改性活性半焦脱除原料气中H_2S的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
以煤、石油和天然气为原料生产氨、甲醇、甲烷化煤气等产品时大多使用高效催化剂或贵金属催化剂,原料气中硫化物中毒是催化剂失活的主要原因,微量的硫化物(如H2S为0.1ppm)就可使催化剂完全失去活性。
     本论文选用内蒙古鄂尔多斯活性半焦作为活性炭基材料脱硫剂的前驱体,利用高压水热活化、硝酸氧化和高温煅烧三种方式以及它们之间多步组合改性方式制备出了系列改性半焦脱硫剂。对原料半焦和改性半焦的表面总酸碱性官能团含量进行了滴定与分析。滴定与分析结果表明:原料半焦含有较高的含氧官能团和固定碳,表面酸碱性官能团含量都较小,其中表面碱性官能团含量高于表面酸性官能团含量;高压水热化学改性造成改性半焦表面酸性官能团减少,提高了表面碱性官能团的含量;硝酸氧化改性,增加了改性半焦样品表面含氧官能团的含量,同时也提高了改性半焦表面含氮官能团的含量,其脱灰能力非常明显;高温煅烧时,氧气或水的存在都能增加半焦表面的碱性官能团,增湿通氧煅烧后的改性半焦样品表面碱性官能团含量最高。
     在模拟原料气气氛下,利用固定床反应器,对原料半焦和改性半焦脱硫剂脱除H2S的性能以及工艺操作参数对脱硫活性的影响进行了研究。结果表明:原料半焦脱除原料气中H2S的效率和硫容都很低;高压水热化学、硝酸氧化和高温热处理三种改性方式可提高改性半焦脱硫效率和硫容,高压水热化学处理活性半焦后,用HNO3活化1.5h,水洗干燥后于720℃下,在约1%O2、45%H2O其余由氮气平衡的氛围中煅烧1.5h,这样制备的活性半焦脱硫效果最好;负载CuO的半焦,其脱硫能力提高明显;温度为75℃,水含量为8-10%,氧气含量在3-5%范围内,活性半焦的脱硫性能最佳;当空速小于900h-1时,脱硫反应为扩散控制,空速大于900h-1时,为反应控制。
     分析不同活性半焦的脱硫性能与其物性参数的关系,发现提高表面碱性官能团含量能改善活性半焦脱除H2S的效率和硫容,但硫容与表面碱性官能团含量不存在正比关系。改性半焦脱除H2S的效率和硫容,随微孔体积增大而增大,与总孔容也无线性关系。活性半焦比表面积较大时,脱硫效果较好,但脱硫能力与比表面积不存在线性关系,比表面积不是影响脱硫剂脱硫活性的关键因素;XRD分析表明,按CuO: C=4%(质量比)活性半焦负载硝酸铜,在550℃和720℃煅烧后表面有CuO存在,脱硫后有CuS生成。
     采用溶剂再生法和气体再生法对脱除H2S后的失活半焦再生。溶剂再生时所用的溶剂为HNO3溶液,氧化的方法使活性半焦再生。气体再生时所用到的气体分别为N2,含20%O2的N2,它们的再生原理分别是热再生,氧化单质S再生。再生效果最好的是65%的HNO3溶液和含20%O2的N2,它们的一次再生率分别为66.70%和85.93%。
     通过上述的研究工作,能够更加清楚的认识到活性半焦脱除H2S的原理以及各种因素的影响,从而为进一步工业应用积累基础数据。
High-efficiency or noble metal catalysts have always been used during the process of producing ammonia, methanol and methanation gas when coal, petroleum and natural gas are as raw materials. Poisoning of sulfur complexes from raw gas is the major reason of the catalyst deactivation. The minim hydrogen sulphide (e.g, the H2S content is 0.1ppm) can make catalysts deactivate completely.
