熔融盐循环热载体无烟燃烧技术的基础研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
在可预见的将来,化石燃料仍将是人类发电和供热的主要用能。然而化石燃料在燃烧过程中产生大量的CO_2、NO_x、SO_x等污染气体,这些污染物排放到大气中会导致大气污染和地球温室效应。为了减少化石燃料燃烧过程向大气中排放CO_2、NO_x、SO_x等气体,近年来欧美、日本等国都在进行高效、低污染的新型燃烧技术的研发。日本开发了低NO_x排放的高温空气燃烧技术,美国对受控脉动燃烧技术进行了研究,并取得了积极效果。这些燃烧技术在减少了CO_2和NO_x的排放量方面,取得了国际公认的先进水平。但是,现有的所有燃烧技术都不能从根本上避免化石燃料燃烧过程的CO_2气体排放问题。本文在整合了能源化学、燃料电池、燃料燃烧学和化学链燃烧等学科的基础上提出了一个全新的基于熔融盐循环热载体的无烟燃烧技术。本技术中,燃烧反应在熔池中进行,燃烧过程实现O_2和N_2分离,燃烧产物不被空气稀释,得到高纯度的CO_2易于捕集和储存,燃烧过程不向大气排放CO_2和NO_x。
     本文对熔融盐循环热载体无烟燃烧技术的概念和原理进行了详细的阐述。选取过渡金属氧化物Fe_2O_3、CuO和NiO等作为熔融盐循环热载体无烟燃烧技术的氧载体,选取质量比为1:1的Na_2CO_3和K_2CO_3作为熔融盐反应体系和热载体,选取CH_4作为实验研究的燃料。对一些典型的无烟燃烧反应体系进行了热力学计算,结果表明所选取的无烟燃烧体系在一定温度范围内在热力学上都是可行的;利用热力学计算软件和数据库,根据系统自由能最小原则,计算了不同温度下过渡金属氧化物分别与甲烷反应的系统平衡组成,并绘制了反应过程平衡组成图,还计算了氧载体在空气气氛中恢复晶格氧过程的平衡组成,从计算的结果可以看出,所选择的过渡金属氧化物都能利用分子中的晶格氧使甲烷发生完全氧化生成CO_2和水蒸气,并能在空气的氧化下恢复其分子中的晶格氧,能作为无烟燃烧技术的氧载体使用。
     采用机械混合法、沉淀法和等容浸渍法制备了Fe_2O_3、CuO和NiO三个系列的氧载体,采用XRD、SEM、BET、TG、O_2-TPD、CH_4-TPR等检测手段对氧载体的性能进行了表征,在固定床反应器中考察了氧载体的氧化还原(Redox)性能,利用热重反应器(thermal gravimetrical reactor,TGA)研究了氧载体的循环反应性能,进一步考察了利用天然铁矿石作为无烟燃烧技术的氧载体的可能性。研究表明,分别以Fe_2O_3、CuO和NiO为活性物质的氧载体能作为甲烷燃烧的氧
In the foreseeing short and medium future, fossil fuels still will be the main energy resources to produce electricity and heat for human. Unfortunately, combustion of fossil fuels leads to emissions of CO2, NOX and SOX into the atmosphere, which are believed to contribute to air pollution and global warming. In order to reduce the pollutants derived from combustion of fossil fuel, such as CO2, NOX and SOX, the developed countries have made great efforts to develop novel combustion technologies with high efficiency and low pollution aiming to reduce pollution caused by combustion of fossil fuels. Theses technologies have achieved considerable progress to control the pollutants emission during combustion. However, it is impossible for all over the present combustion technologies to eliminate CO2 emission fundamentally in combustion process. A novel combustion system, nonflame combustion technique with a thermal cyclic carrier of molten salt (NFCT), has been developed based on the knowledge of energy chemistry, fuel cell, combustion technology and chemical-looping combustion in the present work. In this technique, oxygen is separated from air and then burned with fuels in a molten bath to produce a high concentration of CO2 which is favorable for subsequent capture and storage.At the beginning of this work, the concept, technological process and mechanism of NFCT were introduced in detail. In this technique, some kinds of transition metal oxides such as Fe2O3, CuO and NiO were selected as the active phase in oxygen carriers. The fuel and molten bath used in the research work were CH4 and 1:1 weight ratio of Na2CO3 and K2CO3 respectively. The thermodynamics parameters of several typical NFCT system have been calculated. It is clearly that the NFCT system selected in this work is favorable in thermodynamics in a wide temperature range. Based on the principle of a system free energy minimum, the equilibrium compositions of metal oxides-CH4 system at various temperatures were calculated using thermodynamics software and database. Also, the equilibrium compositions of metal oxides-air systems were calculated. The equilibrium compositions diagrams of these systems were created through the software. The calculation results show that the lattice oxygen in the transition metal oxides can be used as oxygen resources for CH4 total oxidation. The lattice oxygen of metal oxides lost in the reaction with CH4 can be recovered when the reduced metal oxides were exposed in air atmosphere.Three series of Fe2O3-, CuO- and NiO-based oxygen carriers were prepared with mechanical
