSSE0802)的资助。
The ship electric propulsion technology has gained much attention all over the world because of the global energy shortage and the environmental protection requirements. However, due to the multi-variable and highly coupled and nonlinear structure, high-performance control of electric propulsion system becomes a challenging problem. Research on dynamic load emulation is a hot point of test platform study, the mathematical modeling and simulation of the marine electric propulsion system are systemically investigated in this dissertation, the main works of this dissertation are as follows:
     1) Based on numerous literatures, this dissertation refers and absorbs other' merits, utilizes the model design method to put out research on semi-physical simulation system, the emulation platform dedicated to the research on propulsion control is designed and constructed, its components, and working principles are analyzed. The emulation platform was developed based on dSPACE real-time simulation system, The emulation platform that consist of an inverter-driver squirrel-cage motor emulate propeller load, a set of DC linked dual back-to-back pwm voltage-source converts. four quadrant ship-propeller model, the real-time monitoring interface, dspace controller, twin motors coupled on the same stiff shaft, The drive motor and load motor use in induction motor controlled by inverts adopted field orientation control technique, close loop speed control is adopted for drive motor, open loop torque control is used for load motor which emulates propeller load. Results show that the method combines close loop speed control and open loop torque control can emulate dynamic load. The key questions and technical essentials is studied, especially to system integration and control strategy. The emulation platform is universal,
     2) In order to simulate propeller load realistically, the Chebyshev polynomial fitting method is utilized to express the Nordstrom propeller, The modularization method is chosen to establish a four quadrant simulating model of propeller, The input of ship-propeller model is motor speed, which represents the propeller speed in the real condition, and its output torque reference are given to the load-motor set. The model code is downloaded to dSPACE real-time simulation platform, the operation and calculation of model is carried on by dSPACE controller. The platform provides a good development environment and research object for research on propulsion control.
     3) Hardware in the loop simulation enables experimental study of prototype hardware system via a real-time interaction between physical hardware and virtual model, Virtual model is used to describe the corresponding physical prototype in the system,it is often necessary to scale the signals in and out of the prototype system, a key problem with comparisons is that scaling effects when hardware of one size is simulated by hardware of another size, How to chosen scaling factors, according to dimensional analysis, applying the use of dimensionless variables, as defined by the Π Theorem, a procedure is developed via dimensionless variable method to derive input/output scaling factors. The scaling factors between scaling physical hardware and virtual model is derived from the machine motion equation, so that the experiment equipments can have the same dynamic characters as the real ship.
     The proposed controller incorporates droop curves on real and reactive power that enable the gensets to respond to load change, it can maintain system frequency and voltage within prescribed limit and power quality. The generation sets in paralleling connection is able to reduce the circulating reactive power in the system and share load move, the simulation results shows that using the proposed controller for diesel generation sets is able to cooperation during load change, it can improve the performance of marine power system. Development of a flexible component model used for modeling and simulation of marine power plants in Saber, such as disel generation model, speed control system of disel generation, the exciting current control system of disel generation, ship-propeller model, the flex-oriented vector strategies for variable speed drive of squirrel-cage motor, simulation of selected cases of combined power plants during extreme dynamic loads are conducted. The interaction between the motor and generator is studied. Simulation results are analyzed, simulation models are verified by the simulations and experiments based on a hardware-in-loop platform, relevant test cases are done in order to reveal the dynamic behavior of complete electric propulsion system.
     5) The thesis analyzed the three-phase VSR model and control strategy, the synchronous coordinate transform and the orientation method. The thesis gave out the design method of the internal current loop and external voltage loop based on the system control models. The thesis also discussed a new phase detection way of designing a PLL by using voltage vector control, the thesis analyzed the positive and negative sequence component detection under the unbalanced conditions, the paper presented a new positive and negative sequence component delayed signal cancellation method, the effectiveness of this method is demonstrated by simulation results.
     Modeling and simulation research of marine electrical propulsion system, which can describe static and dynamic behaviors, is helpful to discover inherent principles and to direct the design and management of the system.
     The research is supported by the following projects:State "211" Project-"WUT Marine Electrical Propulsion Simulation Lab"; doctor foundation projects of the State Ministry of Education of PRC (No.20040497012); the Research Fund of HSSE, WHUT, the State Ministry of Education (No. HSSE0802).