     In this paper, activated semi-coke in Inner Monogolia is as precursor of desulphurizer based on activated carbon. A series of H2S removal agents of activated semi-coke are prepared from activated semi-coke by means of hydrothermal method, HNO3 oxidation and heat treatment at high temperature as well as their combined modification. The composition and surface acid-base properties for semi-coke and activated semi-coke samples are characterized by means of acid-base titration methods. The analytical results show that raw semi-coke is higher in oxygen-containing functional groups content and fixed carbon content. Its contents of surface acidic and basic functional groups are lower, but the contents of basic functional groups are higher than that of acidic functional groups. The hydrothermal chemical modification can decrease the surface oxygen-containing acidic functional groups and raise the content of surface basic functional groups. HNO3 oxidation modification can increase the contents of oxygen-containing and nitrogen-containing functional groups of modified semi-coke. The de-ash capacity of HNO3 oxidation modification increases obviously. The basic functional of the surface of semi-coke can be increased by calcining at high temperature when oxygen or water is existent. The highest content of surface basic functional groups of modified semi-coke is by calcining at moistening and ventilating oxygen. The capacity of H2S removal and effect of process operation condition on H2S removal activities for raw semi-coke and the activated semi-coke are investigated in fixed bed reactor in simulated raw gas. The results indicate that the H2S removal efficiency and capacity for raw semi-cokes are very low, the hydrothermal method, HNO3 oxidation and heat treatment modification of the activated semi-cokes all can increase the H2S removal efficiency and capacity, that is, firstly, activated semi-coke treated by the hydrothermal method under high pressure. Secondly, activated semi-coke treated by HNO3 oxidation for half and an hour, then water cleaning and drying. Thirdly, it is calcined for half and an hour at 720℃, the atmosphere of 1%O2, 45%H2O and the rest of nitrogen. With this method the best desulfuring agent P270HN45NOHO720 with higher sulfur capacity and longer breakthrough time is prepared. The optimal conditions of H2S removal by activated semi-coke are desulfurization temperature 75℃, H2O content of 8-10%, O2 content from3% to 5%, and space velocity of 900h-1. The desulfurization reaction is controlled by diffusion at space velocity lower than 900h-1, while it is controlled by surface reaction at space velocity higher than 900h-1.
     The relationship between desulfurization property of different activated semi-coke and their physical parameters is analyzed. It is found that the activated semi-coke with high content of basic functional groups shows pretty well performance for H2S removal, but the desulfurizing capacity has no linear relationship with the content of basic groups. The activated semi-coke with large specific surface area shows desirable performance for H2S removal, but the desulfurizing capacity has no linear relationship to the specific surface area. The specific surface area of activated semi-coke is not the key factor for desulfurizing activity. XRD analyses indicate that there is CuO on the surface of desulfurizer which is prepared by dipping Cu(NO3)2 solution containing 4% CuO, calcining at 550℃a nd 720℃, and there is CuS on the surface of the spent carbon.
     Two methods, solvent regeneration and gas regeneration, have been used for the spent activated semi-cokes which had removed H2S. The solvents utilized is HNO3, it shows that HNO3 can regenerate the activated carbon by oxidation. The gases utilized are N2, 20%O2 in N2, the principles of regenerated activated semi-coke are thermal regeneration, oxidation, respectively. The best results are found as 65%HNO3, 20%O2 in N2, respectively. They can remove sulfur from the pore canal of carbon up to 66.70% and 85.93% of the total during the first regeneration cycle.
     The principle of H2S removal by activated semi-coke and effect of different factors on desulfurization property are clearly seen through above research work. So it can accumulate basic data for further industrial application.
引文
1. 方林霞. 竞争吸附剂对负载型常温精脱硫剂上活性组分的分散作用与表征[J]. 许昌学院学报, 2003, 22 (2):31-34.
    2. 梁美生, 李春虎, 谢克昌. 高温煤气脱硫剂的研究进展[J]. 煤炭转化, 2002, 25 (1): 13-17.
    3. 祝 方, 李春虎, 樊惠玲, 李彦旭. 国外高温煤气脱硫剂开发进展[J]. 煤炭转化, 2000, 23 (2): 17-22.