    mixing, coprecipitation and impregnation techniques. The oxygen carriers were characterized by means of XRD, SEM, BET, TG, O2-TPD, CH4-TPR, etc.. The redox quality and cyclic reactivity of the oxygen carriers were examined in a fixed-bed reactor and a thermal gravimetrical respectively. The possibility of using natural iron ore as oxygen carrier in NFCT was evaluated. The results show that iron oxide will undergo state changing step by step as follows: Fe2C>3—>Fe3O4—>FeO—>Fe during reacting with CH4. CuO will firstly convert into C112O, and then into Cu being exposed into CH4 atmosphere. NiO will directly convert in metal Ni when it reacts with CH.J, and Ni will return to NiO when it is oxidized in air. To some extent, the inert binder and its content can affect the reactivity of oxygen carriers. Generally speaking, NiO-type oxygen carriers show better reactivity than the CuO-type oxygen carriers. The reactivity of Fe2O3 is not as good as the two former oxygen carriers, but the reactivity of Fe2C>3-based O-carriers can be improved through some techniques. Furthermore, the results show that the three series oxygen carrier enjoy good redox quality and cyclic reactivity. The reactivity will become lightly better with the numbers of cyclic reactions. Perhaps, this is partially explained by the fact that the structure in the carriers particle has been changed by the thermal impact and chemical reactions.Outlet gas products of the fixed-bed reactor were analyzed by a gas analyzer. It is found that at the beginning reaction stage CH4 is mainly converted into CO2, which concentration was over 85% when CH4 was introduced into the Fe2O3/Al2C?3 and CUO/T1O2 bed. With reactions proceed, GH4 and CO were detected in the outlet gases. At the beginning of oxidation reaction, the outlet product is almost pure N2, no O2 being detected. This means that all over the oxygen in the air are reacted with oxygen carrier and changed into lattice oxygen. The effect of reaction temperature on the concentration of product gases was investigated. It is revealed that the higher reaction temperature is, the faster of CO2 concentration rise up, and the bigger of the CO2 peak concentration. In the NFCT system using CH4 as fuel feedstock, carbon deposition reaction, which should be suppressed, will take place and accompany the main combustion reaction. The experimental results indicated that a desired mole fraction of H2O addition to CH4 can dramatically suppress the carbon deposition reaction. The micrographs of the surface nd cross section of the oxygen carrier particles were characterized by means of SEM. It clearly can be seen that the surface of fresh particles show a smooth texture. However, when the particles were exposed to alternating oxidizing and reducing conditions the surface changed to a more coarse texture with the development of cracks and fissures in the particle. The cross
    section of particles has been changed from nonporous to porous after being exposed to alternating CH^-air conditions.A stainless steel single-reactor was designed by the authors. The reaction process of CuO/TiO2 and Fe2O3/Al2O3 oxygen carrier reacting with alternating CH4 and air in the molten bath were studied, and the gases product were also analyzed. It was found that the CO2 yield reached 79.6-89.0% when CuO/TiO2 reacts with CH4 in molten bath. N2 yield of 91.2-93.9% was obtained during air being blast into the reactor reacting with the reduced oxygen carrier. CO2 yield was around 85% in the reaction between Fe2O3/Al2C>3 and CH4 in the molten bath. The CO2 yield increased slightly with the temperature growing up. The results show that CH4 was burned almost completely in flameless in the molten bath.Possibility and assumption of engineering application about NFCT were discussed. The scenario and thought