引文
[1]聂延生,李士臣,李伟光.船舶电力推进系统及其发展[J].世界海运,2001.10
    [2]Alf Kare Adnanes. Maritime Electrical Installations and Diesel Electric Propulsion. ABB AS Marine,2003.4Gunter
    [3]徐绍佐,刘赞,顾海宏.船舶综合全电力推进系统[J].柴油机,2003.(2):17-20
    [4]马伟明.舰船动力发展的方向一综合电力系统[J].上海海事大学学报,2004,25(1):1-9.
    [5]林耿菁,闫大海,符道.综合电力推进:现代船舶的动力革命[J].中国船检,2004.5
    [6]云峻峰,黄友朋,李亚旭.国外舰船电力推进的新进展[J].机电设备.1999(3):15-20
    [7]孙诗南.当今舰船电力推进装置发展新动向[J].电气时代.2002(2):9-11.
    [8]孙诗南,舰船电力推进在21世纪的发展[J].上海造船.2002(2):25-28
    [9]乔寿成,陈红霞.船舶电力推进系统的应用及其最新进展[J].上海造船,2006,68(4):33-35
    [10]董琦,梅端经,石艳.电力推进新动向[J].船电技术.2003(3):46-47
    [11]金焘.国外舰船电力推进技术发展概况[J].上海造船,2006,66(2):33-34
    [12]云俊峰,黄仁和,赵建划.现代船舶电力推进设计走向[J].舰船科学技术,2003,25(1):3-8
    [13]王庆红.舰船综合电力系统总体概念研究的思考[J].中国舰船研究,2006.1(3):25-29
    [14]陈成功.船电系统中同步发电机的建模与仿真研究[D].上海交通大学硕士论文,2011,01
    [15]李东丽,赵跃平等.船舶大容量负载对电力系统的影响[J].船舶工程,2003,25(6):47-50.
    [16]维列捷尼科夫著章以刚译.船舶电力系统暂态过程研究的理论与方法[M].国防工业出版社,1984
    [17]戴剑峰,周双喜,鲁宗相.面向对象的船舶电力系统数字仿真研究[J].中国造船,2005,46(3):61-66
    [18]杨勇兵.交流变频电力推进系统仿真建模[J].柴油机,2003.2:21-25
    [19]赵红,郭晨,吴志良.船舶电力推进系统的建模与仿真[J].中国造船,2006.47(4):51-56
    [20]周德佳,王善铭,柴建云.基于Matlab Simulink的舰船综合电力推进系统仿真[J].清华大学学报,2006,46(4):460-464
    [21]刘雨,郭晨.船舶综合全电力推进系统的动态仿真[J].中国航海,2010,33(1):24-29.
    [22]王淼,戴剑锋,周双喜,等.全电力推进的船舶电力系统的数字仿真[J].电工技术学报,2006,21(4):62-67
    [23]Radan, D., Power Management Of Marine Power Systems, Report, Dept. Marine Technology, NTNU, Trondheim, Norway,2004
    [24]罗成汉,陈辉.船舶能量管理系统PMS对策[J].中国航海2007(4):87-91
    [25]Sorensen, A. J., "Marine Cybernetics:Modelling and Control", Lecture Notes, Fifth Edition, UK-05-76, NTNU, Norway,2005a.
    [26]徐惠明,石艳.船舶永磁电动机推进系统建模与仿真概述[J].船电技术,2005,(6):4-8
    [27]ABB industry Oy, Marine Group, Simulation of Electrical Power Systems, automation, www. abb.com/cawp
    [28]Benatmane, M., T. McCoy, T. Dalton and T.L. Cooper. "Electric power generation and propulsion motor development for US Navy surface ships." Session 5, Paper I, All Electric Ship Conference, Developing Benefits for Maritime Applications (Institute of Marine Engineers), London, Great Britain.29-30 September 1998. pp.53-62
    [29]Amy, John Victor Jr. "Composite System Stability Methods Applied to Advanced Shipboard Electric Power Systems." Thesis. M.I.T. May 1992.
    [30]Pekarek, S., Tichenor, J., Sudhoff, S., Sauer, J. D., Delisle, D., and Zivi,E., "Overview of a Naval Combat Survivability Program," 13th International Ship Control Systems Symposium, (Orlando, Florida, USA),2003.
    [31]Tucker, A. J., "Opportunities and Challenges in Ship Systems and Control at ONR," IEEE Conference on Decision and Control, December 4,2001
    [32]Sudhoff, S. D., Kuhn, B. T., Zivi, E., Delisle, D. E., and Clayton, D.,"Impact of Pulsed Power Loads on Naval Power and Propulsion Systems," 13th International Ship Control Systems Symposium, (Orlando, Florida, USA),2003.