    4. V. Meeyoo, J.H. Lee, D.L. Trimm, N.W. Cant. Hydrogen sulphide emission control by combined adsorption and catalytic combustion [J]. Catalysis Today, 1998, 44: 67-72.
    5. 许世森, 李春虎, 郜时旺. 煤气净化技术[M]. 北京: 化学工业出版社, 2006, 109-152.
    6. 周继红, 连延军, 钱素芬. 燃气湿法脱硫(H2S)液的再循环研究[J]. 河北建筑科技学院学报, 2002, l9 (2): 10-14.
    7. R N马道克斯[美], 朱利凯, 陈赓良. 天然气预处理与加工、气体与液体脱硫[M]. 北京: 石油工业出版社, 1990.
    8. 季广祥, 朱东方. 湿式氧化法焦炉煤气脱硫工艺的若干问题[J]. 煤化工, 2006, 124(3): 56-63.
    9. 刘素明, 田 昱, 崔莉蓉. 脱硫剂的研制[J]. 低温与特气, 2003, 21(5): 40-44.
    10. Zhihua Gao, Chunhu Li, Kechang Xie. Simultaneous Removal of COS and H2S at Low Temperatures over Nan particle α -FeOOH Based Catalysts [J]. Journal of Natural Gas Chemistry, 2003, 12 (1): 37-42.
    11. 呼德龙, 马凤美. 关于氧化铁脱硫剂活性问题的探讨[J]. 煤气与热力, 2000, 3: 126-127.
    12. 马坚, 下文章, 孙小玲. 氧化锌脱硫剂的研制[J]. 精细石油化工文摘, 1999, 13 (2): 68-69.
    13. 卢朝阳, 少兴中, 鲁军等. 高温煤气脱硫 Ⅰ .铁锌基脱硫剂脱硫工艺条件及硫化动力学[J]. 燃料化学学报, 1996, 24(6): 492-497.
    14. M. Steijns, F. Derks, A. Verloop and P. Mars. The mechanism of the catalytic oxidation of hydrogen sulfide [J]. Journal of catalysis, 1976, 42 (1): 87-95.
    15. Hung-Lung Chiang, Jiun-Horng Tsai. Diffusion of hydrogen sulfide and methyl mercaptan onto microporous alkaline activated carbon [J]. Chemosphere, 2000, 41: 1227-1232.
    16. Foad Adib, Andrey Bagreev, Teresa J. Bandosz. Effect of Surface Characteristics of Wood-BasedActivated Carbons on Adsorption of Hydrogen Sulfide [J]. Journal of Colloid and Interface Science, 1999, 214: 407-415.
    17. Hung-Lung Chiang, Jiun-Horng Tsai. Diffusion of hydrogen sulfide and methyl mercaptan onto microporous alkaline activated carbon [J]. Chemosphere, 2000, 41: 1227-1232.
    18. Teresa J. Bandosz. On the Adsorption/Oxidation of Hydrogen Sulfide on Activated Carbons at Ambient Temperatures [J]. Journal of Colloid and Interface Science, 2002, 246: 1-20.
    19. Rong Yan, Leslietsan,Kinetics and Mechanisms of H2S adsorption by Alkaline Activated Carbon, Environ[J]. Sci. Techno1. 2002, 6 (20): 4460-4466.
    20. Andrey Bagreev, J. Angel Menendez. Bituminous coal-based activated carbons modified with nitrogen as adsorbents of hydrogen sulfide [J]. Carbon, 2004, 42: 469-476.
    21. S.V Mikhalovsky, Catalytic properties of activated carbons I. gas oxidation of hydrogen sulfide [J]. Carbon, 1997, 35(9): 1367-1374.
    22. 谭小耀, 吴迪铺, 袁权等. 浸渍活性炭脱硫工程中孔结构及气体水含量的影响[J]. 化工学报, 1997, 48 (2): 238-240.
    23. 周继红, 华玉芝, 史长林等. 负载型活性炭脱H2S的试验研究[J]. 河北建筑科技学院学报, 2003, 20 (1) :8-10.