of designing an engineering reactor of NFCT were put forward. Take a 10MW NFCT boiler as an example, the main operation parameters and design data of that scale NFCT boiler were calculated. The heat balance of a NFCT unit was analyzed based on a black box model. The exergy efficiency of a CH4 fired conventional combustion-GT (gas turbine) and a NFCT-GT system were calculated and compared. Moreover, the Grassmahn Diagram of exergy flow for the two systems were made. It is observed that the exergy loss was about 20.75% in the reaction reactors in NFCT-GT system. In contrast, the exergy loss was 32.10% in the combustor in conventional combustion-GT system, which is much bigger than the corresponding value in NFCT system. It is found that the largest exergy destruction in thermal power plants occurs in the combustor in conventional system. Comparing the two systems, the total exergy efficiency of the NFCT-GT system and conventional combustion-GT system were 43.52% and 37.47% respectively. If the techniques that can be used to separate CO2 from a flue gas were added to the conventional combustion-GT system, which means a relative reduction in the overall efficiency of a power plant of 10-20%.In conclusion, the NFCT system has a bright prospect in increasing the efficiency of energy conversion process, as well as in reducing green house gas emission.
引文
[1] Steenari B, Lindqvist O. Fly ash characteristics in co-combustion of wood with coal or peat [J]. Fuel, 1999, 78:479~488
    [2] Ndaji F E, Ellyatt W A T, Malik A A, et al. Temperature programmed combustion studies of the co-processing of coal and waste materials [J]. Fuel, 1999, 78:301~307
    [3] Lone A. Hansen, Flemming J. Frandsen and Kim Dam-Johansen, Characteristion of ashes and deposits from high-temperature coal-straw co-firing [J]. Energy & Fuels, 1999, 13: 803~816
    [4] 谢裕生,赵黛青.燃烧生成物的发生与控制技术[M],北京:科学出版社,2001
    [5] R.A.Cox, S.A.Penkett. Acid Deposition, Reidel, Dordrecht, (1983):56.
    [6] G.Centi, S.Perathoner, B.Karthenser, D.Rohan, and B.K.Hodnett, Appl. Catal. B1(1992): 129.
    [7] M.Schrod, J.Semel and R.Steiner. Chem. Ing. Tech. 1985, 57: 716.
    [8] C.Bowman, Combustion Sci. Technol. 1971,(3):37.
    [9] T. Takeno, M. Nishioka; Comb. Flame, 1993, 92: 465.
    [10] www.evirolink.org/orgs/edf/sitemap.html
    [11] He Fang, Wang Hua, Dai Yongnian, Thermodynamic analysis and experimental investigation into nonflame combustion technology using thermal cyclic carrier. Proceedings of the ICOPE-03, 1-277, Nov.9-13, Kobe, Japan
    [12] C.Bowman, Combustion Sic. Technol., 3(1971):37
    [13] R.Prasad, L.A.Kennedy and E.Ruckenstein, Catal. Rev.-Sci. Eng., 26(1984): 1
    [14] L.D.Pfefferle, W.C.Pfefferle, Catal.Rev.-Sci.Eng., 29(1987): 219
    [15] D.L.Trimm, Appl. Catal., 7(1983):249
    [16] W.C.Pfefferle, Belgian Pat. 814752(1974) and U.S.Pat. 3928961(1975)
    [17] P.W.Pillsbury, P.E.Scheihing, and J.L. Toof, 5th Workshop on Catalytic Combustion, 1981
    [18] M.A.Friedman, P.E.Scheihing, and J.L.Toof, 5th Workshop on Catalytic Combustion, 1981
    [19] W.S.Blazowski and D.E.Walsh, Combustion Sci. Tech., 10(1975):233
    [20] A.Wood, Chem. Week, 9(1991)
    [21] Chem. Eng. News, 13(1991)
    [22] J.A.Cusumano, Appl. Catal. 113(1994):181
    [23] 袁强,氧化铝为载体的负载型钯催化剂对甲烷催化燃烧反应性能的研究,厦门大学硕士学位论文,2001年5月:9
    [24] H.Sadamori. 10th Symp. On Catal. Combustion. 1990
    [25] T.Furuya et al. ASME Paper 87-GT-99(1987)
    [26] W.C.Pfefferle, ASME Paper 79-GT-142(1979)
    [27] J.A.Latty, British Pat. 2107837(1985)
    [28] Philippe O., Thevenin, P. Govind Menon, and Sven G. Jaras, Catalytic total oxidation of methane, Cat. Tech., 2003, 7(1): 10-19
    [29] P. Artizzu-Duart, Y. Brulle', F. Galliard, E. Garbowski, N. Guillhaume and M. Primer, Catal. Today 54 (1999) 181.