    [33]ADEOTI T. ADEDIRAN.A STUDY OF POWER ELECTRONIC BUILDING BLOCK (PEBB)-BASED INTEGRATED SHIPBOARD POWER SYSTEMS DURING RECONFIGURATION. PhD thesis, Texas A&M University,2003
    [34]J. D. Sauer, P. E. Thompson, "Electric Propulsion Systems:Past, Present And Future: Applications For The Naval And Commercial Market",American Society of Naval Engineers Electric Machines Technology Symposium, January 27-29,2004
    [35]A. Ouroua, L. Domaschk, J. H. Beno, "Electric ship power system integration analyses through modeling and simulation," IEEE Electric Ship Technology Symposium, July 2005.
    [36]W. M. Grady, T. Kim, E. J. Powers, A. Arapostathis "Real and reactive power analysis for interharmonics," IEEE Electric Ship Technology Symposium, July 2005
    [37]K. Butler, N. Sarma, and V. Prasad, "A new method of network reconfiguration for service restoration in shipboard power systems," 1999 IEEE Transmission and Distribution Conference, Vol.2, pp.658-662, April 1999
    [38]Iordanis Kioskeridis, Nikos Margaris. Loss minimization in induction motor adjustable-speed drives [J], IEEE Trans. on Industrial electronics,1996,43(1):226-231.
    [39]Basanta B. Palit. Energy saving operation of induction motors by voltage reduction at no and low partial-load[C]. Proceedings of the Conference of Industry Applications Society Annual Meeting,1989:147-151, vol.1
    [40]Kouki Matsuse, Shotaro Taniguchi, Tatsuya Yoshizumi, etc. A speed-sensorless vector control of induction motor operating at high efficiency taking core loss into account[J], IEEE trans. On industry applications,2001,37(2):548-558.
    [41]Lishi Wang, Hirohito Funato, Kenzo Kamiyama, High-torque and high-efficiency control in induction motor drives[C], PCC-Nagaoka'97:103-106.
    [42]Cao-Mink Ta, Yoichi Hori. Convergence improvement of efficiency-optimization control of Induction Motor Drives[J], IEEE Trans. on industry applications,2001,37(6):1746-1753.
    [43]Cao-Mink Ta, Chandan Chakraborty, Yoichi Hori. Efficiency maximization of induction motor drives for electric vehicles based on actual measurement of input power[C], Proceedings of the 27th Annual Conference of the IEEE Industrial Electronics Society, 2001:1692-1697.
    [44]Chandan Chakraboty, Mink C. Ta Toshiyuki Uchida, etc. Fast search controllers for efficiency maximization of induction motor drives based on DC link power measurement [C]. Proceedings of the Power Conversion Conference, Osaka,2002, vol.2:402-408
    [45]Ick Choy, Soon H. Kwon, J. Y Choi, etc. On-line efficiency optimization control of a slip angular frequency controlled induction motor drive using neural networks[C]. Proceedings of the 1996 IEEE IECON 22nd International Conference on Industrial Electronics, Control, and Instrumentation,1996, vol.2:1216-1221
    [46]Olorunfemi Ojo, Ishwar Bhat, Glenn Sugita. Steady-state optimization of induction motor drives operating in the field weakening region[C]. Proceedings of Power Electronics Specialists Conference,1993. PESC93:979-985.
    [47]Seung Ki Sul, Min Ho Park. A novel technique for optimal efficiency control of a current-source inverter-fed induction motor[J]. IEEE Trans. on power electronics,1988,3 (2):192-199.
    [48]M. Lehti, P. Hyvarinen, and T. Tissari, "The new generation of propulsion drive systems," in Proc. IMarEST Conf., AES 2003, Edinburgh, U.K.,Feb.13-14,2003
    [49]Pekarek et. al., "A Hardware Power Electronic-Based Distribution and Propulsion Testbed," Sixth IASTED International Multi-Conference On Power and Energy System, May 12-15, 2002, Marina del Rey, California, USA
    [50]Pekarek et. al., "Development of a Testbed for Design and Evaluation of Power Electronic Based Generation and Distribution System," accepted for SAE2002 Power Systems Conference (Paper Offer#:02PSC-28), October 29-31,2002, Coral Springs, Florida, USA
    [51]S. D. Sudhoff, et. al, "Impact of Pulsed Loads on Naval Power and Propulsion Systems," Proceedings of the Thirteenth Ship Control Systems Symposium (SCSS 2003), Orlando, Florida, April 7-9,2003.
