基于声人工结构的声波调控研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
声波和弹性波在声子晶体和声超常材料中的传播特性近年来引起了人们广泛的关注。声子晶体和声超常材料都是由人工结构构成的复合材料。声子晶体是指由两种或者两者以上的弹性材料按周期排列所组成的人工复合结构,其晶格结构的尺寸往往和波长可比拟。由于这类材料中存在声带隙,其中的声波/弹性波会表现出一些特殊的性质,从而使得声子晶体有望被用于声滤波器,声波导的制作和应用。声超常材料中人工结构的尺度一般远小于声波长,因而可以用等效参数来描述此类结构的声学性质。通过引入特殊的微结构单元可以实现一些天然材料无法实现的结构参数,比如密度各向异性、负质量密度、负弹性模量等,并产生许多新颖的声学现象,如声学隐身、声超透镜成像等。目前声超常材料的概念已不仅局限于具有单/双负参数的复合材料的范畴,而且涵盖了各种可以实现新颖声学现象的声学结构。因此声子晶体也可以被认为是超常材料的一个分支。
     综上所述,对声子晶体和声超常材料中声传播特性的研究具有基础性的学术价值,对实际应用也具有一定的指导意义。本文对声子晶体与声超常材料中声传播行为进行了系统而深入的研究。主要包括以下内容:
     第一章为绪论,回顾了声子晶体和声超常材料的研究背景,介绍了该领域的研究内容和最新进展,并针对本文的研究内容做了深入介绍,包括兰姆波型声子晶体,表面波型声子晶体,声单向传输,声梯度透镜。
     第二章介绍了声人工结构的相关理论和计算方法。首先从固体物理理论出发,介绍了晶体结构的基础知识。然后给出了声人工结构中需要遵循的声波和弹性波方程。最后深入介绍了声人工结构的相关计算方法,包括平面波展开法、有限元方法和超常材料等效参数的反演方法。
     第三章首先回顾了声单向结构研究领域的发展过程,然后介绍了当前研究中存在的两个重要难题:声单向结构的尺寸过大,以及正向出射波形混乱。为了解决这些难题,我们提出了两种新型的声单向结构。第一种是利用周期声栅和纯板构建的双层结构,在这个系统中,声单向效应是通过对平面波源的重建来实现的。通过该机理,可以实现小尺寸的声单向结构,通过合理地设计结构参数,出射束的方向可以被有效地控制。第二种是利用近零折射率材料设计的棱镜结构。利用这类材料对入射角度的高度选择性,声单向传输得以在该系统中实现。由于该类材料固有的隧穿效应,系统的正向出射波得以保持为平面波,其波形和入射波形几乎一致。
     第四章首先介绍了声梯度透镜的发展历史。然后基于空间折叠的概念提出了一种新型的声学梯度透镜。通过在与透镜轴向相垂直的方向上使用不同大小的空间折叠材料,实现了声聚焦效应。由于空间折叠结构可以等效为高折射率的材料,该透镜的厚度可以被设计的很薄。同时我们发现在特定频域范围内,该结构的等效阻抗和背景介质的阻抗可以很好地匹配,进而使得该透镜的聚焦效果更加高效。
     第五章首先回顾了表面波型声子晶体的研究背景,并介绍了前人工作中普遍存在的问题:均匀衬底的广泛采用将导致声表面波仅能在基底的体波声线之下被调控。针对该问题,我们提出了在有限厚度的声子晶体表面堆垛均匀/复合附加层的结构。研究结果表明,表面波会在体波声线之下和禁带之中出现,且这些频带中的表面波模式都可以通过添加均匀和复合层来有效操控,并得到表面波带隙。最后我们从表面波的衰减深度方面解释了该系统的能带结构随结构参数变化的物理机理。
     最后在第六章,我们给出了本文的主要结论和对今后工作的展望。
In recent years, there is a growing interest in the studies of acoustic or elastic wave propagating in acoustic/phononic crystals and metamaterials, which are composite materials consisting of artificial structures. Acoustic/phononic crystals are composite materials, which are formed by periodical heterogeneous materials, and the geometrical parameters of the structure are comparable with the acoustic wavelength. Because of the existence of frequency band gaps, the acoustic or elastic waves in this kind of structure show some special properties such that the acoustic/phononic crystals are expected to be utilized as sound filter and waveguide materials, etc. The geometrical parameters of the units in metamaterials are much less than the acoustic wavelength. Through introducing different kinds of units, the acoustic metamaterials can be effectively regarded as effective medium with some unavailable parameter in nature, such as anisotropic mass density, negative mass density, negative modulus, etc. Some fascinating phenomena, such as acoustic cloaking, acoustic super lens, etc., can be realized through these parameters Actually, the structure, which can be utilized to realize some novel acoustic phenomenon, can also be regarded as metamaterials, such as unidirectional acoustic transmission, etc. In this point of view, the acoustic/phononic crystals can also be considered to be some special acoustic metamaterials.
     As mentioned above, the investigations of acoustic properties of acoustic/phononic crystals and metamaterials are of fundamental scientific significance, which has great application value in practice. This dissertation gives systematic studies on acoustic wave propagation in these artificial structures. The dissertation is divided into following sections:
     In Chapter I, the previous theoretical and experimental works on acoustic/phononic crystals and metamaterials are reviewed that serve for the background of the research and the progress of the investigations on these topics is introduced. The main contents of the present study are briefly described, such as lamb wave, surface acoustic wave in phononic crystals, unidirectional acoustic transmission and acoustic gradient-index lens.
     In Chapter II, we reviewed the related theories on the crystals in solid states physics, and the acoustic/elastic waves equations. More attention is paid to the discussion of numerical calculations and simulations of artificial structures, such as the plane wave expansion method, finite element method and the retrieving of effective parameters of metamaterials with complex structure.
     In Chapter III, we reviewed the background of unidirectional acoustic transmission and present some problems in the previous works, such as the large size stemming from the employment of acoustic crystals and the disorder of the transmitting wavefront. In order to overcome this problem, we present two systems. One is double-layered structure consisting of periodic grating and uniform plate. The one-way transmission can be realized based on the reconstruction of plane wave source. It is found that the size of the one-way device can be modulated to the wavelength scale and the angles of transmitting beams can be tuned effectively by appropriate selection the geometrical parameters. The other is a prism with near zero refractive index. Unidirectional acoustic transmission can be achieved due to the highly angular selectively of near zero index materials. The transmitted wave in this system is still plane wave and the wavefront of the transmitting wave are almost consistent with the incident plane wave.