    24. 柯明, 刘保华, 范志明等. 活性炭脱硫剂对催化裂化汽油的预精制[J]. 炼油设计, 2002, 32 (7): 43-46.
    25. Boehm, H.P., in “Advances in Catalysis” Academic Press, New York, 1966, 16: 179–274.
    26. A. lisovskii, R. semiat, and C. aharont. Adsorption of sulfur dioxide by active carbon treated by nitric acid: I. effect of the treatment on adsorption of SO2 and extractability of the acid formed [J]. Carbon, 1997, 35(10-11): 1639-1643.
    27. Primavera, A., Trovarelli, A., Andreussi, P., Dolcetti, G. The effect of water in the low-temperature catalytic oxidation of hydrogen sulfide to sulfur over activated carbon [J]. Applied Catalysis A: General, 1998, 173: 185-192.
    28. Klein J, Henning K D. Catalytic oxidation of hydrogen sulfide on activated carbons [J]. Fuel, 1984, 63 (8): 1064-1067.
    29. Salame, I., and Bandosz, T. J. Study of Water Adsorption on Activated Carbons with DifferentDegrees of Surface Oxidation [J]. Journal of Colloid and Interface Science, 1999, 210: 367–374.
    30. Shincs, Kimkh, Ryusk. Adsorption of methyl mercaptan and hydrogen sulfide on the impregnated activated carbon fiber and activated carbon [A] Presented at 7th International conference on Fundamentals of Adsorption [C] Japan Nagasaki , 2001, 1: 20-25.
    31. Andrey Bagreev. Bituminous coal-based activated carbons modified with nitrogen as adsorbents of hydrogen sulfide [J]. Carbon, 2004, 42 : 469–476.
    32. Qingya Liu, Chunhu Li, Yanxu Li. SO2 removal from flue gas by activated semi-cokes 1. The preparation of catalysts and determination of operating conditions[J].Carbon, 2003, 41:2217-2223
    33. 邱琳等. 浸渍法改性活性炭脱硫(H2S)研究. 贵州化工, 2005, 30(2): 19-21.
    34. N. Ikenaga,Y. Ohgaito, H. Matsushima, T. Suzuki. Preparation of zinc ferrite in the presence of carbon material and its application to hot-gas cleaning [J]. Fuel, 2004, 83: 661–669.
    35. Kinya Sakanishi. Simultaneous removal of H2S and COS using activated carbons and their supported catalysts [J]. Catalysis Today, 2005, 104: 94-100.
    36. Andrey Bagreev. Thermal regeneration of a spent activated carbon previously used as hydrogen sulfide adsorbent [J]. Carbon, 2001, 39: 1319–1326.
    37. Matatov Mwvtal yu. Optimal temperatures for catalytic regeneration of activated carbon [J]. Carbon, 1997, 35(10): 1527-1531.
    38. Mundale V D, Joglekar H S. Regeneration of spent activated carbon by wet air oxidation [J]. Chem Eng. 1991, 69: 1149-1159.
    39. Rivera-Utrilla J, Ferro-Garcia M A, Bautist Toledo I, et al. Regeneration of Ortho-chlor-ophenol-exhausted Activated Carbon with Liquid Water at High Pressure and Temperature [J]. Water Research. 2003, 37: 1905-1911.
    40. Gerasimov, Mikhail M.; Elenkov, Dimitur G.etc Production of adsorptive semi-coke from lignite coal for the desulfurization of flue gas in thermal power station [J]. Erodoel kohle, erdgas, petrochem. Brennst-chem. 1972, 25(5): 248-252.
    41. Babcock-Hitachi K.K.Jpn.Kokai Tokkyo Koho JP 81,166,919 22 Dec 1981, Appl.
    42. 蒋文举, 金燕, 朱晓帆等. 活性炭材料的活化与改性[J]. 环境污染治理技术与设备, 2002, 3 (12): 25-27.
    43. 刘清雅, 李春虎, 赵法宝. 活性炭脱硫剂制备影响因素分析[J]. 煤炭转化, 2000, 23(3):26-31.
