低温低压型活性炭载钌氨合成催化剂的制备与使用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文以RuCl3·3H2O为活性前体、碱金属及碱土金属的硝酸盐为助剂制备负载型活性炭载钌氨合成催化剂。采用元素分析、N2物理吸附、CO化学吸附、X-射线粉末衍射等表征手段,详细考察了载体、钌活性组分、助剂及催化剂的制备方法对氨合成催化性能的影响。同时在接近工业生产条件下对所制备的催化剂的使用条件进行了探讨。
    结果显示,具有较高的纯度、较大的比表面、合适孔体积分布的活性炭载体能够对钌金属充分的分散,制备出高活性的催化剂;活性炭在惰性气体保护下经1800 ℃高温热处理及随后10 % O2/N2限量氧气的氧化扩孔处理能够使炭载体既具有良好的导电性和较高的纯度,又具有合适的孔结构来分散金属钌,因而能使钌催化剂的活性得到明显提高。
    较低的还原脱氯温度不能有效消除RuCl3/TCOX中残余氯离子的影响,但过高的脱氯温度却使炭载体发生明显的甲烷化甚至钌粒子烧结,最佳的脱氯温度为400~450 ℃;综合考虑性价比,优化的活性金属负载量为4~6 wt%。
    助剂的促进作用大体上与化合物的碱性大小相一致,钡、铯分别是碱土金属和碱金属化合物中最有效的助剂,钡比铯具有更强的促进作用。助剂只有与钌粒子发生有效接触后才能对催化剂产生较大促进作用;对于单助剂钌催化剂,钡、铯助剂的最佳加入量分别是Ba/Ru摩尔比为5,Cs/Ru摩尔比为10,铯比钡所需添加量较大的原因源于它们在催化剂中的分布状态不同;催化剂在明显高于助剂前体发生分解的温度下活化能使其产生更多的活性位。但过高的活化温度使钌粒子发生烧结,导致催化剂的活性明显下降。碱金属和碱土金属盐类促进的催化剂的活化温度分别以470 ℃和500 ℃为宜。
    采用先钡后铯分步浸渍制备的双助剂钌催化剂的活性明显高于钡、铯共浸渍钌催化剂和先铯后钡分步浸渍钌催化剂。在钡铯双助剂钌催化剂中,铯助剂主要分布在钌与载体的界面发挥电子助剂作用;而钡助剂主要分布在钌粒子表面,在发挥电子助剂作用的同时,也有可能起结构助剂作用。在425 ℃、13.0 MPa反应条件下,钌催化剂的活性比熔铁型催化剂提高了26~30 %。
A serial of alkali- and/or alkali-earth-promoted, carbon-supported Ru catalysts for ammonia synthesis have been prepared by impregnation from acetone solutions of RuCl3·3H2O precursor. The article investigated the effect of support, Ru precursor, promoter and preparation process on catalytic properties of ruthenium catalyst for ammonia synthesis by means of various characterization methods performed by N2 physical adsorption, CO chemisorption and X-ray diffraction. Meanwhile, the application condition of Ru catalyst was investigated under near industrial reaction condition.
    It was suggested that activated carbon with higher purities, higher surface area and fitting pore size distribution as a support might disperse ruthenium and promoter sufficiently in Ru catalyst, which would manufacture high activity ruthenium for ammonia synthesis. The ammonia synthesis activity of Ru catalyst was greatly improved by using the activated carbon as support which was heated at 1800 ℃ in an inert atmosphere followed by moderate oxidizing treatment in 10 % O2/N2, which can make carbon support with better conductivity, higher purities and fitting pore structure for dispersing metal Ru.
    Reductive dechlorination of RuCl3/TCOX at lower temperature cannot remove negative-effected chlorine, but the methanation of carbon support is induced at extremely high dechlorination temperature and even lead to the sintering of Ru particles in catalyst. Activity results showed that a moderate dechlorination condition of 400~450 ℃ is advisable. Moreover, optimal ruthenium loading is 4~6 wt% when the ratio of performance and price of catalyst is considered.
    Promoting role of promoter is in line with electronegativity of compounds.