     In Chapter IV, we firstly reviewed the background of the gradient-index lens. By appropriate selection of the size of the coiling structure along the direction perpendicular to the lens axis, the gradient-index lens is constructed to realize the acoustic focusing effect. Due to the high refractive index providing by the coiling structure, the lens can be designed with thinner thickness. Moreover, the more effective focusing effect can be observed due to the lower impedance mismatch.
     In Chapter V, we reviewed the background of the surface acoustic waves (SAWs) in phononic crystals, and find that due to the existence of uniform substrate, the SAWs modes can only be modulated below the sound cone of the substrate. To overcome the problem, we present a system consisting of a finite thickness phononic crystal plate stubbed with uniform/composite layer. Numerical results show that SAWs modes can be obtained below the sound cone and in the band gaps of the bulk waves. By introducing the uniform/composite layer, the SAWs modes both below the sound cone and in the band gaps can be tuned effectively. The attenuation depth of SAWs modes is introduced to interpret the relationship between the variation of the band structures and the geometrical parameters
     Finally, the main conclusions of the present study and the prospect for the future work are drawn in Chapter VI.
引文
[1]E. Yablonovitch, "Inhibited Spontaneous Emission in Solid-State Physics and Electronics", Phys. Rev. Lett.58,2059 (1987).
    [2]S. John, "Strong localization of photons in certain disordered dielectric superlattices", Phys. Rev. Lett.58,2486 (1987).
    [3]E. Yablonovitch, T. Gmitter, and K. Leung, "Photonic band structure:The face-centered-cubic case employing nonspherical atoms", Phys. Rev. Lett.67,2295 (1991).
    [4]J. J. Faran, "Sound Scattering by Solid Cylinders and Spheres", The Journal of the Acoustical Society of America 23,405 (1951).
    [5]M. M. Sigalas, and E. N. Economou, "Elastic and acoustic wave band structure", J. Sound Vib.158,377(1992).
    [6]M. S. Kushwaha, P. Halevi, L. Dobrzynski, and B. Djafari-Rouhani, "Acoustic band structure of periodic elastic composites", Phys Rev Lett 71,2022 (1993).
    [7]R. Martinez-Sala, J. Sancho, J. V. Sanchez, V. Gomez, J. Llinares, and F. Meseguer, "Sound attenuation by sculpture", Nature 378,241 (1995).
    [8]J. Sanchez-Perez, D. Caballero, R. Martinez-Sala, C. Rubio, J. Sanchez-Dehesa, F. Meseguer, J. Llinares, and F. Galvez, "Sound Attenuation by a Two-Dimensional Array of Rigid Cylinders", Phys. Rev. Lett.80,5325 (1998).
    [9]M. Kafesaki, and E. Economou, "Multiple-scattering theory for three-dimensional periodic acoustic composites", Phys. Rev. B 60,11993 (1999).
    [10]M. Kafesaki, M. Sigalas, and N. Garcia, "Frequency Modulation in the Transmittivity of Wave Guides in Elastic-Wave Band-Gap Materials", Phys. Rev. Lett.85,4044 (2000).
    [11]Z. Liu, X. Zhang, Y. Mao, Y. Y. Zhu, Z. Yang, C. T. Chan, and P. Sheng, "Locally Resonant Sonic Materials", Science 289,1734 (2000).
    [12]M. Oudich, Y. Li, B. M. Assouar, and Z.-L. Hou, "A sonic band gap based on the locally resonant phononic plates with stubs", New J. Phys.12,083049 (2010).
    [13]A. Khelif, Y. Achaoui, S. Benchabane, V. Laude, and B. Aoubiza, "Locally resonant surface acoustic wave band gaps in a two-dimensional phononic crystal of pillars on a surface", Phys. Rev. B 81,214303 (2010).
    [14]M. Oudich, M. B. Assouar, and Z. L. Hou, "Propagation of acoustic waves and waveguiding in a two-dimensional locally resonant phononic crystal plate", Appl. Phys. Lett. 97,193503(2010).
    [15]Y. Achaoui, A. Khelif, S. Benchabane, L. Robert, and V. Laude, "Experimental observation of locally-resonant and Bragg band gaps for surface guided waves in a phononic crystal of pillars", Phys. Rev. B 83,104201 (2011).
    [16]J.-C. Hsu, and T.-T. Wu, "Lamb waves in binary locally resonant phononic plates with two-dimensional lattices", Appl. Phys. Lett.90,201904 (2007).
    [17]温熙森,温激鸿,郁殿龙,王刚,刘耀宗,韩小云,声子晶体,(国防工业出版社,北京,2006).
    [18]Y. Li, Z.-L. Hou, X.-J. Fu, and M. A. Badreddine, "Symmetric and Anti-Symmetric Lamb Waves in a Two-Dimensional Phononic Crystal Plate", Chin. Phys. Lett.27,074303 (2010).
    [19]M. Kafesaki, and E. Economou, "Interpretation of the band-structure results for elastic and acoustic waves by analogy with the LCAO approach", Phys. Rev. B 52,13317 (1995).
    [20]Z. L. Hou, and B. A. Assouar, "Modeling of Lamb wave propagation in plate with two-dimensional phononic crystal layer coated on uniform substrate using plane-wave-expansion method", Phys. Lett. A 372,2091 (2008).
    [21]M. Sigalas, and C. Soukoulis, "Elastic-wave propagation through disordered and/or absorptive layered systems", Phys. Rev. B 51,2780 (1995).
    [22]I. Psarobas, N. Stefanou, and A. Modinos, "Phononic crystals with planar defects", Phys. Rev. B 62,5536 (2000).
    [23]L. Feng, X. P. Liu, M. H. Lu, Y. B. Chen, Y. F. Chen, Y. W. Mao, J. Zi, Y. Y. Zhu, S. N. Zhu, and N. B. Ming, "Acoustic backward-wave negative refractions in the second band of a sonic crystal", Phys. Rev. Lett.96,014301 (2006).
    [24]M. H. Lu, C. Zhang, L. Feng, J. Zhao, Y. F. Chen, Y. W. Mao, J. Zi, Y. Y. Zhu, S. N. Zhu, and N. B. Ming, "Negative birefraction of acoustic waves in a sonic crystal", Nature Mater.6, 744 (2007).
    [25]F. Cervera, L. Sanchis, J. Sanchez-Perez, R. Martinez-Sala, C. Rubio, F. Meseguer, C. Lopez, D. Caballero, and J. Sanchez-Dehesa, "Refractive Acoustic Devices for Airborne Sound", Phys. Rev. Lett.88,023902 (2001).
    [26]S.-C. S. Lin, and T. J. Huang, "Acoustic mirage in two-dimensional gradient-index phononic crystals", J. Appl. Phys.106,053529 (2009).
