VSC-HVDC系统及其在电网恢复中的应用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
电压源换流器型直流输电(Voltage Source Converter-Based HVDC,VSC-HVDC)是一种新的直流输电技术,它具备有功无功快速独立控制、可以向远距离小功率无源网络供电、可以向系统发出无功功率、易于构成多端网络等特点。VSC-HVDC技术涉及电气技术、现代电力电子技术、自动控制理论等诸多学科领域。由于其出现和发展时间还不长,许多基础理论和相关的应用基础问题还需要深入探讨。
     本文针对VSC-HVDC的稳态特性、暂态特性和与传统直流输电相结合的新型输电方式以及在电网恢复中的应用几个方面进行研究,取得以下几个方面的成果。
     1.推导了VSC-HVDC功率传输方程的直角坐标形式,采用逆系统方法设计了基于有功、无功功率独立调节的VSC-HVDC控制系统,实现了VSC的有功、无功四象限独立、灵活调节。当实际交流系统三相交流电压不对称时,VSC传输功率会发生波动,从而影响VSC-HVDC系统的运行。根据瞬时无功功率理论,推导出了消除VSC传输功率波动需满足的输出正、负序电压间的关系式。采用不对称触发以及逆系统方法设计VSC的传输功率控制系统,消除了系统电压不对称带来的有功功率波动。分析了基于VSC-HVDC的配电网的结构、有功、无功功率运行特性,及对交流系统的调压作用。
     2.提出了基于SPWM控制和开关函数的VSC-HVDC系统暂态模型,分析了VSC-HVDC系统的开关特性和暂态运行机理,分析了其在负荷变化和故障时候的暂态运行原理。提出了基于能量守恒原理的VSC-HVDC系统暂态模型,分析了VSC-HVDC系统的能量变化过程和暂态运行机理,推导了VSC-HVDC整流侧换流器、逆变侧换流器及直流部分的能量平衡关系。
     3.结合传统HVDC技术成熟、成本低廉的优点和VSC-HVDC运行控制方式灵活的优点,提出一种新的混合直流输电(Hybrid HVDC)方式,并探讨其结构组成、技术特点、运行特性、运行机理、调节方式和调节特性,给出Hybrid HVDC的有功无功运行图。
     4.分析了用于电网互联的VSC-HVDC在电网大停电时的自保护问题,提出通过“软关断”策略使VSC-HVDC能够平稳退出功率输送,不发生剧烈的变化和设备的破坏,但还保持直流电压,进入热备用状态。分析了利用VSC-HVDC进行电网恢复的过电压抑制问题,提出了VSC-HVDC在一侧交流系统大停电情况下的软启动方法,避免了长线路合闸操作过电压和变压器空充过电压。基于Lyapunov稳定理论,采用基于Backstepping设计方法的VSC-HVDC控制策略应用于电网恢复,用以提高电网恢复中的稳定性。
Voltage Source Converter-Based HVDC (VSC-HVDC) is a novel DC transmission technology, which is characterized by quick and independt control of active and reactive power, power supply to small isolated long distance passive load, generation of reactive power to AC system as well as the ability to make up easily multi-terminal network. VSC-HVDC technology relates to many academic fields such as electrical technology, modern power electronics technology, and automation control theory, etc. Because VSC-HVDC has emergered recently with a short period of development, many basic theories and application issues need to be investigated deeply, especially the mathmetic model, operation characteristic and mainly application questions.
     Aiming at the stable and dynamic characteristics of VSC-HVDC, new transmission type conjointed with tranditional HVDC technology as well as its application in power system restoration, the following results are achieved:
     1. The rectangular coordinate form of VSC’s power transmitting equations is deduced through coordinate transformation. By using the nonlinear control of inverse system, VSC-HVDC control system is designed based on that active and reactive power is adjusted respectively, and then the active and reactive power of VSC can be controlled in four quadrants. When three phases voltage are asymmetrical, the transmitted power of VSC fluctuates and the operation of VSC-HVDC is influenced. The power characteristic of VSC under asymmerical voltage is drawn according to instantaneous power theory. By adopting asymmetrical control scheme, the fluctuation of active power caused by asymmerical voltage is eliminated. The configuration, active and reactive power operation characteristics and its influence on AC voltage of VSC-based distribution network are also analyzed.