    [30] P. Artizzu-Duart, J.-M. Millet, N. Guillhaume, E. Garbowski and M. Primet, Catal. Today 59 (2000) 163.
    [31] M. Machida, K. Eguchi and H. Arai, J. Catal. 103 (2000) 385.
    [32] G. Groppi, F. Assandri, M. Bellotto, C. Christiani and P. Forzatti, J. Solid State Chem. 114 (1995) 236. Paris, 1982) p. 238.
    [33] 王军威,田志坚,徐金光等,甲烷高温燃烧催化剂研究进展,化学进展,2003,15(3):242-248
    [34] MachidaM, EguchiK, AraiH. J. Am. Ceram.Soc., 1988, 71:1142-1153
    [35] M.Maehida, K.Eguchi and H. Arai, J. Catal., 120(1989): 377
    [36] M.Machida, K.Eguchi and H. Arai, J. Catal., 123(1990): 477
    [37] G.Busca, Catal. Lett., 31(1995): 65
    [38] JansenSR, HaanJW, van de Ven L J M, etal. Chem. Mater., 1997, 9:1516-1524
    [39] MachidaM, EguchiK, A rai H. Chem. Lett., 1986,170:151-154
    [40] Daoud Naoufal, Jean-Marc Millet, and Edouard Garbowski, et al. Catalysis Letters 54 (1998): 141-148
    [41] Machida M, Eguchi K, Arai H. J. Catal., 1990, 123:477-485
    [42] Artizzu P, Guilhaume N, Garbowski E, et al. Catal. Lett., 1998,51:69-76
    [43] Artizzu P, Millet J M, Garbowski E, et al. Catal. Today, 2000, 59:163-177
    [44] Bellotto M, Artioli G, Cristiani C, et al. J, Catal., 1998, 179:597-605
    [45] Zarur A J, Ying J Y. Nature, 2000, 403(6765): 65-66
    [46] Xiang Wang. and You-chang Xie. The promotion effects of Ba on manganese oxide for CH4 deep oxidation. Catalysis Letters 2001, 1-2(72): 51-57
    [47] D. L. Trimm, Appl. Catal. 7(1983): 249
    [48] R.F.Hichs. J. Catal. 122(1990): 280
    [49] R.F.Hichs. J. Catal. 122(1990): 295
    [50] Briot P, Auroux A, Jones D, etal. Appl. Catal.,1990, 59:141-152
    [51] Briot P, Premit M. Appl. Catal.,1991, 68:301-314
    [52] Oh S H, Mitchell P J, Siewert R M. Appl.Catal.B, 1994, 5:165-179
    [53] Briot P, Premit M. Appl. Catal., 1991, 68:301-314
    [54] Burch R, Urbano F J. Appl. Catal.A, 1995, 124:121-138
    [55] McCarty J G, Wong V L, Chang Y F. Scr. Metal. Mater., 1994, 31(8): 1115-1124
    [56] T.Miki, T.Ogawa, et al., J. Phys. Chem., 90(1994): 6464
    [57] B.Beguin, E.Garbowski and Primer, J. Catal., 127(1991): 595.