    [27]S.-C. S. Lin, T. J. Huang, J.-H. Sun, and T.-T. Wu, "Gradient-index phononic crystals", Phys. Rev. B 79,094302 (2009).
    [28]C. Qiu, Z. Liu, J. Shi, and C. T. Chan, "Directional acoustic source based on the resonant cavity of two-dimensional phononic crystals", Appl. Phys. Lett.86,224105 (2005).
    [29]C. Qiu, and Z. Liu, "Acoustic directional radiation and enhancement caused by band-edge states of two-dimensional phononic crystals", Appl. Phys. Lett.89,063106 (2006).
    [30]B. A. Auld, Y. A. Shui, and Y. Wang, "Elastic Wave Propagation in Three-Dimensional Periodic Composite Materials", Le Journal de Physique Colloques 45, C5 (1984).
    [31]A. Alippi, F. Craciun, and E. Molinari, "Finite-size effects in the frequency response of piezoelectric composite plates", J. Appl. Phys.66,2828 (1989).
    [32]J.-J. Chen, K.-W. Zhang, J. Gao, and J.-C. Cheng, "Stopbands for lower-order Lamb waves in one-dimensional composite thin plates", Phys. Rev. B 73,094307 (2006).
    [33]J. Gao, X. Y. Zou, J. C. Cheng, and B. W. Li, "Band gaps of lower-order Lamb wave in thin plate with one-dimensional phononic crystal layer:Effect of substrate", Appl. Phys. Lett. 92,023510(2008).
    [34]Z. L. Hou, and B. M. Assouar, "Opening a band gap in the free phononic crystal thin plate with or without a mirror plane", J. Phys. D:Appl. Phys.41,215102 (2008).
    [35]S. Mohammadi, A. A. Eftekhar, A. Khelif, W. D. Hunt, and A. Adibi, "Evidence of large high frequency complete phononic band gaps in silicon phononic crystal plates", Appl. Phys. Lett.92,221905 (2008).
    [36]T.-T. Wu, Z.-G. Huang, T.-C. Tsai, and T.-C. Wu, "Evidence of complete band gap and resonances in a plate with periodic stubbed surface", Appl. Phys. Lett.93,111902 (2008).
    [37]B. Djafari-Rouhani, A. Maradudin, and R. Wallis, "Rayleigh waves on a superlattice stratified normal to the surface", Phys. Rev. B 29,6454 (1984).
    [38]B. Manzanares-Martinez, and F. Ramos-Mendieta, "Surface elastic waves in solid composites of two-dimensional periodicity", Phys. Rev. B 68,134303 (2003).
    [39]D. Nardi, F. Banfi, C. Giannetti, B. Revaz, G. Ferrini, and F. Parmigiani, "Pseudosurface acoustic waves in hypersonic surface phononic crystals", Phys. Rev. B 80,104119 (2009).
    [40]A. A. Maznev, "Band gaps and Brekhovskikh attenuation of laser-generated surface acoustic waves in a patterned thin film structure on silicon", Phys. Rev. B 78,134303 (2008).
    [41]R. Sainidou, B. Djafari-Rouhani, and J. Vasseur, "Surface acoustic waves in finite slabs of three-dimensional phononic crystals", Phys. Rev. B 77,094304 (2008).
    [42]R. E. Vines, and J. P. Wolfe, "Scanning phononic lattices with surface acoustic waves", Physica B:Condensed Matter 263-264,567 (1999).
    [43]V. G. Veselago, "The electrodynamics of substances with simultaneously negative Values of ε and μ,", Soviet Physics Uspekhi 10,509 (1968).
    [44]J. B. Pendry, A. J. Holden, D. J. Robbins, and W. J. Stewart, "Magnetism from conductors and enhanced nonlinear phenomena", Ieee T Microw Theory 47,2075 (1999).
    [45]D. Smith, W. Padilla, D. Vier, S. Nemat-Nasser, and S. Schultz, "Composite Medium with Simultaneously Negative Permeability and Permittivity", Phys. Rev. Lett.84,4184 (2000).
    [46]R. A. Shelby, D. R. Smith, and S. Schultz, "Experimental verification of a negative index of refraction", Science 292,77 (2001).
    [47]J. Valentine, S. Zhang, T. Zentgraf, E. Ulin-Avila, D. A. Genov, G. Bartal, and X. Zhang, "Three-dimensional optical metamaterial with a negative refractive index", Nature 455,376 (2008).
    [48]J. Yao, Z. Liu, Y. Liu, Y. Wang, C. Sun, G. Bartal, A. M. Stacy, and X. Zhang, "Optical negative refraction in bulk metamaterials of nanowires", Science 321,930 (2008).
    [49]N. Engheta, "Pursuing Near-Zero Response", Science 340,286 (2013).
    [50]M. Silveirinha, and N. Engheta, "Tunneling of Electromagnetic Energy through Subwavelength Channels and Bends using ε-Near-Zero Materials", Phys. Rev. Lett.97, 157403(2006).
    [51]M. Silveirinha, and P. Belov, "Spatial dispersion in lattices of split ring resonators with permeability near zero", Phys. Rev. B 77,233104 (2008).
    [52]X. Huang, Y. Lai, Z. H. Hang, H. Zheng, and C. T. Chan, "Dirac cones induced by accidental degeneracy in photonic crystals and zero-refractive-index materials", Nature Mater. 10,582(2011).
    [53]B. Edwards, A. Alu, M. Young, M. Silveirinha, and N. Engheta, "Experimental Verification of Epsilon-Near-Zero Metamaterial Coupling and Energy Squeezing Using a Microwave Waveguide", Phys. Rev. Lett.100,033903 (2008).
    [54]Z. Liu, C. Chan, and P. Sheng, "Analytic model of phononic crystals with local resonances", Phys. Rev. B 71,014103 (2005).
    [55]Z. Yang, J. Mei, M. Yang, N. H. Chan, and P. Sheng, "Membrane-Type Acoustic Metamaterial with Negative Dynamic Mass", Phys. Rev. Lett.101,204301 (2008).
    [56]N. Fang, D. Xi, J. Xu, M. Ambati, W. Srituravanich, C. Sun, and X. Zhang, "Ultrasonic metamaterials with negative modulus", Nature Mater.5,452 (2006).
    [57]Y. Ding, Z. Liu, C. Qiu, and J. Shi, "Metamaterial with Simultaneously Negative Bulk Modulus and Mass Density", Phys. Rev. Lett.99,093904 (2007).