     2. The dynamic mathematic model of VSC-HVDC with SPWM control is founded and its switch characteristic and dynamic operation mechanism under changing load and fault condition are analyzed. The foundation of dynamic mathematics model of VSC-HVDC based on energy conservation principle, the analysis of the process of energy conversion and dynamic operation mechanisms, and the deduction of energy banlance relationship, are realized.
     3. Conventional HVDC has the advantages of mature state of art and lower cost. VSC-HVDC has the advantages of flexible operation and control and the disadvantages of high cost. Combining the advantages of the two kinds of transmissions, a novel hybrid HVDC transmission is proposed. And then its configuration, technology specialty, operation characteristic and mechanism, regulation type and characteristic as well as active and reactive power operation diagram, are discussed.
     4. The self-protection for VSC-HVDC used in power system network interlinkage when power system has blackout is analyzed. A“soft shut-off”control strategy is put forward, which can make VSC-HVDC quit the deliver of power and then operate as the spinning reserve power source without acute change and equipment breakage. Through discussing the overvoltage restraintion question of no-load long transmission line, the soft-startup of VSC-HVDC in the case of one side AC system has blackout is developed to avoid severe operation overvoltage of switching on the no-load long line. Based on Lyapunov stability theory, control strategy for VSC-HVDC in network restoration is designed, adopting backstepping method to improve the stability of power system restoration.
引文
[1] Wang Xiao, Ooi Boon?Tech. High Voltage Direct Current transmission system based on Voltage Source Converters. PESC’90, San Antonio, TX, USA, 1990, 1: 325~332.
    [2] Ooi Boon?Tech, Wang Xiao. Boost type PWM HVDC transmission system. IEEE Trans. on Power Delivery, 1991, 6(4): 1557~1563.
    [3] Kjell Eriksson, Tomas Jonsson, Ove Tollerz. Small scale transmission to AC networks by HVDC Light. The 12th Cepsi Conference, Pattaya, Thailand, 1998.
    [4] 李庚银,吕鹏飞,李广凯,等. 轻型高压直流输电的发展与展望. 电力系统自动化, 2003, 27(4): 77~81.
    [5] Ana Diez Castro, Richard Ellstrom, Ying Jiang Hafner, et al. Co-ordination of parallel AC-DC systems for optimum performance. Power Delivery Conference, Madrid, Spain, September 1999.
    [6] Gunnar Asplund, Kjell Eriksson, Ove Tollerz. HVDC Light—a tool for electric power transmission to distant loads. In: VI Sepope Conference, Salvador, Brazil, May 1998.
    [7] Gunnar Asplund. Application of HVDC Light to power system. IEEE PES Winter Meeting 2000, Singapoe, 2000.
    [8] Lu Weixing, Ooi Boon?Teck. Simultaneous inter-area decoupling and local area damping by Voltage Source Converter HVDC. IEEE PES Winter Meeting 2001, Columbus, Ohio, USA, 2001, 3: 1079~1084.
    [9] Zhang Guibin, Xu Zheng, Shao Wei, et al. A linear and decouple control strategy for VSC based HVDC system. In: 2001 IEEE/PES Transmission and Distribution Conference and Exposition, 2001, 1: 14~19.
    [10] 张桂斌, 徐政, 王广柱. 基于 VSC 的直流输电系统的稳态建模及其非线性控制. 中国电机工程学报, 2002, 22(1): 17~22.
    [11] Gunnar Asplund, Kjell Eriksson, Kjell Svensson. HVDC Light—以电压源换流器为基础的直流输电技术. 国际电力,1999, 3(3): 38~43.
    [12] Gunnar Asplund, Kjell Eriksson, Kjell Svensson. DC transmission based on Voltage Source Converters. CIGRE SC14 Colloquium in South Africa 1997.
    [13] Axelsson U, Holm A, Liljegren C, Aberg M, et al. The Gotland HVDC Light project-experiences from trial and commercial operation. CIGRE conference, Amsterdam, The Netherlands, June 18-21, 2001
    [14] Eriksson K, Graham J. HVDC Light? -a transmission vehicle with potential for ancillary services. SEPOPE 2000 Curitiba, Brazil, May 2000.
