载铜改性活性炭精细脱除硫化氢的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
以煤为原料制备合成氨、合成甲醇在全国合成氨、合成甲醇中所占比例越来越大。特别是近几年来,几家大型化肥厂将原来高成本的“油头”和“气头”合成生产工艺改为“煤头”。而煤制气中的硫化物会造成合成触媒中毒失活。随着先进的合成触媒使用和工艺的开发,对煤制气中硫的精细脱除要求越来越高。
     活性炭是一种具有比表面积大、孔结构复杂、表面活性基团丰富,且操作简单的吸附剂,常常被用作煤制气脱硫。但普通的活性炭被用作为精细脱硫时,它的硫容非常低。因此,改性活性炭提高其精细脱除硫化氢性能的研究具有非常重要的意义。
     本文选择粒状和柱状两种煤质活性炭为原料,利用加压水热和等体积浸渍铜氨络合液两种活化法,单独或联合对活性炭进行物化性能改性,制备出了改性活性炭精脱硫剂。在固定床反应器上,考察了制备条件(水热活化压力、活性组分负载量和煅烧温度)和使用条件(脱硫温度、氧气)对其精细脱除硫化氢性能的影响。通过低温氮吸附、TGA、DTA、XRD等测试手段对改性活性炭在精细脱除硫化氢前后的性能进行了表征。
     实验结果表明:加压水热活化可提高粒状改性活性炭脱硫剂的脱硫性能,而降低柱状改性活性炭脱硫剂的脱硫性能,这是因为加压水热活化具有扩孔作用,可造成部分微孔孔径增
    
    太原理工大学硕士研究生学位论文
    大;负载CuO可显著提高两种改性活性炭脱硫剂硫容,4%cuo
    负载量为最佳,Cuo具有催化吸收硫化氢的能力;脱硫温度在
    实验温区内对改性活性炭脱硫剂脱硫性能影响不明显;氧气可
    提高脱硫剂的硫容;活性炭具有大的比表面积,改性后比表面
    积有所减少,但其脱硫硫容远远大于未改性的,比表面积并不
    是影响活性炭精细脱硫的关键因素。
There are many ammonia and methanol synthesis plants using coal as feedstock in China. In particular, some large-scale chemical fertilizers use coal to replace oil as feedstock lately. Sulfur compounds contained in syngas derived from coal can easily poison the activities of synthesis catalysts. With the development of advanced synthesis catalysts and new processes, it is demanded that the H2S content in syngas isn't more than 0.05ppm.
    Active carbon is an absorbent with large in surface area ,complex in pore structure, and rich in surface active group as well as simple in application, which is used as desulfurizer. But, while the common active carbon was used in fine desulfurization, its sulfur removal capacity is very low. Therefore, the research of modifying active carbon play an important role in improving fine desulfurization.
    In this paper, two sorts of activated carbons (originating from coal), columnar and granular, were used as raw material. They are modified by two activation methods of high-pressure
    
    
    hydrothermal and loading CuO, thus fine desulfurizers were prepared. The influences of preparation conditions including hydrothermal activation pressure , the charge amount, the calcination temperature and the technological conditions including the desulfurization temperature, oxygen atmosphere on fine desulfurization on activated carbons were evaluated in a fixed-bed reactor. The properties of the activated carbons before and after fine desulfurization were characterized by nitrogen adsorption at low temperature, TGA, DTA, XRD methods.
    The conclusions obtained from experimental results are as follow:
    1. High-pressure hydrothermal activation improves the desulfurization activities of granular activated carbon, but for columnar activated carbon the reverse result is obtained. The reason may be that high-pressure hydrothermal has the action of enlargeing pore and causes the increase of micropore diameter.
    2. The loading CuO on active carbon greatly increase the breakthrough sulfur capacity of both granular activated carbon and columnar activated carbon. The optimal charge amount for CuO is 4% wt. CuO play an important role in catalytic and adsorption removal H2S.
    3. The technological temperature slightly change the desulfurization activities of activated carbon in the rang of experimental temperature.
    4. The existence of O2 in syngas also increases the
    
    breakthrough sulfur capacity of desulfurizer. 5. The specific surface area isn't critical factor determining the breakthrough capacity of the desulfurizer.
引文
(1) 亚平,合成氨原料气中硫含量的要求与分析方法,化学工业与工程技术,2003,24(1):26-29;
    (2) 容昕,国内干法脱硫剂工业应用现状,化学工业与工程技术,2002,23(1):29-34;
    (3) 于淼,周理,天然气中H_2S的脱除方法—发展现状与展望,天津化工,2002,(5):18-20;
    (4) 王睿,石冈,魏伟胜等,工业气体中H_2S的脱除方法—发展现状与展望,天然气工业,1999,19(3):84-90;
    (5) 国外气体脱硫新技术,重庆,科学技术文献出版社重庆分社,1981;
    (6) 梁锋,徐丙根,施小红等,湿式氧化法脱硫的技术进展,现代化工,2003,23(5):21-24;
    (7) 任爱玲,郭斌,周保华等,以工业废物制备高效氧化铁系脱硫剂的研究,环境工程,2000,18(4):40-43;
    (8) 孔渝华,王先厚,李仕禄等,新型精脱硫剂及脱硫新技术,天然气化工,2002,27(1):33-36;
    (9) 王国兴,胡典明,魏华等,EF-2型特种氧化铁精脱硫剂的特性及工业应用,湖北化工,1999(2):4-6;
    (10) 周广林,房德仁,尹长学等,QTS-01常温氧化锌脱硫剂首次工业应用,齐鲁石油化工,1997,25(1):31-33;
    (11) 王国兴,黄新伟,叶敬东等,活性炭精脱硫剂的开发及应用,洁净煤技术,1997,3(3):25-28;
    (12) 姜怡娇,宁平,硫化氢废气净化进展,云南环境科学,2002,21(3):40-45;
    