    [52]Pekarek, S.D, J. Tichenor, S.D. Sudhoff, J.D. Sauer,D.E. Delisle, and E.J. Zivi, "Overview of Naval Combat Survivability Program," Proceedings of the 13th International Ship Control Systems Symposium, Orlando,Florida, USA,2003.
    [53]Sudhoff, S.D., S.F. Glover, S.H. Zak, S.D. Pekarek,E.J. Zivi and D.E. Delisle, "Stability Analysis Methodologies for DC Power Distribution Systems," 13th International Ship Control Systems Symposium, Orlando,Florida, USA, April 7-9,2003.
    [54]Tucker, A. J., "Opportunities and Challenges in Ship Systems and Control at ONR," IEEE Conference on Decision and Control, December 4,2001.
    [55]Cooper, R.D., and S.W. Doroff, "Unsteady Propeller Forces, Fundamental Hydrodynamics and Unconventional Propulsion,"Seventh Symposium on Naval Hydrodynamics,1968.
    [56]Jessup, S.D., and R.J. Boswell, The Effects of Hull Pitching Motions and Waves on Periodic Propeller Blade Loads, DTNSRDC-82/093, September 1982.
    [57]Patterson, C. L., and D.W. Baker.Representation of Propeller thrust and Torque Characteristics for Simulations, NSRDC Report MEL 202/67, April 1968.
    [58]Perez, T., and M. Blanke, A simple method to tune shaping filters for simulation of ship motion in irregular seas, Centre for Integrated Dynamics and Control, The University of Newcastle, NSW, Australia and Technical University of Denmark:(?)RSTED-DTU: Automation,2002.
    [59]J. Faiz, M. B. B. Sharifian, A. Keyhani, and A. B. Proca, "Sensorless direct torque control of induction motors used in electric vehicles," IEEE Trans. Energy Conversion, vol.18, no. 1,pp.1-10, Mar.2003.
    [60]T. D. Batzel, "Electric propulsion using the permanent magnet synchronous motor without rotor position transducers," Ph.D. dissertation, Dept. Elect. Eng., Pennsylvania State Univ., University Park, PA,2000.
    [61]D. Casadei, G. Serra, A. Tani: "Implementation of a Direct Torque Control Algorithm for Induction Motors based on Discrete Space Vector Modulation",IEEE Transactions on Power Electronics, Vol.15, No.4, pp.769-777 (2000).
    [62]M. Depenbrock:" Direct Self Controlled (DSC) of Inverter Fed Induction Machine", IEEE Transactions on Power Electronics, Vol.3, No.4, pp.420-429 (1998).
    [63]T. Ericsen and A. Tucker, "Power electronics building blocks and potential power modulator application," in Proc. 23rd Int. Power Modulator Symp.,Rancho Mirage, CA, Jun.1998, pp.12-15.
    [64]M. Lehti, P. Hyvarinen, and T. Tissari, "The new generation of propulsion drive systems," in Proc. IMarEST Conf., AES 2003, Edinburgh, U.K.,Feb.13-14,2003.
    [65]J. D. Sauer, P. E. Thompson, "Electric Propulsion Systems:Past, Present And Future: Applications For The Naval And Commercial Market".American Society of Naval Engineers Electric Machines Technology Symposium, January 27-29,2004
    [66]A. Ouroua, L. Domaschk, J. H. Beno, "Electric ship power system integration analyses through modeling and simulation," IEEE Electric Ship Technology Symposium, July 2005.
    [67]W. M. Grady, T. Kim, E. J. Powers, A. Arapostathis "Real and reactive power analysis for interharmonics," IEEE Electric Ship Technology Symposium, July 2005.
    [68]K. Butler, N. Sarma, and V. Prasad, "A new method of network reconfiguration for service restoration in shipboard power systems," 1999 IEEE Transmission and Distribution Conference, Vol.2, pp.658-662, April 1999.
    [69]A. Arapostathis, W. M. Grady, and E. J. Powers, "A hybrid systems approach to dynamic reconfiguration," IASME Transactions, vol.1, pp294-299 April 2004.
    [70]Benatmane, M., T. McCoy, T. Dalton and T.L. Cooper. "Electric power generation and propulsion motor development for US Navy surface ships." Session 5, Paper I, All Electric Ship Conference, Developing Benefits for Maritime Applications (Institute of Marine Engineers), London, Great Britain.29-30 September 1998. pp.53-62.