    [15] Sackey T, Zakhary S Z. Power wheeling through the West African interconnectedsystem. Sixth International Conference on AC and DC Power Transmission, Sweden, 1996: 13~18.
    [16] Bahrman M P, Johansson J G, Nilsson B A. Voltage source converter transmission technologies: the right fit for the application. IEEE PES General Meeting, 2003, 3: 1847~1850.
    [17] Tomas Larsson, Ake Petersson, Abdel-Aty Edris, et al. Eagle Pass back-to-back tie: a dual-purpose application of voltage source converter technology. www.abb.com. 2002 年 3 月 1 日.
    [18] Nils H?rle, Asmund Maeland, Kjell Eriksson, et al. Electrical supply for offshore installations made possible by use of VSC technology. CIGRE 2002 Conference, Paris, France, Aug. 2002.
    [19] Ronstr?m L, Hoffstein M L, Pajo R, Lahtinen M. The Estlink HVDC Light? transmission system. Security and Reliability of Electric Power Systems, CIGRé Regional Meeting, June 18-20, 2007, Tallinn, Estonia.
    [20] 赵畹君. 高压直流输电工程技术. 北京:中国电力出版社,2004.
    [21] 张桂斌. 新型直流输电及其相关技术研究:[博士学位论文]. 杭州: 浙江大学,2001.
    [22] 何杰. 轻型直流输电有功无功独立控制研究及其硬件实现:[硕士学位论文]. 保定:华北电力大学,2004.
    [23] Chan K H, Parle J A, Johnson N, et al. Real-time implementation of an HVDC-VSC model for application in a scaled-down Wind Energy Conversion System (WECS). Seventh International Conference on AC-DC Power Transmission, 28-30 Nov. 2001: 169~174.
    [24] Cursino Brand?o Jacobina, Maurício Beltr?o de Rossiter Corrêa, Ricardo Ferreira Pinheiro, et al. Modeling and control of unbalanced three-phase systems containing PWM converters. IEEE Trans. on Industry Applications, 2001, 37(6): 1807~1816.
    [25] Zhang Guibin, Xu Zheng, Cai Ye. An equivalent model for simulating VSC based HVDC. Proceedings of the IEEE PES Transmission and Distribution Conference, 2001, 1: 20~24.
    [26] Zhang Guibin, Xu Zheng. Steady-state model for VSC based HVDC and its controller design. IEEE PES Winter Meeting, 2001: 1085~1090.
    [27] 王冠,蔡晔,张桂斌,等. 高压直流输电电压源换流器的等效模型及混合仿真技术. 电网技术,2003, 27(2): 4~8.
    [28] Behzad Qahraman, Ebrahim Rahimi, Aniruddha M Gole. An electromagnetic transient simulation model for Voltage Sourced Converter based HVDC transmission. Canadian Conference on Electrical and Computer Engineering (CCGEI), Technology Driving Innovation, 2004: 1063~1066.
    [29] 尹明,李庚银,牛同义,等. VSC?HVDC 连续时间状态空间模型及其控制策略研究. 中国电机工程学报, 2005, 25(18): 34~39.
    [30] M Durrant, H Werner, K Abbott. Model of a VSC HVDC terminal attached to a weak AC system. IEEE. Control Applications Conference, 2003: 178~182.
    [31] Zhang Xiaoping. Multiterminal Voltage-Sourced converter-based HVDC models for power flow analysis. IEEE Trans. on Power systems, 2004, 19(4): 1877~1884.
    [32] Chinthavali Madhu, Tolbert Leon M, Ozpineci Burak. SiC GTO thyristor model for HVDC interface. IEEE PES General Meeting 2004, 1: 680~685.
    [33] Madrigal M, Acha E. Harmonic modeling of voltage source converters for HVDC stations. IEE Conference Publication, n 485, 2002: 125~131.
    [34] Poullain S, Heliodore F, Henni A, et al. Modelling of the dynamic characteristics of the DC line for VSC transmission scheme. IEE Conference Publication, n 485, 2002: 305~310.