    [58] Koshi, Hardiyanto, Shingo, et al, Catal. Today. 59(2000): 69
    [59] H.Maeda, Y.Kinoshita, et al, Appl. Catal. A: General. 163(1997): 59
    [60] T.Horiuchi, T.Sugiyama and T.Mori, J. Mater Chem., 3(1993):861
    [61] 闻立时,固体材料界面研究的物理基础,北京:科学出版社
    [62] Ilenia Rossetti, Lucio Forni. Applied Catalysis B. Environmental 33(2001): 345-352
    [63] Burton J.J.,Garten R.L.新型催化材料,林西平译.北京:石油工业出版社,1984:12
    [64] Voorhoeve R.J.H.; Remeika J.P., Freeland, P. E., et al. Science, 1972, 177:353
    [65] Galasso F. S., Perovskites and High Tc Superconductors [M]. Gordon and Breach Science Publishers, New York, 1990.
    [66] Rao C N R (ed.). Chemistry of Oxide Superconductors [M]. Blackwell Scientific Publications, Oxford, 1988.
    [67] Vanderah T A (ed.). Chemistry of Supereonductor Materials (Preparation, Chemistry, Characterization and Theory) [M]. Noyes Publications, New Jersey, 1992.
    [68] Aequarone M (ed.). High Temperature Supereonductivity (Models and Measurements) [M]. World Scientific Publishing Co., Singapore, 1996.
    [69] Libby W F. Promising CATALYST FOR auto exhaust [J]. Science, 1971, 171(3): 499.
    [70] Pedersen L A, Libby W F. Unseparated rare earth cobalt oxides as auto exhaust catalysts [J]. Science, 1972, 176(7): 1355.
    [71] 戴洪兴,何洪,李佩珩等.稀土钙钛矿型氧化物催化剂的研究进展,中国稀土学报,2003,21(spec.issue):1-15
    [72] Arai H, Yamada T, Eguchi K, et al. Catalytic combustion of methane over various perovskite-type oxides [J]. Appl. Catal., 1986, 26(1-2): 265
    [73] 常振勇,崔连起,钙钛矿金属氧化物催化剂的研究与应用综述,精细石油化工,2002, 3:49-53
    [74] Ferri D, Forni L. Methane combustion on some perovskite like mixed oxides [J]. Appl. Catal. B, 1998, 16(2): 119
    [75] R. Leanza, I. Rossetti, L. Fabbrini, C. Oliva, et al. Applied Catalysis B: Environmental. 28(2000): 55-64
    [76] Fiereo J. L. G. Structure and composition of perovskite surface in relation to adsorption and catalytic properties [J]. Catal. Today, 1990, 8(2): 153
    [77] Ciambelli P, Cimino S, De Rossi S, et al.. Appl. Catal. B. 2000, 24(3-4): 243
    [78] Cimino S, Lisi L, De Rossi S, et al.. Appl. Catal. B, 2003, 43(4): 397
    [79] Szabo V, Bassir M, Van Neste A, et al.. Appl. Catal. B, 2003, 43(1): 81
    [80] P. Ciambelli, S. Cimino, G. Lasorella, et al.. Applied Catalysis B: Environmental 37(2002): 231-241
    [81] Li W, Dai H X, Liu Y W. Stud. Surf Sci. Catal. 1992, 75:1793
    [82] Saracco G, Geobaldo F, Baldi G, Appl. Catal. B, 1999, 20:277-288
    [83] 单文娟,含铈符合氧化物及其负载PdO催化剂的CH4催化燃烧性能,辽宁师范大学硕士学位论文,2001年5月.
    [84] MeCarty J. G. and Wise H.. Catal. Today, 8(1990): 231
    [85] P. Briot and M. Primet, Appl. Catal., 68(1991): 301
    [86] N. Guilhaume and M. Primer, J. Chem. Soc. Faraday Trans., 90(1994): 1541
    [87] Sheng-Fu Ji, Tian-Cun Xiao, Hai-Tao Wang. Catalytic combustion of methane over obalt-magnesium oxide solid solution catalysts[J], Catalysis Letters 2001, 75(1-2):65-71
    [88] 孙海龙,刘源,刘少文.锰铈混和氧化物气凝胶催化剂的研究,燃料化学学报,2004,32(1):93-97
    [89] 罗孟飞,单文娟,李美俊等.Ce_2Y_2O固溶体及其PdO/Ce_2Y_2O催化剂的制备,表征和CH_4氧化性能.北京大学学报(自然科学版),2001,37(2):221-225
    [90] P. Artizzau D., Millet J. M.. Catal. Today, 2000, 59:163-177
    [91] Tobias Mattisson, Anders Lyngfelt, Application of chemical-looping combustion with capture of CO2, Proceedings of Second Nordic Minisymposium on Carbon Dioxide Capture and Storage, Gotebor, October26, 2001.