    [71]Amy, John Victor Jr. "Composite System Stability Methods Applied to Advanced Shipboard Electric Power Systems." Thesis. M.I.T. May 1992.
    [72]Crawford. M., Mallick.J. Use of SABER circuit simulation software for the modeling of compensated pulsed alternators driving a railgun load. Magnetics. IEEE Transactions on Jan.2003
    [73]Lounis.Z.,Khezzar.A.,Rasoanarivo.i.and Agbossou.K. Analog behavioural modelling and simulation with SABER of three-phase IGBT voltage inverter fed asynchronous machine. Power Electronics and Variable Speed Drives.1998. Seventh International Conference on (IEEE Conf.Publ.NO.456)
    [74]T. D. Batzel, "Electric propulsion using the permanent magnet synchronous motor without rotor position transducers," Ph.D. dissertation, Dept. Elect. Eng., Pennsylvania State Univ., University Park, PA,2000
    [75]T. Ericsen and A. Tucker, "Power electronics building blocks and potential power modulator application," in Proc.23rd Int. Power Modulator Symp.,Rancho Mirage, CA, Jun.1998, pp. 12-15.
    [76]PJ.Norman, et al. Integrated Electrical and Mechanical Modeling of Integrated Full-Electirc-Propulsion Systems[C],3rd IET International Conference on Power Electronics, Machines and Drives (PEMD 2006),Dublin, Ireland,4-6 April 2006:101-105
    [77]Apsley, J.M. and Gonzalez-Villasenor, et al. Propulsion drive models for full electric marine propulsion systems[J]. IEEE Transactions on Industry Applications,45 (2). pp.676-684.
    [78]Hodge C, G. Modern Application of Power Electronics to Marine Propulsion Systems[C]. Power Semiconductor Devices and Ics, Proceedings of the 14th International Symposium IEEE,2003:9-16
    [79]S.Castellan, R.Menis. Modeling and Simulation of Electric Propulsion System for All-Electric Cruise Lines[C]. Electric Ship Technologies Symposium, ESTS'07. IEEE 2007: 60-64
    [80]So-Yeon Kim,Young-Doo Yoon. Suppression of the Thrust Loss for the Maximum Thrust Operation in the Electric Propulsion Ship[C]. IEEE, and Seung-Ki Sul, Fellow, IEEE 2007: 72-76
    [81]U Campora,M Figari. Numerical simulation of ship propulsion transients and full-scale validation[J]. Engineering for the Maritime Environment. Vol.217,2003:41-52
    [82](?)yvind Notland Smogeli. Control of Marine Propellers from Normal to Extreme Conditions[D]:[Doctoral dissertation].Norwegian University of Science and Technology,2006
    [83]Lauvdal, T., Adnanes, A.K., Power Management System with Fast Acting Load Reduction for DP Vessels, Dynamic Positioning Conference, Huston,2000
    [84]Hansen, J.F., and T. Lauvdal and A.K. Adnanes,Modelling and simulation of variable speed thruster drives with full-scale verification Submitted to IFAC conference, MCMC'2000, August 2000.
    [85]Adnanes, A.K.,A.J. Sarensen and T. Hackman. Essential characteristics of electric propulsion and thruster drives in DP vessels Proc. of Dynamic Positioning Conference, Houston, USA,22-23 October 1997.
    [86]Adnanes, A.K. Variable speed FP vs. fixed speed CP Proc. of IMCA Station Keeping Seminar and Workshop, Houston,USA 31.oct-1.nov 1996
    [87]Adnanes, A. K., A. J. S(?)rensen and T. Lauvdal (1998). Variable Speed Thruster Drives:The Means to Utilize the Features of a Fully Integrated Electrical Power, Automation and Positioning System for the Marine, Oil and Gas Market. Proceedings of Second International Conference on Diesel Electric Propulsion (DEP'98), pp.1-22, Helsinki, Finland.
    [88]Hansen, J.F., A.K. Adnanes and T.I. Fossen (1998). Modelling, simulation and multivariable model-based predictive control of marine power generation system. Proceeding of IFAC Conference:Control Applications in Marine Systems, CAMS'98, pp.45-50, Fukuoka, Japan.
    [89]Hansen, J.F. (2000). Modeling and Control of Marine Power Systems, PhD thesis, Report 2000:9-W, Department of Engineering Cybernetics, the Norwegian University of Science and Technology-NTNU, Trondheim, Norway.