    
    
    Barium and cesium proved to be most effective in the alkaline-earth metal or alkaline metal promoter accordingly. But Barium-promoted Ru catalyst is more effective in ammonia synthesis than cesium-promoted Ru catalyst. The promoters can play a much promoting role for ruthenium catalysts, only when part of promoters contact with ruthenium effectively. The optimal promoter loading of Barium-promoted Ru catalyst or Cesium-promoted Ru catalyst is (Ba/Ru) mol = 5, (Cs/Ru) mol = 10 respectively. The reason why much more Cesium is needed than Barium for promoted-ruthenium catalysts is attributed to their different morphological models. The needed hydrogenolysis temperature of catalysts is higher than decompose temperature of promoter precursor, which can produce much more activity sites in Ru catalyst. However, the extremely high hydrogenolysis temperature can lead to the sintering of Ru particles in catalyst and the decreasing of Ru catalyst. The hydrogenolysis temperature of alkaline metal promoted catalyst or alkaline metal promoted catalyst is ought to be controlled at 470 ℃, 500 ℃ respectively.
    The activity of 4 wt% Ru-Ba-Cs/TCOX is higher obviously not only than 4 wt% Ru- (Ba+Cs)/TCOX, but also than 4 wt% Ru-Cs-Ba/TCOX. The barium promoters distribute uniformly on the ruthenium surface while the Cesium promoters mainly distribute at the C/Ru contact points to act as effective promoter. The Cesium promoter is considered to precede via electron transfer from the alkali to the active metal surface and barium promotion acts as a structural and/or electronic promoter. The catalytic activity of the supported Ru catalyst is 26~30 % higher than that of Fe catalyst under 425 ℃、13.0 MPa reaction condition.
引文
刘化章.“氨合成催化剂的研究新进展”,催化学报,2001, 22(3): 304-316
    Chementator. “A Catalyst Breakthrough in Ammonia Synthesis”, Chem Engineering, 1993, 3: 19-19.
    Van Dijk C P, Solbakken A, Mandelik B G. US Patent, 4,568,531, 1986.
    Report Article. “Honeycomb supports”, Appl Catal A: General, 1993, 93: N16-N17.
    Aika K and Tamaru K. Ammonia: Catalysts and Manufacture, (Nielson A, Ed), Chap1-6. Springe-Verlag, Berlin, 1995.
    Romm L, Katz G, Kosloff R, et al. “Dissociative Chemisorption of N2 on Ru(001) Enhance by Vibrational and Kinetic Energy: Molecular Beam Experiments and Mechanical Calculations”, J Phsy Chem B 1997, 101: 2213-2217.
    Ozaki A, Aika K. Catalysis-Science and Technology (Anderson J R and Boudart M, Eds), Springer-Verlag, New York, 1981, Chapter 3: 87.
    Kowalczyk Z, Jodzis S, Sentek J. “Studies on Kinetics of Ammonia Synthesis Over Ruthenium Catalyst Supported on Active Carbon”, App Catal A: General, 1996, 138: 83-91.
    Murata S, Aika K. “An Alumia-Supported Ruthenium Catalyst”, J Catal, 1992, 136: 110-117.
    Murata S, Aika K. “A Lanthanide Oxide-Promoted Ru/Al2O3 Catalyst”, J Catal, 1992, 136: 118-125.
    Aika K, Takano T, Murata S. “A Magnesia-Supported Ruthenium Catalyst”, J Catal, 1992, 136: 126-140.
    Boudart M. “Kinetics and Mechanism of Ammonia Synthesis”, Catal Rev, 1981, 23(1&2): 1-15.
    王丽华,陈守正,廖代伟 等.“氨合成钌催化剂及其催化反应机理研究进展”,化学进展,1999, 11(4): 376-384.
    廖代伟,林种玉,蔡启瑞. “氨合成铁催化剂上化学吸附物种的In-Situ FTIR谱”,厦门大学学报(自然科学版), 1996, 35(5): 734-738.
    Aika K Ozaki A. “Kinetic and Isotope Effect of Ammonia Synthesis over Ruthenium”, J Catal, 1970, 16: 97-101.
    
    Aika K, Hori H, Ozaki A. “Activation pf Nitrogen by Alkali Metal Promoted Transition Metal: 1. Ammonia Synthesis over Ruthenium Promoted by Alkali Metal”, J Catal, 1972, 27: 424-431.
    林伟忠, 刘化章.“钌基氨合成催化剂研究进展”,现代化工, 1994, 7: 12-17.
    何林.“超低温低压钌系氨合成催化剂研究的新进展”,工业催化, 2000, 1(8): 3-11.
    Wei Guang, Wang Lihua, Lin Yi Ji, et al. “Novel Ruthenium Catalyst (K-Ru/C60/70) for Ammonia Synthesis”, Chinese Chemical Letters, 1999, 10: 433-434.