    [35] 郑超,周孝信,李若梅. 电压源换流器式高压直流输电的动态建模与暂态仿真. 电网技术,2005,29(16): 1~5.
    [36] Fawzi A. Rahman al Jowder, Boon Teck Ooi. VSC-HVDC station with SSSC characteristics. IEEE Trans. on Power Electronics, 2004, 19(4): 1053~1059.
    [37] 武娟,任震,黄雯莹,等. 轻型直流输电的运行机理和特性分析. 华南理工大学学报(自然科学版), 2001, 29(8): 41~44.
    [38] Konishi H, Takahashi C, Kishibe H, et al. A consideration of stable operating power limits in VSC-HVDC systems. IEE Conference Publication, n 485, 2002: 102~106.
    [39] 马林, 俞晓荣,苏宏营,等. 电压源型 AC/DC 换流器的运行机理和特性分析. 继电器,2002, 30(10): 47~50.
    [40] Xu Lie, Andersen Bjarne R, Cartwright Phillip. VSC transmission operating under unbalanced AC conditions—Analysis and control design. IEEE Trans. on Power Delivery, 2005, 20(1): 427~434.
    [41] Corsi Sandro, Danelli Aldo, Pozzi Massimo. Emergency-stability controls through HVDC links. IEEE PES Transmission and Distribution Conference, 2002, 2: 774~779.
    [42] JL Thomas, S Poullain, A Benchaib. Analysis of a robust DC-Bus voltage control system for a VSC transmission scheme. Seventh International Conference on AC-DC Power Transmission, 2001: 119~124.
    [43] 张凯,李庚银,梁海峰,李广凯. 基于电压源换流器 HVDC 系统稳态控制及仿真. 电力自动化设备, 2005.3. 79~83.
    [44] Liang Haifeng, Li Gengyin, Li Guangkai, et al. Analysis and design of H∞ controller in VSC-HVDC systems. Proceedings--IEEE/PES T&D Conference & Exhibition 2005: Asia Pacific/Dalian China, August 14-18th, 2005.
    [45] 陈谦, 唐国庆. 采用 dq0 坐标的 VSC-HVDC 稳态模型与控制器设计. 电力系统自动化, 2004, 28(16): 61~66.
    [46] 李国栋,毛承雄,陆继明,等. AC/DC 混合输电系统分散协调控制. 中国电机工程学报, 2005, 25(19): 37~42.
    [47] Farag A, Durrant M, Werner H, et al. Robust control of a VSC HVDC terminal attached to a weak AC system. IEEE Control Applications Conference, 2003: 173~177.
    [48] Lindberg A, Larsson T. PWM and control of three level voltage source converters in an HVDC back-to-back station. Sixth International Conference on AC and DC Power Transmission, Sweden, 1996: 297~302.
    [49] 刘洪涛,徐政. 基于三电平电压源换流器的高压直流输电系统的控制策略研究. 电工技术学报,2003,18(3): 102~106.
    [50] Liu Hongtao, Xu Zheng, Gao Zhi. A control strategy for three-level VSC-HVDC system. IEEE PES Summer Meeting, 2002, 1: 480~485.
    [51] Zhang Guibin, Xu Zheng, Shao Wei. Research on the control and simulation of HVDC-VSC. Proceedings of International Conference on Power System, Sep.3-5, 2001, Wuhan, China: 371~375.
    [52] Lamont, Lisa A. Fast VSC transmission control. 2004 IEEE PES Power Systems Conference and Exposition, 2004, 2: 739~743.
    [53] 胡兆庆,毛承雄,陆继明. 一种优化控制策略在基于电压源换流器的 HVDC系统中的应用. 电网技术, 2004, 28(10): 38~41.
    [54] 胡兆庆, 毛承雄, 陆继明. 一种新的优化协调控制在轻型直流输电中的应用(英文). 中国电机工程学报,2005, 25(8): 41~49.
    [55] Durrant Martyn, Werner Herbert, Abbott Keith. Synthesis of multi-objective controllers for a VSC HVDC terminal using LMIs. Proceedings of the 43rd IEEE Conference on Decision and Control, 2004, 4: 4473~4478.