    [90]S(?)rensen, A. J., Adnanes, A.K., Reconfigurable Marine Control Systems and Electrical Propulsion Systems for Ships. ASNE Reconfiguration and Survivability Symposium, February 16-18 (RS 2005), Florida, US
    [91]Smogeli,(?). N., A. J. S(?)rensen and K. J.Minsaas, "The Concept of Anti-spin Thruster Control," Accepted for publ. in IFAC J. of Control Engineering Practice,2005a.
    [92]Smogeli,(?). N., E. Ruth and A. J. S(?)rensen,"Experimental Validation of Power and Torque Thruster Control," 20th IEEE International Symposium on Intelligent Control (ISIC'05) and the 13th Mediterranean Conference on Control and Automation (MED'05), Cyprus,2005b.
    [93]S(?)rensen, A. J. (2004a). Structural Issues in the Design of Marine Control Systems. Key Note Lecture, In Proceedings of the IFAC Conference on Control Applications in Marine Systems (CAMS2004),7-9 July, Ancona, Italy.
    [94]Sorensen, A. J. (2004b). Marine Cybernetics:Modeling and Control. Lecture Notes, Fourth Edition, UK-04-76, Department of Marine Technology, the Norwegian University of Science and Technology-NTNU, Trondheim, Norway.
    [95]Serensen, A. J., E. Pedersen and (?). Smogeli (2003). Simulation-Based Design and Testing of Dynamically Positioned Marine Vessels, In Proceedings of International Conference on Marine Simulation And Ship Maneuverability, MARSIM'03, August 25-28, Kanazawa, Japan.
    [96]Sorensen, A. J. and A. K. Adnanes (1997). High Performance Thrust Allocation Scheme in Positioning of Ships Based on Power and Torque Control. Dynamic Positioning Conference, Dynamic Positioning Committee, Marine Technology Society, pp.1-14, Session 9, Houston, Texas.
    [97]S(?)rensen, A. J., A. K. Adnanes, T. I. Fossen and J. P. Strand (1997). A New Method of Thruster Control in Positioning of Ships Based on Power Control. Proceedings of 4th IFAC Conference on Maneuvering and Control of Marine Craft (MCMC'97), pp.172-179, Brijuni, Croatia.
    [98]Jan Fredrik Hanson, Alf Kare Adnanes, Thor I Fossen. Mathematical modeling of diesel-electric propulsion systems for marine vessels. Mathematical and Computer Modeling of Dynamical Systems,2001,7(1):1-33
    [99]Damir Radan. Integrated control of marine electrical power systems, THESES FOR THE DEGREE OF PHILOSOPHIAE DOCTOR, Department of MarineTechnology, Norwegian University of Science and Technology,2008.
    [100]Luca Pivano.Thrust Estimation and Control of Marine Propellers in Four-Quadrant Operations[D]:[Doctoral dissertation].Norwegian University of Science and Technology,2008
    [101]Sloderbeck, M; Edrington, C; Steurer. Hardware-in-the-Loop Experiments with a Simulated Electric Ship Power System Utilizing a 5 MW Variable Voltage Source Converter Amplifier[C]. IEEE International Electric Machines and Drives Conference (IEMDC 2009),2009 Miami FL,VOL.1:1161-1166
    [102]Gao Hai-bo, Wu Fu-yuan, Chen Hui. Simulation of a Marine Controllable Phase-compounding Excitation System [J]. International Journal of Plant Engineering and Management.2007(4):227-229
    [103]罗耀华,刘勇等.舰船全电力推进系统模拟研究[J].船舶工程,2002.4
    [104]樊印海.双螺旋桨电力推进系统数学模型与数字模拟的研究[J].大连海事大学学报.1995.11:29-31
    [105]杨晓丽.吊舱式电力推进系统的动态仿真的研究[D]:[硕士学位论文].上海:上海海事大学,2004
    [106]高海波.船舶电力推进系统的建模与仿真[D]:[博士学位论文].武汉:武汉理工大学,2008
    [107]孙建波.船舶柴油主推进装置及其控制系统的建模与仿真研究[D]:[博士学位论文].大连海事大学.2007
    [108]张勇军.小比例船舶电力推进实验室装置的仿真研究[D]:[硕士学位论文].武汉:武汉理工大学,2007
    [109]韦韩英.船舶柴油发电机系统仿真[D]:[硕士学位论文]上海:上海海事大学2003.2
    [110]钱正林.船舶电力系统的建模与仿真[D]:[硕士论文].武汉:武汉理工大学,2008.4:18-19
    [111]田玉超.舰船电力推进系统建模与仿真[D]:[硕士论文].哈尔滨:哈尔滨工程大学;2005.1
    [112]施伟锋.关于船舶电力系统研究的一些探索[D]:[博士学位论文].上海:上海海事大学,2005:26
    [113]吴明.船舶电力推进建模及仿真技术[D]:[硕士学位论文].武汉:武汉理工大学,2006.4
    [114]邓穗湘,沈雄,:永磁电机在船舶电力推进中的应用和仿真[J].航海技术,2005,
    [115]Rodic,M.;Jezernik,K.;Trlep,M. Dynamic emulation of mechanical loads:an advanced approach[J].Electric Power Applications, IEEE Proceedings-Volume 153, Issue 2,2 March 2006:159-166.