    [92] 何方,王华,戴永年等.熔融盐循环热载体无烟燃烧体系的选择,工程热物理学报,2003,24(3):515-518
    [93] 王华,何方,马文会等,循环热载体无烟燃烧技术,中国发明专利:申请号:01107032.3, 2001年
    [94] 何方,王华,戴永年.熔融盐循环热载体无烟燃烧技术及其热力学分析,中国稀土学报,2002,20(Spec.Issue):602-605
    [95] J·塞克利,J.W.埃文斯,H.Y.索恩著,胡道和译,气-固反应,北京:中国建筑工业出版社,1986.
    [96] N. A. Warner. Reduction kinetics of hematite and the influence of gaseous diffusion. Transactions of the metallurgical society of AIME, 1964, vol. 230:163-176
    [97] 周长军,林伟,朱月香等.SnCuO催化剂上甲烷的催化燃烧性能,催化学报,2003,24(3):229-232.
    [98] 张鑫,陈耀强,史忠华等.过渡金属氧化物催化剂上甲烷催化燃烧的研究,化学研究与应用,2002,14(3):352-354.
    [99] Sung June Cho, Kwang Sup Song, In Soo Ryu, et al. Characteristics of methane combustion over La-Cr-O catalysts, Catalysis Letters, 58 (1999) :63-66.
    [100] A.S.C. Brown , J.S.J. Hargreaves, and S.H. Taylor. A study of "superacidic" MoO_3/ZrO_2 catalysts for methane oxidation, Catalysis Letters, 57 (1999): 109-113.
    [101] Sergio L. Gonzalez-Cortes, Serbia M. A. et al. React.Kinet. Catal.Lett. 2002, 75(1): 3-12
    [102] 李然家,沈师孔.晶格氧用于甲烷氧化制合成气的研究,分子催化,2001,15(3):181-186
    [103] Van Looij F. [PhD Dissertation]. Sorbonnelaan: Utrecht University, 1994
    [104] Stobbe E. R., de Boer B. A., Geus J. W. Catal Today, 1999, 47(1-4): 161
    [105] 李然家,余长春,代小平等,催化学报,2002,23(4):381-387
    [106] 李然家,余长春,代小平等,催化学报,2002,23(6):549-554
    [107] 李丽娜,龚茂初,向云等,ZrO_2,Y_2O_3对CH_4燃烧催化剂Fe_2O_3/γ-Al_2O_3的改性作用,化学研究与应用,2003,15(1):133-135
    [108] 李丽娜,陈耀强,龚茂初等,Fe_2O_3/YSZ-γ-Al_2O_3催化剂在甲烷催化燃烧中的催化性能研究,高等学校化学学报,2003,24(12):2235-2238
    [109] Denis Barrett, Partial oxidation of methane using iron oxide as donor, Ind. Eng. Chem. Process Des. Develop., 1972, 11(3): 415-420
    [110] A. Steinfeld, A. Frei, and P. Kuhn, Thermoanalysis of the combined Fe_3O_4-reduction and CH_4-reforming process, Metallurgical and Materials Transactions B, 1995, 26B: 509-515
    [111] 谢刚著,熔融盐理论与应用,北京:冶金工业出版社,1998,1-7
    [112] Marcel Astier, Edouard Garbowski, and Michel Primet, BaMgAl10O17 as host matrix for Mn in the catalytic combustion of methane, catalysis Letters, 2004, 95(1-2): 31-37
    [113] Marie Anheden, Gunnar Sevdberg, Exergy analysis of chemical-looping combustion systems[J], Energy Conversion Management 1998, 39(16-18): 1967-1980.