    [56] Tang Lianxiang, Ooi Boon-Teck. Protection of VSC-multi-terminal HVDC against DC faults. PESC Record ? IEEE Annual Power Electronics Specialists Conference, 2002, 2: 719~724.
    [57] Nosaka Naoto, Tsubota Yoshikazu, Matsukawa Koji, et al. Simulation studies on a control and protection scheme for hybrid multi-terminal HVDC systems. IEEE PES Winter Meeting, 1999, 2: 1079~1084.
    [58] Liu Hongtao, Xu Zheng, Huang Ying. Study of protection strategy for VSC based HVDC system. IEEE PES Transmission and Distribution Conference and Exposition, 2003, 1: 49~54.
    [59] Lu Weixing, Ooi Boon Teck. Multi-Terminal HVDC as enabling technology of premium quality Power Park. IEEE PES Winter Meeting, 2002, 2: 719~724.
    [60] Lu Weixing, Ooi Boon-Teck. Optimal acquisition and aggregation of offshorewind power by multiterminal voltage-source HVDC. IEEE Trans. on Power Delivery, 2003, 18(1): 201~206.
    [61] 陈谦, 唐国庆, 潘诗锋. 采用多点直流电压控制方式的 VSC 多端直流输电系统. 电力自动化设备, 2004, 24(5): 10~15.
    [62] Lu Weixing, Ooi Boon-Teck. DC overvoltage control during loss of converter in Multiterminal Voltage-Source Converter-Based HVDC (M-VSC-HVDC). IEEE Trans. on Power Delivery, 2003, 18(3): 915~920.
    [63] Giri Venkataramanan, Brian K Johnson, A superconducting DC transmission system based on VSC transmission technologies. IEEE Trans. on Applied Superconductivity, 2003, 13(2): 1922~1925.
    [64] Ying Jiang-H?fner, Hugo Duchén, Kerstin Lindén, et al. Improvement of subsynchronous torsional damping using VSC HVDC. IEEE/CSEE PowerCon 2002, International Conference on Power System Technology, 2002, 2: 998~1003.
    [65] Zhang Guibin, Xu Zheng, Wang Guan. Control strategy for unsymmetrical operation of VSC-HVDC based on the improved instantaneous reactive power theory. AC-DC Power Transmission 2001: 262~267.
    [66] 郑超,周孝信,李若梅,等. VSC-HVDC 稳态特性与潮流算法的研究. 中国电机工程学报. 2005,25(6), 1~5.
    [67] Angeles-Camacho C, Tortelli O L, Acha E. et al. Inclusion of a high voltage DC-voltage source converter model in a Newton-Raphson power flow algorithm. IEE Proceedings: Generation, Transmission and Distribution, 2003, 150(6): 691~696.
    [68] Kent H Sobrink, Peter Christensen, Kjell Eriksson, et al. DC feeder for connection of a wind farm. Cigre Symposium, Kuala Lumpur, Malaysia, September 1999.
    [69] Michael Bahrman, Abdel-Aty Edris, Rich Haley. Asynchronous back-to-back HVDC link with Voltage Source Converters. Minnesota Power Systems Conference, Nov 1999, USA.
    [70] Petersson A, Edris A. Dynamic performance of the Eagle Pass back-to-back HVDC Light tie. Seventh International Conference on AC-DC Power Transmission, 2001: 220~225.
    [71] Zhang Guibin, Xu Zheng, Liu Hongtao. Supply passive networks with VSC-HVDC. Proceedings of the IEEE PES Transmission and Distribution Conference, 2001: 332~336.
    [72] 梁海峰,李庚银,李广凯,等. 向无源网络供电的 VSC-HVDC 系统仿真研究. 电网技术, 2005,29(8), 45~50.
    [73] Hu Zhaoqing, Mao Chengxiong, Lu Jiming, et al. Improving transient stability of AC system with HVDC light. Proceedings of the Universities Power EngineeringConference, 2003, 38: 504~507.
    [74] Andersen B R, Xu L, Horton P J, et al. Topologies for VSC transmission. Power Engineering Journal, 2002, 16(3): 142~150.