    [116]Hewson, C.R.; Sumner,M; Asher,GM.;Wheeler,P.W. Dynamic mechanical load emulation test facility to evaluate the performance of AC inverters[J]. Power Engineering Journal Volume 14, Issue 1,Feb.2000:21-28.
    [117]马志文.电力牵引交流传动互馈试验系统的研究[D]:[博士学位论文].北京交通大学.2007
    [118]张林德.异步牵引电机互馈试验系统的研究[D]:[硕士学位论文].四川.西南交通大学.2005
    [119]罗成汉,陈辉,高海波,高孝洪.能量反馈式电力推进试验平台的设计[J].中国造船.2008.6:61-65
    [120]西门子(中国)有限公司.SIMOVERT MASTERDRIVES矢量控制,2003.1
    [121]罗成汉,陈辉.基于Profibus-DP现场总线电力推进试验平台的设计[J].工业仪表与自动化装置.2006(5):25-27
    [122]阳宪惠主编.现场总线技术及应用[M].北京:清华大学出版,1999
    [123]吴秋峰.自动化系统计算机网络[M].北京:机械工业出版社,2001
    [124]崔坚,李佳等.西门子工业网络通信指南[M].北京:机械工业出版社,2005
    [125]林治国.船舶电力推进系统硬件在路仿真[D]:[博士学位论文].武汉:武汉理工大学,2011
    [126]西门子(中国)有限公司.SMATIC S7 SETP 7 V5.0使用入门,2000.3
    [127]何少华.船舶电力推进仿真与监控[D]:[硕士学位论文].武汉:武汉理工大学,2005.
    [128]宋艳琼,陈辉,高海波.船舶电力推进监控系统的设计与实现[J].船海工程,2007(1):79-81.
    [129]黄曼磊.H∞控制理论在船舶电站中的应用研究[D].哈尔滨工程大学博士学位论文,2003:1-40
    [130]杨冠城.电力系统自动装置原理[M].中国电力出版社.2006:46-174
    [131]赵殿礼,张春来.船舶电站控制与管理技术[M].大连:大连海事大学出版社,2009,8
    [132]李光琦.电力系统暂态分析(第二版).[M].北京:水利电力出版社,1984
    [133]余耀南.动态电力系统[M].北京:水利电力出版社,1985
    [134]倪以信,陈寿孙,张宝霖.动态电力系统的理论和分析[M].北京:清华大学出版社,2002
    [135]李先彬.电力系统自动化(第四版)[M].北京:中国电力出版社,2004,7
    [136]段远才,金松令.柴油发电机并联运行与调整[M].北京:国防工业出版社,1988
    [137]李基成.现代同步发电机励磁系统设计及应用[M].北京:中国电力出版社,2005
    [138]孙才勤.船舶电力系统建模及动态稳定性研究[D].大连海事大学博士论文,2010,4
    [139]张汝钧.船舶电站同步发电机的自动励磁装置[M].北京:国防工业出版社,1989.11
    [140]王锡凡,方万良,杜正春.现代电力系统分析[M].北京:科学出版社,2003.1
    [141]夏道止.电力系统分析[M].北京:中国电力出版社,2004.9
    [142]刁士亮,柳中莲.同步发电机组模型与电力系统稳定分析[M].广州:华南理工大学出版社,1989.10
    [143]黄曼磊,王常虹.船舶电站柴油发电机组的非线性数学模型[J].哈尔滨工程大学学报,2006,27(1):15-19
    [144]钱正林,陈辉,高海波.基于SABER的发电柴油机及其调速系统的建模与仿真[J].船海工程,2007(12):138-140
    [145]高国权.电站用柴油机调速系统[M].北京:人民交通出版社,1988.12
    [146]施伟锋,陈子顺船舶电力系统建模[J].中国航海,2004,60(3):64-69
    [147]高景德,王祥珩,李发海.交流电机及其系统的分析[M].北京:清华大学出版社.2005:305-306
    [148]李崇坚.交流同步电机调速系统[M].北京:科学出版社,2006.3
    [149][俄]尤尔甘诺夫,科日夫尼科夫著,王晓玲,常林译.同步发电机的励磁调节[M].北京:中国电力出版社,2000
    [150]陈坚.交流电机数学模型及调速系统[M].北京:国防工业出版社,1989.3
    [151]比马尔.博斯.现代电力电子学与交流传动[M].北京:机械业出版社,2003.