    
    (13) 徐志达,曾汉民,陆耘等,吸附分离含硫化合物的进展,材料科学与工程,1997,15(4):22-27;
    (14) 龙晓达,龙玲,膜分离技术在天然气净化中的应用现状,天然气工业,1993,13(1):100-105;
    (15) 邱建辉,邸进申,李英杰等,生物脱硫的研究进展,微生物学报,2001,41(5):650-653;
    (16) 蒋文举,金燕,朱晓帆等,活性炭材料的活化与改性,环境污染治理技术与设备,2002,3(12):25-27;
    (17) 韩严和,全燮,薛大明等,活性炭改性研究进展,环境污染治理技术与设备,2003,4(1):33-37;
    (18) 单晓梅,杜铭华,朱书全等,活性炭表面改性及吸附极性气体,煤炭转化,2003,26(1):83-88;
    (19) 张丽丹,改性活性炭对苯废气吸附性能的研究,新型炭材料,2002,12(2):41-45;
    (20) 詹亮,李开喜,朱星明等,正交实验法在超级活性炭研制中的应用,煤炭转化,2001,24(4):71-75;
    (21) 邢伟,张明杰,阎子峰等,超级活性炭的合成及活化反应机理,物理化学学报,2002,18(4):340—345;
    (22) Vinke P.,Verbree M.,Modification of the surface of gas-active carbon and a chemically activated carbon with HNO_3, Carbon, 1994, 32(4):675-686;
    (23) 高尚愚,表面改性活性炭对苯酚及苯磺酸吸附的研究,林产化学与工业,1994,24(3):29-34;
    (24) 万福成,活性炭富集溶液中Au(Ⅲ)的研究,信阳农业高等专科学校学报,1999,9(2):39-43;
    (25) Teresa J. Bandosz, On the adsorption/oxidation of hydrogen sulfide on
    
    activated carbons at ambient temperatures, Journal of colloid and interface science, 2002,246:1-20;
    (26) Rong Yan,Leslietsen, Kinetics and Mechanisms of H_2S Adsorption by Alkaline Activated Carbon, Environ. Sci. Technol.,2002, 36(20):4460-4466;
    (27) Andrey Bagreev, J.Angel Menendez,Bituminous coal-based activated carbons modified with nitrogen as adsorbents of hydrogen sulfide, Carbon, 2004,42:469-476;
    (28) S.V.Mikhalovsky, Catalytic properties of activated carbons I. gas-phase oxidation of hydrogen sulphide, Carbon, 1997, 35(9):1367-1374;
    (29) 谭小耀,吴迪镛,袁权等,浸渍活性炭脱除低浓度H_2S的研究,化学工程,1996,24(6):21-27;
    (30) 周继红,华玉芝,史长林等,负载型活性炭脱硫(H_2S)的试验研究,河北建筑科技学院学报,2003,20(1):88-10;
    (31) 柯明,刘保华,范志明等,活性炭脱硫剂对催化裂化汽油的预精制,炼油设计,2002,32(7):43-46;
    (32) 张克荣,张瑶,李崇福等,活性炭直接吸附铜铁锰锌离子的机理,中国卫生检验杂志,1994,4(6):327—331;
    (33) Bruno M. Vanderborght, Rene E. Van Grieken, Enrichment of trace metals in water by adsorption on activated carbon,Analytical Chemistry,1977,49(2):311-316;
    (34) Danh Nguyen-Thanh, Teresa J. Bandosz, Effect of transition-metal cations on the adsorption of H_2S in modified pillared clays, J. Phys. Chem. B, 2003,107(24): 5812-5817;
    (35) 谭小耀,李秀贞,吴迪镛等,改性活性炭低温催化氧化脱除H_2S的研究,石油化工,1995,24(10):716-722;
    
    
    (36) 王学谦,宁平,活性炭吸附硫化氢及微波辐照解吸研究,环境污染与防治,2001,23(6):274-279;
    (37) Andrey Bagreev,Habibur Rahman, Teresa J. Bandosz, Wood-based activated carbons as adsorbents of hydrogen sulfide: a study of adsorption and water regeneration processes, Ind. Eng. Chem. Res. 2000, 39(10) :3849-3855;
    (38) J. Pasela, H. Pappa, Transition metal oxides supported on active carbons as low temperature catalysts for the selective catalytic reduction (SCR) of NO with NH_3, Applied Catalysis B:Environmenta1,1998,18:199-213;
    (39) 范延臻,王宝贞,活性炭表面化学,煤炭转化,2000,23(4):26-30;
    (40) E. Laperdrix, G. Costentin, O. Saur, etc, Selective oxidation of H_2S over CuO/Al2O3: identification and role of the sulfurated species formed on the Catalyst during the Reaction, Journal of Catalysis, 2000, 189:63-69;
    (41) Christian L. Mangun, Surface chemistry, pore sizes and adsorption properties of activated carbon fibers and precursors treated with ammonia, Carbon ,2001,39:1809-1820;
    (42) Brigitte Stohr, Enhancement of the catalytic activity of activated carbons in oxidation reactions by thermal treatment with ammonia or hydrogen cyanide and observation of a superoxide species as a possible intermediate, Carbon,1991, 20(6):707-720.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700