    Zheng Xiaoling, Zhang Shujuan, Lin Jianxin, Xu Jiaoxing, Fu Wujun, Wei Kemei. “Effect of Activated Carbon as a Support on Metal Dispersion and Activity of Ruthenium Catalyst for Ammonia Synthesis”, Chemical Research in Chinese Universities, 2002, 18(4): 448-452.
    郑晓玲,傅武俊,俞裕斌,林建新,魏可镁.“活性炭载体的微波处理对氨合成催化剂Ru/C催化性能的影响”,催化学报, 2002, 23(6): 562-566.
    李瑛, 刘化章.“钌基氨合成催化剂中载体的作用机理”,工业催化, 2000 , 3(8): 17-22.
    邢麟 译.“含钌的低温合成氨催化剂”,化肥工业译丛(Translated Series of Ferilizer Ind), 1990, 1: 13-27.
    邢麟 译.“含钌的低温合成氨催化剂(续)”,化肥工业译丛(Translated Series of Ferilizer Ind), 1990, 2: 31-41.
    British Petroleum, US Patent, 4,163,775, 1979.
    Kowalczyk Z, Sentek J, Jodzis S, et al. “Thermally Modified Active Carbon as a Support for NH3 Synthesis”, Carbon, 1996, 34(3): 403-409.
    Kowalczyk Z, Sentek J, Jodzis S. “An Alkali-Promoted Ruthenium Catalyst for the Synthesis of Ammonia Supported on Thermally Modified Active Carbon”, Catal Lett, 1997, 45(1-2): 65-72.
    Kowalczyk Z, Sentek J, Rarog W, et al. “Effect of Potassium and Barium on the Stability of a Carbon-Supported Ruthenium Catalyst for the Synthesis of Ammonia”, Appl Catal A: General, 1998, 173: 153-160.
    Kowalczyk Z, Jodzis S, Rarog W, et al. “The Effect of the Carbon Support and Barium Promoter on the Performance”, Appl Catal A: General, 1999, 184: 95-102.
    Forni L, Molinari D, Rossrtti I, et al. “Carbon-Supported Promoted Ru Catalyst for Ammonia Synthesis”, Appl Catal A: General, 1999, 185: 269-275.
    
    Zhong Z, Aika K. “Effect of Hydrogen Treatment of Active Carbon as a Support for Promoted Ruthenium Catalysts for Ammonia Synthesis”, Chem Commun, 1997, 13: 1223-1224.
    Zhong Z, Aika K. “The Effect of Hydrogen Treatment of Active Carbon on Ru Catalysts for Ammonia Synthesis”, J Catal, 1998, 173: 535-539.
    Zhong Z, Aika K. “Effect of Ruthenium Precursor on Hydrogen-Treated Active Carbon Supported Ruthenium Catalysts for Ammonia Synthesis”, Inorg Chim Acta, 1998, 280: 183-188.
    Aika K, Shimazaki K, Hattori Y. “Support and Promoter Effect of Ruthenium Catalyst, 1.Characterization of Alkali-Promoted Ruthenium/Alumina Catalysts for Ammonia Synthesis”, J Catal, 1985, 92: 296-304.
    Aika K, Ohya A, Ozaki A. “Support and Promoter Effect of Ruthenium Catalyst, 2.Ruthenium/Alkaline Earth Catalyst for Activation of Dinitrogen”, J Catal, 1985, 92: 305-311.
    Izumi Y, Aika K. “New Supported [Ru6N] Clusters as a Potential Transition Metal Nitride Catalyst”, Chem Lett, 1995, 2: 137-142.
    Izumi Y, Aika K. “Promoted Catalysis by Supported [Ru6N] Cluster in N2 and/or H2: Structure and Chemical Controls”, J Phys Chem, 1995, 99: 10346-10353.
    Yunusov S M, Likholovov V A, Shur V B. “Supported Ammonia Synthesis Catalysts Based on Anionic Ruthenium Cluster K2 [Ru4 (CO) 13]. The Promoting Effect of Cesium Nitrate”, Appl Catal A: General, 1997, 158: L35-L39.
    Kubota J, Aika K. “Infrared Studies of Adorbed Dinitrogen on Supported Ruthenium Catalysts for Ammonia Synthensis: Effects of the Alumina and Magnesia Supports and the Cesium Commpound Promoter”, J Phys Chem, 1994, 98:11293-11300.