    [75] Huang Z, Ooi B T, Dessaint L A, et al. Exploiting voltage support of voltage-source HVDC. IEE Proc. Generation, Transmission and Distribution, 2003, 150: 252~256.
    [76] Sato Tadashi, Matsushita Yoshinao, Temma Koji, et al. Prototype test of STATCOM and BTB based on voltage source converter using GCT thyristor. Proceedings of the IEEE PES Transmission and Distribution Conference, ASIA PACIFIC, 2002, 3: 2037~2042.
    [77] 郑超,周孝信. 基于电压源换流器的高压直流输电小信号动态建模及其阻尼控制器设计. 中国电机工程学报,2006, 26(2): 7~12.
    [78] Andersen Bjarne R, Xu Lie. Hybrid HVDC system for power transmission to island networks. IEEE Trans. on Power Delivery, 2004, 19(4): 1884~1890.
    [79] Chokhawala Rahul, Danielsson Bo, ?ngquist Lennart. Power semiconductors in transmission and distribution Applications. Proceedings of 2001 Intemational Symposium on Power Semiconductor Devices & ICs, Osaka. 2001:3~10.
    [80] Stendius L, Eriksson K. HVDC Light—An excellent tool for city center infeed. PowerGen Congerence, Singapore, 1999. 9.
    [81] Lars Weimers. HVDC Light—a new technology for a better environment. IEEE Winter meeting, Tampa, Florida, USA, 1998, 8: 19~20.
    [82] 文俊,张一工,韩民晓,等. 轻型直流输电??一种新一代的 HVDC 技术. 电网技术,2003, 27(1): 47~51.
    [83] Reed Gregory, Pape Ronald, Takeda Masatoshi. Advantages of Voltage Sourced Converter (VSC) based design concepts for FACTS and HVDC-Link applications. 2003 IEEE PES General Meeting, 2003, 3: 1816~1821.
    [84] 张桂斌,徐政. 直流输电技术的新发展. 中国电力, 2000, 33(3): 32~35.
    [85] 刘隽,李兴源,许秀芳. 互联电网的黑启动策略及相关问题. 电力系统自动化,2004, 28(5): 93~96.
    [86] 郭嘉,阳吴涛,张仁伟,等. 华北电网“黑启动”试验研究. 华北电力技术,2001,(5), 3~18.
    [87] 苏德生. 河北南网黑启动决策支持系统总体控制研究:[硕士学位论文]. 保定:华北电力大学,2004 年.
    [88] 张加胜,郝荣泰. 四象限变流器的坐标变换及控制构想. 北方交通大学学报,1997,21(4): 491~494.
    [89] 陈海荣,徐政. 向无源网络供电的 VSC-HVDC 系统的控制器设计. 中国电机工程学报,2006,26(23):42~48.
    [90] F.Schettler, H.Huang, N.Christl. HVDC transmission systems using VoltageSourced Converters design and applications. In: Transmission and Distribution Conference and Exposition, IEEE/PES 2000.715~720.
    [91] 李春文,冯元琨.多变量非线性控制的逆系统方法.清华大学出版社,1991
    [92] 卢强,孙元章.电力系统非线性控制.北京:科学出版社,1993
    [93] 浙江大学直流输电科研组. 直流输电. 北京: 水利电力出版社,1985
    [94] 张力,陈建业,王仲鸿,等.系统电压不对称条件下 ASVG 的仿真分析.清华大学学报(自然科学版),1997,37(7):55~58.
    [95] 谭伟璞,杨以涵,贺仁睦,等.统一潮流控制器实验装置的动态 SPWM 方法.华北电力大学学报,2000,27(1):10~14.
    [96] 余江,段献忠. 电压不对称条件下并联电压源型 SMES 的触发方式. 电力系统自动化,2002, 26(14):40~44.
    [97] http://www.abb.com.hk/cawp/GAD02181/613AE4D80F2A48F4C1256DD3002A6D77. aspx?v=17EA&e=us, 2007 年 4 月 13 日.
    [98] 徐政. 交直流电力系统的动态行为分析. 北京:机械工业出版社,2004.