    [58]S. H. Lee, C. M. Park, Y. M. Seo, Z. G. Wang, and C. K. Kim, "Composite Acoustic Medium with Simultaneously Negative Density and Modulus", Phys. Rev. Lett.104 (2010).
    [59]L. Fok, and X. Zhang, "Negative acoustic index metamaterial", Phys. Rev. B 83,214304 (2011).
    [60]M. Yang, G. Ma, Z. Yang, and P. Sheng, "Coupled Membranes with Doubly Negative Mass Density and Bulk Modulus", Phys. Rev. Lett.110,134301 (2013).
    [61]Y. Wu, Y. Lai, and Z.-Q. Zhang, "Elastic Metamaterials with Simultaneously Negative Effective Shear Modulus and Mass Density", Phys. Rev. Lett.107,105506 (2011).
    [62]Y. Lai, Y. Wu, P. Sheng, and Z. Q. Zhang, "Hybrid elastic solids", Nature Mater.10,620 (2011).
    [63]Z. Liang, and J. Li, "Extreme Acoustic Metamaterial by Coiling Up Space", Phys. Rev. Lett.108,114301 (2012).
    [64]Y. Xie, B.-I. Popa, L. Zigoneanu, and S. A. Cummer, "Measurement of a Broadband Negative Index with Space-Coiling Acoustic Metamaterials", Phys. Rev. Lett.110,175501 (2013).
    [65]Z. Liang, T. Feng, S. Lok, F. Liu, K. B. Ng, C. H. Chan, J. Wang, S. Han, S. Lee, and J. Li, "Space-coiling metamaterials with double negativity and conical dispersion", Sci. Rep.3, 1614(2013).
    [66]F. Liu, X. Huang, and C. T. Chan, "Dirac cones at k→=0 in acoustic crystals and zero refractive index acoustic materials", Appl. Phys. Lett.100,071911 (2012).
    [67]F. Liu, Y. Lai, X. Huang, and C. T. Chan, "Dirac cones at k[over→]=0 in phononic crystals", Phys. Rev. B 84,224113 (2011).
    [68]Y. Jing, J. Xu, and N. X. Fang, "Numerical study of a near-zero-index acoustic metamaterial", Phys. Lett. A 376,2834 (2012).
    [69]B. Liang, B. Yuan, and J. C. Cheng, "Acoustic diode:Rectification of acoustic energy flux in one-dimensional systems", Phys. Rev. Lett.103,104301 (2009).
    [70]B. Liang, X. S. Guo, J. Tu, D. Zhang, and J. C. Cheng, "An acoustic rectifier", Nature Mater.9,989(2010).
    [71]B. Liang, X. Y. Zou, B. Yuan, and J. C. Cheng, "Frequency-dependence of the acoustic rectifying efficiency of an acoustic diode model", Appl. Phys. Lett.96,233511 (2010).
    [72]X. F. Zhu, X. Y. Zou, B. Liang, and J. C. Cheng, "One-way mode transmission in one-dimensional phononic crystal plates", J. Appl. Phys.108,124909 (2010).
    [73]N. Boechler, G. Theocharis, and C. Daraio, "Bifurcation-based acoustic switching and rectification", Nature Mater.10,665 (2011).
    [74]S. Danworaphong, T. A. Kelf, O. Matsuda, M. Tomoda, Y. Tanaka, N. Nishiguchi, O. B. Wright, Y. Nishijima, K. Ueno, S. Juodkazis, and H. Misawa, "Real-time imaging of acoustic rectification", Appl. Phys. Lett.99,201910 (2011).
    [75]Z. He, S. Peng, Y. Ye, Z. Dai, C. Qiu, M. Ke, and Z. Liu, "Asymmetric acoustic gratings", Appl. Phys. Lett.98,083505 (2011).
    [76]X. F. Li, X. J. Ni, L. Feng, M. H. Lu, C. He, and Y. F. Chen, "Tunable unidirectional sound propagation through a sonic-crystal-based acoustic diode", Phys. Rev. Lett.106, 084301 (2011).
    [77]A. Cicek, O. Adem Kaya, and B. Ulug, "Refraction-type sonic crystal junction diode", Appl. Phys. Lett.100,111905 (2012).
    [78]B. Yuan, B. Liang, J. C. Tao, X. Y. Zou, and J. C. Cheng, "Broadband directional acoustic waveguide with high efficiency", Appl. Phys. Lett.101,043503 (2012).
    [79]Y. Li, J. Tu, B. Liang, X. S. Guo, D. Zhang, and J. C. Cheng, "Unidirectional acoustic transmission based on source pattern reconstruction", J. Appl. Phys.112,064504 (2012).
    [80]Y. Cheng, and X. J. Liu, "Resonance effects in broadband acoustic cloak with multilayered homogeneous isotropic materials", Appl. Phys. Lett.93,071903 (2008).
    [81]M. Farhat, S. Enoch, S. Guenneau, and A. B. Movchan, "Broadband Cylindrical Acoustic Cloak for Linear Surface Waves in a Fluid", Phys. Rev. Lett.101,134501 (2008).
    [82]B. I. Popa, L. Zigoneanu, and S. A. Cummer, "Experimental Acoustic Ground Cloak in Air", Phys. Rev. Lett.106,253901 (2011).
    [83]X. F. Zhu, B. Liang, W. W. Kan, X. Y. Zou, and J. C. Cheng, "Acoustic Cloaking by a Superlens with Single-Negative Materials", Phys. Rev. Lett.106,014301 (2011).
    [84]M. H. Lu, X. K. Liu, L. Feng, J. Li, C. P. Huang, and Y. F. Chen, "Extraordinary acoustic transmission through a 1D grating with very narrow apertures", Phys. Rev. Lett.99,174301 (2007).
    [85]J. Christensen, L. Martin-Moreno, and F. J. Garcia-Vidal, "Theory of resonant acoustic transmission through subwavelength apertures", Phys. Rev. Lett.101,014301 (2008).
    [86]H. Estrada, P. Candelas, A. Uris, F. Belmar, F. J. G. de Abajo, and F. Meseguer, "Extraordinary sound screening in perforated plates", Phys. Rev. Lett.101,084302 (2008).
    [87]H. Estrada, F. J. Garcia de Abajo, P. Candelas, A. Uris, F. Belmar, and F. Meseguer, "Angle-dependent ultrasonic transmission through plates with subwavelength hole arrays", Phys. Rev. Lett.102,144301 (2009).
    [88]Z. He, H. Jia, C. Qiu, S. Peng, X. Mei, F. Cai, P. Peng, M. Ke, and Z. Liu, "Acoustic transmission enhancement through a periodically structured stiff plate without any opening", Phys. Rev. Lett.105,074301 (2010).