    [114] 孙海龙,刘源,刘少文,锰铈混和氧化物气凝胶催化剂的研究,燃料化学学报,2004,32(1):93-97
    [115] 罗孟飞,单文娟,李美俊等,Ce-Y-O固溶体及其PdO/Ce-Y-O催化剂的制备,表征和CH_4氧化性能.北京大学学报(自然科学版),2001,37(2):221-225
    [116] Philippe O. Thevenin, Ana Alcalde, Lars J. Pettersson, et al., Catalytic combustion of methane over cerium-doped palladium catalysts, Journal of Catalysis, 215 (2003): 78-86
    [117] 张春雷,李爽,王力军,等.铁酸盐的程序升温还原研究,化学物理学报,1999,12(2):244-250
    [118] Ilenia Rossetti, Lucio Forni, Catalytic flameless combustion of methane over perovskites prepared by flame-hydrolysis, Applied Catalysis B: Environmental, 33(2001): 345-352
    [119] A.L.Barbosa, J.Herguido, J,Santamaria, Methane combustion over unsupoorted iron oxide catalysts, Catalysis Today, 64(2001): 43-50
    [120] 李然家,沈师孔,晶格氧用于甲烷氧化制合成气的研究,分子催化,2001,15(3):181-186
    [121] Paul Cho, Tobias Mattisson, Anders Lyngfelt, Comparison of iron-, nickel-, copper-and manganese-based oxygen carriers for chemical-looping combustion, Fuel 83(2004): 1215-1225.
    [122] Tobias Mattisson, Aaners Lyngfelt, Paul Cho, The use of iron oxide as an oxygen carrier in chemical-looping combustion of methane with inherent separation of CO_2, Fuel 80 (2001): 1953-1962.
    [123] Hongguang Jin, Masaru Ishida, Reactivity Study on Natural-Gas-Fueled Chemical-Looping Combustion by a Fixed-Bed Reactor, Ind. Eng. Chem. Res. 2002, 41(16): 4004-4007
    [124] Hongguang Jin, Toshihiro Okamoto and Masaru Ishida, Development of a novel chemical-looping combustion: synthesis of a looping material with a double metal oxide of CoO-NiO, Energy & Fuels, 1998, 12(6): 1272-1277.
    [125] Masaru Ishida, Hongguang Jin, and Toshihiro Okamoto. Kinetic behavior of solid particle in chemical-looping combustion: suppressing carbon deposition in reduction, Energy & Fuels, 1998, 12, 223-229.
    [126] Masaru Ishida,* Hongguang Jin, Toshihiro Okamoto, A Fundamental Study of a New Kind of Medium Material for Chemical-Looping Combustion, Energy & Fuels 1996, 10, 958-963
    [127] Hongguang Jin, Toshihiro Okamoto, Masaru Ishida, Development of novel chemical-looping combustion: synthesis of a solid looping material of NiO/NiAl_2O_4, Ind. Eng. Chem. Res. 1999, 38(1): 126-132.
    [128] Hongguang Jin, Masaru Ishida, Reactivity study on a novel hydrogen fueled chemical-looping combustion, International Journal of Hydrogen Energy, 26(2001): 889-894;
    [129] Tobias Mattisson, Anders Jardans, and Anders Lyngfelt, Reactivity of some metal oxides supported on alumina with alternating methane and oxygen-application for chemical-looping combustion, Energy & Fuels, 2003, 17(3): 643-651.
    [130] Hongguang Jin, Masaru Ishida, A new type of coal gas fueled chemical-looping combustion, Fuel, 83(2004): 2411-2417.
    [131] Shinya Yoshida, Jun Matsunami, Yukitoshi Hosokawa, et al., Coal/CO_2 gasification system using molten carbonate salt for solar/fossil energy hybridization[J], Energy & Fuels, 1999, 13, 961-964.
    [132] Jun Matsunami, Shinya Yoshida, Yoshinori Oku, et al., Coal gasification by CO_2 gas bubbling in molten salt for solar/fossil energy hybridization[J], Solar Energy, 2000, 68(3): 257-261.
    [133] Jun Matsunami, Shinya Yoshida, Yoshinori Oku, et al., Coal gasification with CO_2 in molten salt for solar thermal/chemical energy conversion[J], Energy, 25(2000): 71-79.