    [99] 张纬钹,何金良,高玉明 编著.过电压防护及绝缘配合.清华大学出版社.2002
    [100] 解广润 主编.电力系统过电压.水利电力出版社.1985
    [101] Khalil H K. Nonlinear systems (third edition). New Jersey, USA: Prentice-Hall Inc., 2002.
    [102] 杨俊华,吴捷,胡跃明.反步方法原理及在非线性鲁棒控制中的应用.控制与决策,2002,17(增刊):641~647,653.
    [103] 龙晓林,蒋静坪.非线性控制及其先进控制策略.武汉理工大学学报·信息与管理工程版,2004,26(4):8~13.
    [104] 徐建省,王永骥,季海波.鲁棒控制方法在导弹控制系统中的应用研究进展与展望.航天控制,2007,25(1):91~96.
    [105] Wang Huimei,Huang Tsongliang,Tsai Cheeming,et al.Power system stabilizer design using adaptive backstepping controller.Proceedings of the fifth IEEE International Conference on Power Electronics and Drive Systems (PEDS2003),Singapore,Nov., 17-20, 2003, Vol.2, Pages: 1574~1579.
    [106] Lin Shuichun,Tsai Chingchih.Adaptive voltage regulation and equal current distribution of Parallel-Buck DC-DC converters using backstepping sliding mode control.The 3th Annual Conference of the IEEE industrial Electronics Society, November 2-6,2004, Busan, Korea.
    [107] 阮映琴,王杰.SVC 与发电机励磁无源协调 Backstepping 控制.电工技术学报,2007,22(6):135-140.
    [108] 朱晓荣,李和明,彭咏龙,等.基于反步法的电流型 PWM 整流器控制策略.电工技术学报,2007,22(2):78~83.
    [109] 王家军,赵光宙,齐冬莲.反推式控制在永磁同步电动机速度跟踪控制中的应用.中国电机工程学报,2004,24(8):95~98.
    [110] Ruan Siye,Li Guojie,Jiao Xiaohong,et al.Adaptive control design for VSC-HVDC systems based on backstepping method. Electric Power Systems Research,2006,77(5-6):559~565.
    [111] S.Br′egeon,A.Benchaib,S.Poullain,et al.Robust DC bus voltage control based on Backstepping and Lyapunov methods for long distance VSC transmission scheme.EPE 2003, Benchaib Abdelkrim, Toulouse, pages: 1~9.
    [112] 王茂海,孙元章,宋永华.基于反步法的多馈入直流输电系统调制控制器设计.中国电机工程学报,2005,25(23):7~11.
    [113] 房鑫炎,郁惟镛,熊慧敏等. 电力系统黑启动的研究. 中国电力,2000,33(1):40~43, 96.
    [114] 张小易. 电力系统黑启动过程中过电压问题的研究:[硕士学位论文]. 保定:华北电力大学,2004 年.
    [115] 毛井国. 衢州电网黑启动研究:[硕士学位论文]. 杭州:浙江大学,2004 年.
    [116] 王洪涛. 大规模电力系统恢复研究:[硕士学位论文]. 山东大学,2005 年.
    [117] Moreira C L, Resende F O, Lopes J A P. Using low voltage MicroGrids for service restoration. IEEE Transactions on Power Systems, 2007, 22(1): 395~403.
    [118] 郭丽,赵成勇,李广凯,等. VSC-HVDC 在电网黑启动时负荷恢复阶段提高系统频率稳定性研究. 华北电力大学学报,2007, 34(5): 22~26, 31.
    [119] Liu Yan, Gu Xueping. Skeleton-network reconfiguration based on topological characteristics of scale-free networks and discrete particle swarm optimization for black-start restoration, IEEE Transactions on Power Systems, 2007, 22(3): 1267~1274.
    [120] 高远望,顾雪平,刘艳,等. 电力系统黑启动方案的自动生成与评估. 电力系统自动化,2004, 28(13): 55~59, 89.
    [121] 顾雪平,赵书强,刘艳,等. 一个实用的电力系统黑启动决策支持系统. 电网技术,2004,28(9): 59~62, 79.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700