    [89]Y. Zhou, M. H. Lu, L. Feng, X. Ni, Y. F. Chen, Y. Y. Zhu, S. N. Zhu, and N. B. Ming, "Acoustic surface evanescent wave and its dominant contribution to extraordinary acoustic transmission and collimation of sound", Phys. Rev. Lett.104,164301 (2010).
    [90]G. D'Aguanno, K. Q. Le, R. Trimm, A. Alu, N. Mattiucci, A. D. Mathias, N. Akozbek, and M. J. Bloemer, "Broadband metamaterial for nonresonant matching of acoustic waves", Sci. Rep.2,340(2012).
    [91]F. Cervera, L. Sanchis, J. V. Sanchez-Perez, R. Martinez-Sala, C. Rubio, F. Meseguer, C. Lopez, D. Caballero, and J. Sanchez-Dehesa, "Refractive Acoustic Devices for Airborne Sound", Phys. Rev. Lett.88,023902 (2001).
    [92]S. Yang, J. H. Page, Z. Liu, M. L. Cowan, C. T. Chan, and P. Sheng, "Focusing of Sound in a 3D Phononic Crystal", Phys. Rev. Lett.93,024301 (2004).
    [93]S. Guenneau, A. Movchan, G. Petursson, and S. Anantha Ramakrishna, "Acoustic metamaterials for sound focusing and confinement", New J. Phys.9,399 (2007).
    [94]X. Ao, and C. T. Chan, "Far-field image magnification for acoustic waves using anisotropic acoustic metamaterials", Phys. Rev. E 77,025601 (2008).
    [95]K. Deng, Y. Ding, Z. He, H. Zhao, J. Shi, and Z. Liu, "Graded negative index lens with designable focal length by phononic crystal", J. Phys. D:Appl. Phys.42,185505 (2009).
    [96]J. Li, L. Fok, X. Yin, G. Bartal, and X. Zhang, "Experimental demonstration of an acoustic magnifying hyperlens", Nature Mater.8,931 (2009).
    [97]A. Sukhovich, B. Merheb, K. Muralidharan, J. Vasseur, Y. Pennec, P. Deymier, and J. Page, "Experimental and Theoretical Evidence for Subwavelength Imaging in Phononic Crystals", Phys. Rev. Lett.102,154301 (2009).
    [98]S. Zhang, L. Yin, and N. Fang, "Focusing Ultrasound with an Acoustic Metamaterial Network", Phys. Rev. Lett.102,194301 (2009).
    [99]A. Climente, D. Torrent, and J. Sanchez-Dehesa, "Sound focusing by gradient index sonic lenses", Appl. Phys. Lett.97,104103 (2010).
    [100]T. P. Martin, M. Nicholas, G. J. Orris, L.-W. Cai, D. Torrent, and J. Sanchez-Dehesa, "Sonic gradient index lens for aqueous applications", Appl. Phys. Lett.97,113503 (2010).
    [101]S. Peng, Z. He, H. Jia, A. Zhang, C. Qiu, M. Ke, and Z. Liu, "Acoustic far-field focusing effect for two-dimensional graded negative refractive-index sonic crystals", Appl. Phys. Lett.96,263502(2010).
    [102]S. Bramhavar, C. Prada, A. A. Maznev, A. G. Every, T. B. Norris, and T. W. Murray, "Negative refraction and focusing of elastic Lamb waves at an interface", Phys. Rev. B 83, 014106(2011).
    [103]J. Zhu, J. Christensen, J. Jung, L. Martin-Moreno, X. Yin, L. Fok, X. Zhang, and F. J. Garcia-Vidal, "A holey-structured metamaterial for acoustic deep-subwavelength imaging", Nature Phys.7,52(2011).
    [104]L. Zigoneanu, B.-I. Popa, and S. A. Cummer, "Design and measurements of a broadband two-dimensional acoustic lens", Phys. Rev. B 84,024305 (2011).
    [105]F. Lemoult, M. Fink, and G. Lerosey, "Acoustic Resonators for Far-Field Control of Sound on a Subwavelength Scale", Phys. Rev. Lett.107,064301 (2011).
    [106]C. M. Park, J. J. Park, S. H. Lee, Y. M. Seo, C. K. Kim, and S. H. Lee, "Amplification of Acoustic Evanescent Waves Using Metamaterial Slabs", Phys. Rev. Lett. 107,194301 (2011).
    [1]C. Kittel, Introduction to Solid State Physics,8th (Wiley, Hoboken,2004).
    [2]杜功焕,朱哲民,龚秀芬,声学基础 第二版,(南京大学出版社,南京,2001).
    [3]B. A. Auld, Acoustic Fields and Waves in Solids,2nd (Wiley-Interscience, New York,1992), Vol. II.
    [4]Y. Cao, Z. Hou, and Y. Liu, "Convergence problem of plane-wave expansion method for phononic crystals", Phys. Lett. A 327,247 (2004).
    [5]Z. L. Hou, and B. A. Assouar, "Modeling of Lamb wave propagation in plate with two-dimensional phononic crystal layer coated on uniform substrate using plane-wave-expansion method", Phys. Lett. A 372,2091 (2008).
    [6]Z. Hou, X. Fu, and Y. Liu, "Calculational method to study the transmission properties of phononic crystals", Phys. Rev. B 70,014304 (2004).
    [7]Z. L. Hou, and B. M. Assouar, "Transmission property of the one-dimensional phononic crystal thin plate by the eigenmode matching theory", J. Phys. D:Appl. Phys.41,095103(2008).
    [8]J. Mei, Z. Liu, and C. Qiu, "Multiple-scattering theory for out-of-plane propagation of elastic waves in two-dimensional phononic crystals", Journal of physics. Condensed matter:an Institute of Physics journal 17,3735 (2005).
    [9]J. Gao, X. Y. Zou, J. C. Cheng, and B. W. Li, "Band gaps of lower-order Lamb wave in thin plate with one-dimensional phononic crystal layer:Effect of substrate", Appl. Phys. Lett.92,023510 (2008).
    [10]J. Gao, J. C. Cheng, and B. W. Li, "Propagation of Lamb waves in one-dimensional quasiperiodic composite thin plates:A split of phonon band gap", Appl. Phys. Lett.90,111908 (2007).
    [11]Y. Li, Z. Hou, M. Oudich, and M. Badreddine Assouar, "Analysis of surface acoustic wave propagation in a two-dimensional phononic crystal", J. Appl. Phys.112, 023524(2012).