    44. Gerasimov, Mikhail M. Elenkov, Dimitur G.etc. Production of adsorptive semi-coke from lignite coal for the desulfurization of flue gas in thermal power station [J]. Erodoel kohle, erdgas, petrochem. Brennst-chem, 1972, 25 (5): 248-252.
    45. 李春虎, 田 芳, 上官炬等. 改性活性半焦脱除燃煤电厂烟气中的SO2[J]. 太原科技, 2004, 2: 14-15.
    46. FAN Hui-Ling, LI Chun-Hu. A study on removal of organic sulfur compound with modified activated carbon [J]. Journal of Natural Gas Chemistry, 1999, 8 (2): 56-272.
    47. Qingya Liu, Ju Shang Guan, Jiangang Li, Chunhu Li. SO2 removal from flue gas by activated semi-cokes 2. Effects of physical structures and chemical properties on SO2 removal activity [J]. Carbon, 2003, 41: 2225–2230.
    48. 赵 伟. 烟煤无烟煤半焦烟气脱硫剂的制备及其热再生的研究[D]. 中国海洋大学硕士学位论文, 2006.
    49. Svetlana Bashkova, Frederick S. Baker, Xianxian Wu, Timothy R. Armstrong,Viviane Schwartz Activated carbon catalyst for selective oxidation of hydrogen sulphide: On the influence of pore structure, surface characteristics, and catalytically-active nitrogen [J]. Carbon, 2007, 45 (6): 1354-1363.
    50. 刘清雅. 活性半焦脱除烟气中SO2的研究[D]. 太原理工大学硕士学位论文, 2001.
    51. Magane P, Dupong-Parlovskky N. Graphite-ozone surface complexes [J]. Carbon, 1988, 26: 249-255.
    52. Freeman John J. Tomlinson John B. Sing Kenneth S W. Adsorption of nitrogen and water vapour by activated kevtar chars [J]. Carbon, 1993, 31(6): 865-869.
    53. 田部浩三, 御园生诚, 小野嘉夫. 新固体酸和碱及其催化作用[M]. 北京: 化学工业出版社, l992: 7- l7.
    54. Kenji Hashimoto, Kouichi Miu ra, Ji-Jun Xu el a1.Relation between the gasification rate of carbons supporting alkali metal salts and the amount of oxygen trapped by the metal [J]. Fue1, 1986, 65(4): 489-494.
    55. Kim Byung R.Kalis Edward M.Salmeen lrving T.Evaluating paint-sludge chars for adsorptionof selected paint solvents [J]. Journal of Environmental Engineering, 1996, 122 (6): 532-539.
    56. Barton. S S, Evans M J B.Halliop E et al. Acidic and basic sites on the surface of porous carbon [J]. carbon, 1997, 35 (9): l361-l366.
    57. Boehm HP. Chemical identification of surface groups. In: Advance in catalysis, vol. 16. New York: Academic Press; 1966. p. 179-274.
    58. Lisovskii A, Semiat R, Aharoin C. Adsorption of sulfur dioxide by active carbon treated by Nitric acid: Ⅱ .Effect of preheating on the adsorption properties [J]. Carbon, 1997, 35: 1645-1649.
    59. Vinke P, Van Der Eijk M, Verbree E, Voskamp AF, Van Bekkum H. Modification of the surface of a gas-activated carbon and a chemically activated carbon with nitric acid, hypochlorite, and ammonia [J]. Carbon, 1994, 32 (4): 675-686.
    60. Rubio B, Izquierdo MT. Influence of low-rank coal char properties on their SO2 removal capacity from flue gases: Ⅰ .Non-activated Chares [J]. Carbon, 1997, 35 (7): 1005-1011.
    61. Rubio B, Izquierdo MT. Mastral AM. Influence of low-rank coal char properties on their SO2 removal capacity from flue gases:Ⅱ . Activated Chares [J]. Carbon, 1997, 36 (3): 263-268.
    62. 上官炬, 李转丽, 杨 直等. 高温热处理对活性半焦烟气脱硫的影响 [J]. 太原理工大学学报, 2005, 36 (2):134-136.