    [134] T. Kodama, T. Koyanagi, T. Shimizu, et al., CO_2 reforming of methane in a molten carbonate salt bath for use in solar thermochemical processes[J], Energy & Fuels, 2001, 15, 60-65.
    [135] Nobuyuki Gokon, Yoshinori Oku, Hiroshi Kaneko, et al., Methane reforming with CO_2 in molten salt using FeO catalyst[J], Solar Energy, 2002, 72(3): 243-250.
    [136] Marie Anheden, Gunnar Svedberg, Exergy analysis of chemical-looping combustion systems [J], Energy convers. Mgmt, 1998, 39(16-18): 1967-1980.
    [137] Tobias Mattisson, Anders Lyngfelt, Paul Cho, The use of iron oxide as an oxygen carrier in chemical-looping combustion of methane with inherent separation of CO2[J], Fuel, 80(2001): 1953-1962.
    [138] He Fang, Wang Hua, et al, Thermodynamic Analysis and Experimental Investigation into Nonflame Combustion Technology (NFCT) Using Thermal Cyclic Carrier[J], CHEM. RES. CHINESE U. 2004, 20(5): 612-616.
    [139] 何方,王华,戴永年,熔融盐循环热载体无烟燃烧体系的选择[J],工程热物理学报,2003,24(3):515-518
    [140] 何方,王华,戴永年,循环热载体无烟燃烧技术的试验研究[J],中国工程科学,2004,6(7),81-85
    [141] Anders Lyngfelt. Bo Leckner. Tobias Mattisson, A fluidized-bed combustion process with inherent CO2 separation; application of chemical-looping combustion[J], Chemical Engineering Science, 56(2001): 3101-3113.
    [142] Hongguan Jin, Masaru Ishida, A novel gas turbine cycle with hydrogen-fueled chemical-looping combustion[J], International Journal of Hydrogen Energy, 25(2000): 1209-1215.
    [143] Tobias Mattisson, Anders Lyngfelt, Application of chemical-looping combustion with capture of CO2, Proceeding of the Second Nordic Minisymposium on carbon Dioxide Capture and Storage, Goteborg, October 26, 2001.
    [144] Anders Lyngfelt, Hilmer Thunman, Construction and 100h of operational experience of a 10-kW chemical looping combustor, The CO2 Capture and Storage Project (CCP) for Carbon Dioxide Storage in Deep Geologic Formations For Climate Change Mitigation, Volume 1-Capture and Separation of Carbon Dioxide From Combustion Sources. 2003, Ed.: Thomas, D. Elsevier Science, London.
    [145] E. Johansson, A. Lyngfelt, T. Mattisson, Gas leakage measurements in a cold model of an interconnected fluidized bed for chemical-looping combustion[J], Powder Technology, 134(2003): 210-217.
    [146] Paul Cho, Tobias Mattisson, Anders Lyngfelt, Comparison of iron-, nickel-, copper-, and manganese-based oxygen carriers for chemical-looping combustion[J], Fuel, 83(2004): 1215-1225.
    [147] Masaru Ishida, Hongguang Jin, a new advanced power-generation system using chemical-looping combustion [J], Energy, 1994, 19(4): 415-422.
    [148] Marie Anheden and Gunnar Svedberg, Energy analysis of chemical-looping combustion systems [J], Energy Convers. Mgmt, 1998, 39(16-18): 1967-1980.
    [149] 朱明善,刘颖,林兆庄等,工程热力学,北京:清华大学出版社[M],2001,154-155.
    [150] 叶大伦.胡建华.实用无机热力学数据手册北京:冶金工业出版社[M],2002,1-6.
    [151] Rehan Naqvi, Olav Bolland, Φyvind Brandvoil, et al. Chemical looping combustion analysis of natural gas fierd power cycles with inherent CO2 capture, Proceedings of ASME Turbo Expo 2004 Power for Land, Sea and Air, June 14-17, 2004, Vienna, Austria.
    [152] 金红光,王宝群,化学能梯级利用机理探讨[J],工程热物理学报,2004,25(2):181-184.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700