    [12]M. Kafesaki, M. Sigalas, and N. Garcia, "Frequency Modulation in the Transmittivity of Wave Guides in Elastic-Wave Band-Gap Materials", Phys. Rev. Lett. 85,4044 (2000).
    [13]A. Khelif, B. Djafari-Rouhani, J. Vasseur, P. Deymier, P. Lambin, and L. Dobrzynski, "Transmittivity through straight and stublike waveguides in a two-dimensional phononic crystal", Phys. Rev. B 65,174308 (2002).
    [14]李勇,声子晶体中的兰姆波和表面波,(华南理工大学,广州,2010).
    [15]侯志林,声子晶体带结构和透射性质的研究,(华南理工大学,广州,2005).
    [16]R. Courant, "Variational methods for the solution of problems of equilibrium and vibrations", B. Am. Math. Soc.49,1 (1943).
    [17]徐涛,非双盲超透镜声隐身结构的研究,(南京大学,南京,2012).
    [18]王帽成,有限元法第二版,(清华大学出版社,北京,2003).
    [19]J. Li, L. Fok, X. Yin, G. Bartal, and X. Zhang, "Experimental demonstration of an acoustic magnifying hyperlens", Nature Mater.8,931 (2009).
    [20]V. Fokin, M. Ambati, C. Sun, and X. Zhang, "Method for retrieving effective properties of locally resonant acoustic metamaterials", Phys. Rev. B 76,144302 (2007).
    [1]B. Li, L. Wang, and G. Casati, "Thermal diode:Rectification of heat flux", Phys. Rev. Lett.93,184301 (2004).
    [2]B. Li, J. Lan, and L. Wang, "Interface thermal resistance between dissimilar anharmonic lattices", Phys. Rev. Lett.95,104302 (2005).
    [3]C. W. Chang, D. Okawa, A. Majumdar, and A. Zettl, "Solid-state thermal rectifier", Science 314,1121 (2006).
    [4]L. Wang, and B. Li, "Thermal logic gates:Computation with phonons", Phys. Rev. Lett.99,177208(2007).
    [5]Z. Wang, Y. D. Chong, J. D. Joannopoulos, and M. Soljacic, "Reflection-free one-way edge modes in a gyromagnetic photonic crystal", Phys. Rev. Lett.100, 013905(2008).
    [6]F. D. M. Haldane, and S. Raghu, "Possible realization of directional optical waveguides in photonic crystals with broken time-reversal symmetry", Phys. Rev. Lett.100,013904(2008).
    [7]Z. F. Yu, and S. H. Fan, "Complete optical isolation created by indirect interband photonic transitions", Nature Photon.3,91 (2009).
    [8]L. Feng, M. Ayache, J. Huang, Y. L. Xu, M. H. Lu, Y. F. Chen, Y. Fainman, and A. Scherer, "Nonreciprocal light propagation in a silicon photonic circuit", Science 333, 729(2011).
    [9]S. Lepri, and G. Casati, "Asymmetric wave propagation in nonlinear systems", Phys. Rev. Lett.106,164101 (2011).
    [10]L. Fan, J. Wang, L. T. Varghese, H. Shen, B. Niu, Y. Xuan, A. M. Weiner, and M. Qi, "An all-silicon passive optical diode", Science 335,447 (2012).
    [11]L. Feng, Y. L. Xu, W. S. Fegadolli, M. H. Lu, J. E. Oliveira, V. R. Almeida, Y. F. Chen, and A. Scherer, "Experimental demonstration of a unidirectional reflectionless parity-time metamaterial at optical frequencies", Nature Mater.12,108 (2013).
    [12]V. F. Nesterenko, C. Daraio, E. B. Herbold, and S. Jin, "Anomalous wave reflection at the interface of two strongly nonlinear granular media", Phys. Rev. Lett. 95,158702(2005).
    [13]B. Liang, B. Yuan, and J. C. Cheng, "Acoustic diode:Rectification of acoustic energy flux in one-dimensional systems", Phys. Rev. Lett.103,104301 (2009).
    [14]B. Liang, X. S. Guo, J. Tu, D. Zhang, and J. C. Cheng, "An acoustic rectifier", Nature Mater.9,989 (2010).
    [15]B. Li, "Now you hear me, now you don't", Nature Mater.9,962 (2010).
    [16]P. Ball, "Material witness:Sound sense of direction", Nature Mater.10,268 (2011).
    [17]N. Boechler, G. Theocharis, and C. Daraio, "Bifurcation-based acoustic switching and rectification", Nature Mater.10,665 (2011).
    [18]X. F. Zhu, X. Y. Zou, B. Liang, and J. C. Cheng, "One-way mode transmission in one-dimensional phononic crystal plates", J. Appl. Phys.108,124909 (2010).
    [19]X. F. Li, X. J. Ni, L. Feng, M. H. Lu, C. He, and Y. F. Chen, "Tunable unidirectional sound propagation through a sonic-crystal-based acoustic diode", Phys. Rev. Lett.106,084301 (2011).
    [20]S. Danworaphong, T. A. Kelf, O. Matsuda, M. Tomoda, Y. Tanaka, N. Nishiguchi, O. B. Wright, Y. Nishijima, K. Ueno, S. Juodkazis, and H. Misawa, "Real-time imaging of acoustic rectification", Appl. Phys. Lett.99,201910 (2011).
    [21]Z. He, S. Peng, Y. Ye, Z. Dai, C. Qiu, M. Ke, and Z. Liu, "Asymmetric acoustic gratings", Appl. Phys. Lett.98,083505 (2011).
    [22]A. Cicek, O. Adem Kaya, and B. Ulug, "Refraction-type sonic crystal junction diode", Appl. Phys. Lett.100,111905(2012).
    [23]B. Yuan, B. Liang, J. C. Tao, X. Y. Zou, and J. C. Cheng, "Broadband directional acoustic waveguide with high efficiency", Appl. Phys. Lett.101,043503 (2012).
    [24]Z. Liu, X. Zhang, Y. Mao, Y. Y. Zhu, Z. Yang, C. T. Chan, and P. Sheng, "Locally Resonant Sonic Materials", Science 289,1734 (2000).
    [25]M. S. Kushwaha, P. Halevi, L. Dobrzynski, and B. Djafari-Rouhani, "Acoustic band structure of periodic elastic composites", Phys Rev Lett 71,2022 (1993).
    [26]M. M. Sigalas, and E. N. Economou, "Band structure of elastic waves in two dimensional systems", Solid State Commun.86,141 (1993).
    [27]Y. Li, J. Tu, B. Liang, X. S. Guo, D. Zhang, and J. C. Cheng, "Unidirectional acoustic transmission based on source pattern reconstruction", J. Appl. Phys.112, 064504(2012).