    [152]A.E.Fitzgerald, Charles Kingseley, Jr. Stephen D.Umans. Electric Marine,电机学[M],刘新正(译).北京:电子工业出版社,2004:
    [153]李华德.交流调速控制系统[M].北京:电子工业出版社,2003.3
    [154]王成元,夏加宽,杨俊友,孙宜标.电机现代控制技术[M].北京:机械工业出版社,2004:4148
    [155]代同振.双PWM变频调速系统研究[D].重庆大学硕士学位论文,2010,5
    [156]高嵩.船舶电力推进试验系统用三相PWM整流器控制的研究[D].上海交通大学硕士学位论文,2009,1
    [157]方宇.高功率因数可逆PWM变换器及其数字控制研究[D].南京航空航天大学博士学位论文,2008,3
    [158]张兴,曹仁贤.太阳能光伏并网发电及其逆变控制[M].北京:机械工业出版社,2012,5
    [159]王兆安,杨君、刘进军.谐波抑制和无功功率补偿[M].北京:机械工业出版社,1998
    [160]张崇巍,张兴.PWM整流器及其控制[M].北京:机械工业出版社,2003
    [161]Hannu Sam. ANALYSIS OF THE VOLTAGE SOURCE INVERTER WITH SMALL DC-LINK CAPACITOR, PhD thesis LAPPEENRANTA UNIVERSITY OF TECHNOLOGY,2005.
    [162]刘永生.电网电压不平衡时PWM整流器控制策略研究[D].西南交通大学硕士学位论文,2011,4
    [163]盛振邦,刘应中.船舶原理(下册)[M].上海:上海交通大学出版社,2004:41-48
    [164]Van Lammeren W P A, Van Manen J D, Oosterveld M M C. The wageningen B-screw series [J]. SNAME Trans,1969,19(1):269-317
    [165]Li Dian-pu, WANG Zong-yi, CHI Hai-hong. Chebyshev Fitting Way and Error Analysis for Propeller Atlas across Four Quadrants. Journal of Marine Science and Application, 2002(1):52-59
    [166]李殿璞,王宗义,池海红.螺旋桨特性四象限Chebyshev拟合式的建立与深潜艇直航全工况运动仿真的实现[J].系统仿真学报.2002.7:935-939
    [167]李殿璞.基于螺旋桨特性四象限Chebyshev拟合式的深潜艇正倒航变速推进模型[J].哈尔滨工程大学学报[J],2002,23(1):52-57
    [168]范尚雍.船舶动力装置及仿真技术[M].上海:交通大学出版社,1993
    [169]薛士龙.船舶电力推进仿真装置及其关键技术的研究[D]:[博士学位论文].上海海事大学.20077
    [170]刁利军,沈茂盛,林文立等.电力推进负载模拟系统原理分析和实现[J].电工技术学报,2009,24(7):70-75
    [171]闻居博.传动试验台架负载电模拟技术研究[D]:[硕士学位论文].上海交通大学.2011
    [172]刁利军.电力推进负载模拟系统研究[D]:[博士学位论文]北京:北京交通大学,2008
    [173]霍峰,姜新建,舰船推进电机及螺旋桨负载模拟系统研究[J]舰船科学技术,2007(4)
    [174]李思杰.牵引电机惯性负载模拟控制策略的研究[D]:[硕士论文]北京:北京交通大学,2011
    [175]M.B.基尔皮契夫著,沈自求译[M].相似理论.科学出版社,1955
    [176]dSPACE Real-Time Interface (RTI and RTI-MP) Implementation Guide. dSPACE GmbH (Germany).2005.3.
    [177]杨涤,等.系统实时仿真开发环境与应用[M].北京:清华大学出版社,2002

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700