    63. 周志, 史宝成. 废气中二氧化硫和硫化氢的气相色谱分析[J]. 环境监测管理与技术, 2005, 17(4): 29-30.
    64. 彭兴军, 张静. 气相色谱法测定天然气中形态硫 [J]. 泸天化科技, 2005, 2: 104-106.
    65. 邹丰楼. CS2水解动力学及其催化剂碱分布的研究 [D]. 太原理工大学, 1997.
    66. 刘虎威. 气相色谱方法及应用 [M]. 北京:化学工业出版社, 2000.
    67. 谭小耀, 吴迪镛, 袁枚. 改性活性炭低温催化氧化脱除H2S的研究 [J]. 石油化工, 1995(24): 716-721.
    68. G.H. Jain, L.A. Patil, CuO-doped BSST thick film resistors for ppb level H2S gas sensing at room temperature [J]. Sensors and Actuators B, 2007, 123: 246–253.
    69. Naoto Koizumi, Kazuhito Murai, Toshihiko Ozaki, Muneyoshi Yamada, Development of sulfur tolerant catalysts for the synthesis of high quality transportation fuels [J]. Catalysis Today, 2004, 89: 465–478.
    70. 邵纯红, 姜安玺, 李 芬, 闫 波, 周百斌. 纳米 ZnO 室温选择氧化 H2S 特性的研究[J]. 燃料化学学报, 2005, 33( 4): 470-473.
    71. 梁斌, 段天平, 傅红梅, 罗康碧. 化学反应工程[M]. 北京: 科学出版社, 2004, 8-10.
    72. Andrey Bagree, J. Angel Menendez, Irina Dukhno etc. Bituminus coal-based activated carbons modified with nitrogen as adsorbents of hydrogen sulfide [J]. Carbon, 2004(42): 469-476.
    73. Adil Ansari, Andrey Bagreev, Teresa J. Bandosz. Effect of adsorbent composition on H2S removal on sewage sludge-based materials enriched with carbonaceous phase [J]. Carbon, 2005 (43): 1039-1048.
    74. Teresa J. Bandosz. Effect of pore structure and surface chemistry of virgin activated carbons on removal of hydrogen sulfide [J]. Carbon, 1999 (37): 483-491.
    75. E. Laperdrix, G. Costentin, O. Saur, etc, Selective oxidation of H2S over CuO/Al2O3: identification and role of the sulfurated species formed on the Catalyst during the Reaction [J]. Journal of Catalysis, 2000, 189: 63-69.
    76. Andrey Bagreev, Habibur Rahman, Teresa J. Bandosz. Study of regeneration of activated carbons used as H2S adsorbents in water treatment plants [J]. Advances in Environmental Research, 2002, 6: 303-311.
    77. Zhang Huiping. Regeneration of exhausted activated carbon by electrochemical method [J]. Chemical Engineering Journal, 2002, 85(1): 81-85.
    78. 王三反. 超声波再生活性炭的初步研究[J]. 中国给水排水, 1998, 2: 24-27.
    79. 李光明, 王 华, 陈 玲, 赵建夫. 多相催化湿式氧化法再生活性炭反应条件[J]. 同济大学学报, 2004, 32 (5): 636-643.
    80. Xie Quan, Xitao Liu, Longli Bo. Regeneration of acid orange 7-exhausted granular activated carbons with microwave irradiation [J]. Water Research, 2004, 38(20): 4484-4490.
    81. Rivera-Utrilla J, Ferro-Garcia M A, Bautist Toledo I, eta1. Regeneration of Ortho-chlor-ophenol-exhausted Activated Carbon with Liquid Water at High Pressure and Temperature [J]. Water Research, 2003, 37: 1905-1911.
    82. 刘守新, 陈广胜. 活性炭的光催化再生机理[J]. 环境化学, 2005, 24 (4): 405-408.
    83. 吴浪, 张永春, 费小猛. 脱硫化氢活性炭的再生方法研究[J]. 广州化学, 2005, 30(4): 34-37.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700