    [28]J. Gao, J. C. Cheng, and B. W. Li, "Propagation of Lamb waves in one-dimensional quasiperiodic composite thin plates:A split of phonon band gap", Appl. Phys. Lett.90,111908 (2007).
    [29]Z. L. Hou, and B. A. Assouar, "Modeling of Lamb wave propagation in plate with two-dimensional phononic crystal layer coated on uniform substrate using plane-wave-expansion method", Phys. Lett. A 372,2091 (2008).
    [30]Y. Li, Z.-L. Hou, X.-J. Fu, and M. A. Badreddine, "Symmetric and Anti-Symmetric Lamb Waves in a Two-Dimensional Phononic Crystal Plate", Chin. Phys. Lett.27,074303 (2010).
    [31]M. C. Bhattacharya, R. W. Guy, and M. J. Crocker, "Coincidence Effect with Sound Waves in a Finite Plate", J. Sound Vib.18,157 (1971).
    [32]Y. Xie, B.-I. Popa, L. Zigoneanu, and S. A. Cummer, "Measurement of a Broadband Negative Index with Space-Coiling Acoustic Metamaterials", Phys. Rev. Lett.110,175501 (2013).
    [33]Z. Liang, T. Feng, S. Lok, F. Liu, K. B. Ng, C. H. Chan, J. Wang, S. Han, S. Lee, and J. Li, "Space-coiling metamaterials with double negativity and conical dispersion", Sci. Rep.3,1614(2013).
    [34]F. Liu, X. Huang, and C. T. Chan, "Dirac cones at k"=0 in acoustic crystals and zero refractive index acoustic materials", Appl. Phys. Lett.100,071911 (2012).
    [35]Y. Jing, J. Xu, and N. X. Fang, "Numerical study of a near-zero-index acoustic metamaterial", Phys. Lett. A 376,2834 (2012).
    [36]F. Liu, Y. Lai, X. Huang, and C. T. Chan, "Dirac cones at k[over "]=0 in phononic crystals", Phys. Rev. B 84,224113 (2011).
    [37]X. Huang, Y. Lai, Z. H. Hang, H. Zheng, and C. T. Chan, "Dirac cones induced by accidental degeneracy in photonic crystals and zero-refractive-index materials", Nature Mater.10,582(2011).
    [1]C. Gomez-Reino, M. V. Perez, and C. Bao, Gradient-Index Optics:Fundamentals and Applications, (Springer, New York,2002).
    [2]D. R. Smith, J. J. Mock, A. F. Starr, and D. Schurig, "Gradient index metamaterials", Phys. Rev. E 71,036609 (2005).
    [3]A. O. Pinchuk, and G. C. Schatz, "Metamaterials with gradient negative index of refraction", J. Opt. Soc. Am. A 24, A39 (2007).
    [4]F. Roux, and I. De Leon, "Planar photonic crystal gradient index lens, simulated with a finite difference time domain method", Phys. Rev. B 74,113103 (2006).
    [5]E. Centeno, D. Cassagne, and J.-P. Albert, "Mirage and superbending effect in two-dimensional graded photonic crystals", Phys. Rev. B 73,235119 (2006).
    [6]E. Akmansoy, E. Centeno, K. Vynck, D. Cassagne, and J.-M. Lourtioz, "Graded photonic crystals curve the flow of light:An experimental demonstration by the mirage effect", Appl. Phys. Lett.92,133501 (2008).
    [7]H. Kurt, and D. S. Citrin, "Graded index photonic crystals", Opt. Express 15, 1240 (2007).
    [8]Q. Wu, J. M. Gibbons, and W. Park, "Graded negative index lens by photonic crystals", Opt. Express 16,16941 (2008).
    [9]A. O. Cakmak, E. Colak, H. Caglayan, H. Kurt, and E. Ozbay, "High efficiency of graded index photonic crystal as an input coupler", J. Appl. Phys.105,103708 (2009).
    [10]C. Ma, M. A. Escobar, and Z. Liu, "Extraordinary light focusing and Fourier transform properties of gradient-index metalenses", Phys. Rev. B 84,195142 (2011).
    [11]D. Torrent, and J. Sanchez-Dehesa, "Acoustic metamaterials for new two-dimensional sonic devices", New J. Phys.9,323 (2007).
    [12]K. Deng, Y. Ding, Z. He, H. Zhao, J. Shi, and Z. Liu, "Graded negative index lens with designable focal length by phononic crystal", J. Phys. D:Appl. Phys.42,185505 (2009).
    [13]S.-C. S. Lin, T. J. Huang, J.-H. Sun, and T.-T. Wu, "Gradient-index phononic crystals", Phys. Rev. B 79,094302 (2009).
    [14]S.-C. S. Lin, and T. J. Huang, "Acoustic mirage in two-dimensional gradient-index phononic crystals", J. Appl. Phys.106,053529 (2009).
    [15]A. Climente, D. Torrent, and J. Sanchez-Dehesa, "Sound focusing by gradient index sonic lenses", Appl. Phys. Lett.97,104103 (2010).
    [16]T. P. Martin, M. Nicholas, G. J. Orris, L.-W. Cai, D. Torrent, and J. Sanchez-Dehesa, "Sonic gradient index lens for aqueous applications", Appl. Phys. Lett.97,113503(2010).
    [17]S. Peng, Z. He, H. Jia, A. Zhang, C. Qiu, M. Ke, and Z. Liu, "Acoustic far-field focusing effect for two-dimensional graded negative refractive-index sonic crystals", Appl. Phys. Lett.96,263502 (2010).
    [18]L. Zigoneanu, B.-I. Popa, and S. A. Cummer, "Design and measurements of a broadband two-dimensional acoustic lens", Phys. Rev. B 84,024305 (2011).
    [19]T. M. Chang, G. Dupont, S. Enoch, and S. Guenneau, "Enhanced control of light and sound trajectories with three-dimensional gradient index lenses", New J. Phys.14, 035011 (2012).
    [20]T. P. Martin, C. N. Layman, K. M. Moore, and G. J. Orris, "Elastic shells with high-contrast material properties as acoustic metamaterial components", Phys. Rev. B 85,161103(2012).
    [21]M. M. Sigalas, and E. N. Economou, "Band structure of elastic waves in two dimensional systems", Solid State Commun.86,141 (1993).
    [22]M. S. Kushwaha, P. Halevi, L. Dobrzynski, and B. Djafari-Rouhani, "Acoustic band structure of periodic elastic composites", Phys Rev Lett 71,2022 (1993).
    [23]Z. Liu, X. Zhang, Y. Mao, Y. Y. Zhu, Z. Yang, C. T. Chan, and P. Sheng, "Locally Resonant Sonic Materials", Science 289,1734 (2000).
    [24]J. Li, and C. T. Chan, "Double-negative acoustic metamaterial", Phys. Rev. E 70, 055602 (2004).
    [25]N. Fang, D. Xi, J. Xu, M. Ambati, W. Srituravanich, C. Sun, and X. Zhang, "Ultrasonic metamaterials with negative modulus", Nature Mater.5,452 (2006).
    [26]S. A. Cummer, and D. Schurig, "One path to acoustic cloaking", New J. Phys.9, 45 (2007).
    [27]Z. Yang, J. Mei, M. Yang, N. H. Chan, and P. Sheng, "Membrane-Type Acoustic Metamaterial with Negative Dynamic Mass", Phys. Rev. Lett.101,204301 (2008).
    [28]S. H. Lee, C. M. Park, Y. M. Seo, Z. G. Wang, and C. K. Kim, "Composite Acoustic Medium with Simultaneously Negative Density and Modulus", Phys. Rev. Lett.104(2010).
    [29]J. Christensen, and F. J. G. de Abajo, "Anisotropic Metamaterials for Full Control of Acoustic Waves", Phys. Rev. Lett.108,124301 (2012).
    [30]Z. Liang, and J. Li, "Extreme Acoustic Metamaterial by Coiling Up Space", Phys. Rev. Lett.108,114301 (2012).
    [31]M. Yang, G. Ma, Z. Yang, and P. Sheng, "Coupled Membranes with Doubly Negative Mass Density and Bulk Modulus", Phys. Rev. Lett.110,134301 (2013).
    [32]J. B. Pendry, "Negative Refraction Makes a Perfect Lens", Phys. Rev. Lett.85, 3966 (2000).
    [33]V. Fokin, M. Ambati, C. Sun, and X. Zhang, "Method for retrieving effective properties of locally resonant acoustic metamaterials", Phys. Rev. B 76,144302 (2007).
    [34]D. R. Smith, D. C. Vier, T. Koschny, and C. M. Soukoulis, "Electromagnetic parameter retrieval from inhomogeneous metamaterials", Phys. Rev. E 71,036617 (2005).
    [35]S. Guenneau, A. Movchan, G. Petursson, and S. Anantha Ramakrishna, "Acoustic metamaterials for sound focusing and confinement", New J. Phys.9,399 (2007).
    [36]S. Zhang, L. Yin, and N. Fang, "Focusing Ultrasound with an Acoustic Metamaterial Network", Phys. Rev. Lett.102,194301 (2009).
    [1]J.-J. Chen, K.-W. Zhang, J. Gao, and J.-C. Cheng, "Stopbands for lower-order Lamb waves in one-dimensional composite thin plates", Phys. Rev. B 73,094307 (2006).
    [2]J. Gao, J. C. Cheng, and B. W. Li, "Propagation of Lamb waves in one-dimensional quasiperiodic composite thin plates:A split of phonon band gap", Appl. Phys. Lett.90,111908 (2007).
    [3]J. Gao, X. Y. Zou, J. C. Cheng, and B. W. Li, "Band gaps of lower-order Lamb wave in thin plate with one-dimensional phononic crystal layer:Effect of substrate", Appl. Phys. Lett.92,023510 (2008).
    [4]Z. L. Hou, and B. A. Assouar, "Modeling of Lamb wave propagation in plate with two-dimensional phononic crystal layer coated on uniform substrate using plane-wave-expansion method", Phys. Lett. A 372,2091 (2008).
    [5]Z. L. Hou, and B. M. Assouar, "Opening a band gap in the free phononic crystal thin plate with or without a mirror plane", J. Phys. D:Appl. Phys.41,215102 (2008).
    [6]Y. Tanaka, and S.-i. Tamura, "Surface acoustic waves in two-dimensional periodic elastic structures", Phys. Rev. B 58,7958 (1998).
    [7]B. Manzanares-Martinez, and F. Ramos-Mendieta, "Surface elastic waves in solid composites of two-dimensional periodicity", Phys. Rev. B 68,134303 (2003).
    [8]T.-T. Wu, Z.-G. Huang, and S. Lin, "Surface and bulk acoustic waves in two-dimensional phononic crystal consisting of materials with general anisotropy", Phys. Rev. B 69,094301 (2004).
    [9]V. Laude, M. Wilm, S. Benchabane, and A. Khelif, "Full band gap for surface acoustic waves in a piezoelectric phononic crystal", Phys. Rev. E 71,036607 (2005).
    [10]S. Benchabane, A. Khelif, J. Y. Rauch, L. Robert, and V. Laude, "Evidence for complete surface wave band gap in a piezoelectric phononic crystal", Phys. Rev. E 73, 065601 (R) (2006).
    [11]J.-H. Sun, and T.-T. Wu, "Propagation of surface acoustic waves through sharply bent two-dimensional phononic crystal waveguides using a finite-difference time-domain method", Phys. Rev. B 74,174305 (2006).
    [12]A. A. Maznev, "Band gaps and Brekhovskikh attenuation of laser-generated surface acoustic waves in a patterned thin film structure on silicon", Phys. Rev. B 78, 134303(2008).
    [13]R. Sainidou, B. Djafari-Rouhani, and J. Vasseur, "Surface acoustic waves in finite slabs of three-dimensional phononic crystals", Phys. Rev. B 77,094304 (2008).
    [14]D. Nardi, F. Banfi, C. Giannetti, B. Revaz, G. Ferrini, and F. Parmigiani, "Pseudosurface acoustic waves in hypersonic surface phononic crystals", Phys. Rev. B 80,104119(2009).
    [15]D. Trzupek, and P. Zielinski, "Isolated True Surface Wave in a Radiative Band on a Surface of a Stressed Auxetic", Phys. Rev. Lett.103,075504 (2009).
    [16]A. Khelif, Y. Achaoui, S. Benchabane, V. Laude, and B. Aoubiza, "Locally resonant surface acoustic wave band gaps in a two-dimensional phononic crystal of pillars on a surface", Phys. Rev. B 81,214303 (2010).
    [17]B. M. Assouar, and M. Oudich, "Dispersion curves of surface acoustic waves in a two-dimensional phononic crystal", Appl. Phys. Lett.99,123505 (2011).
    [18]Y. Achaoui, A. Khelif, S. Benchabane, L. Robert, and V. Laude, "Experimental observation of locally-resonant and Bragg band gaps for surface guided waves in a phononic crystal of pillars", Phys. Rev. B 83,104201 (2011).

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700