    季德春.“稀土元素在合成氨催化剂中的应用”,浙江工业大学硕士论文,杭州, 2000年.
    Niwa Y, Aika K. “The Effect of Lanthanide Oxides as a Support for Ruthenium Catalysts in Ammonia Synthesis”, J Catal, 1996, 162: 138-142.
    Niwa Y, Aika K. “Ruthenium Catalyst Supported on CeO2 for Ammonia Synthesis”, Chem Lett, 1996, 1: 3-9.
    Kadowaki Y, Aika K. “Promoter Effect of Sm2O3 on Ru/Al2O3 in Ammonia Synthesis”, J Catal, 1996, 161: 178-185.
    Cisneros M D, Lunsford J H. “Characterization and Ammonia Synthesis
    
    
    Activity of Ruthenium Zeolite Catalysis”, J Catal, 1993, 141: 191-205.
    Fishel C T, Davis R J, Garces J M. “Ammonia Synthesis Catalyzed by Ruthenium Supported on Basic Zeolites”, J Catal, 1996, 163: 148-157.
    Becue T, Davis R J, Garces J M. “Effect of Cationic Promoters on the Kinetics of Ammonia Synthesis Catalyzed by Ruthenium Supported on Zeolite X”, J Catal, 1998, 179: 129-137.
    Rao K R S, Rao P K, Masthan S K, et al. Appl Catal A: General, 1990, 62: L19.
    Masthan S K, Prasad P S S, Rao K R S, et al. J Mol Catal, 1991, 67: L1.
    Masthan S K, Prasad P S S, Rao K S R, et al. “A Direct Correlation between Nitrogen Chemiscorption and Ammonia Synthesis Activity of Ruthenium Catalysts Supported on Carbon Covered Alumina (CCA)”, Indian J Chem Sect A, 1995, 34(2): 146-147.
    林治田 译.化肥工业译丛(Translated Series of Ferilizer Ind), 1991, 1: 10-11.
    Yunusov S M, Likholovov V A, Shur V B. “Supported Ammonia Synthesis Catalysts Based on Anionic Ruthenium Cluster K2 [Ru4 (CO) 13]. The Promoting Effect of Cesium Nitrate”, Appl Catal A: General, 1997, 158: L35-L39.
    Jacobsen C J H, “Boron Nitrde: A Novel Support for Ruthenium-Based Ammonia Synthesis Catalysis”, J Catal, 2001, 200: 1-3.
    Aika K, Midorikawa H, Ozaki A. “Novel Nitrogen-Potessium Surface Complex on Alumina, Magnesia, and Calcium Oxide”, J Phys Chem, 1982, 86: 3263-3269.
    Murata S, Aika K. “Removal of Chlorine Ions from Ru/MgO Catalysts for Ammonia Synthesis”, Appl Catal A: General, 1992, 82(1): 1-12.
    Woodrow K, Shiflet J, Dumesie A. Ind Eng Chem Fundam, 1981, 20: 46.
    Asakara K, Baudo K, et al. “Structure and Behaviour of Ru3(CO)12 Supported on Inorganic Oxide Surfaces, Studied by EXAFS, Infrared Spectroscopy and Temperature-Programmed Decomposition”, J Chem Soc Far Trans, 1990, 86(14): 2645-2655.
    Hai S Z, Inazu K, Aika K. “Dechlorination Process of Active Carbon-Supported, Barium Nitrate-Promoted Ruthenium Trichloride Catalysts for Ammonia Synthesis”, Appl Catal A: General, 2001, 219: 235-247.
    Walker A P, Raiment T, Lamber R M. “A Controlled Atmosphere in Situ X-Ray Diffraction Study of the Activation and Performance of Ammonia Synthesis Catalysts Derived from CeRu2, CeCo2, and CeFe2”, J Catal, 1989,
    
    
    117: 102-120.
    Walker A P, Raiment T, Lambert R M. “Structure and Reactivity of Ammonia Synthesis Catalysts Derived from CeRu2 Precursors: A Study by in Stiu X-Ray Absorption Spectroscopy”, J Catal, 1990, 125: 67-76.
    Walker A P, Lambert R M. “Properties of the Ru(0001)/Ce-H2 Interface: A Model System for Transition-Metal/Rare-Earth Hydride Catalysts”, J Phys Chem, 1992, 96: 2265-2271.
    Uner D O, Pruski M, Gerstein B C, King T S. “Hydrogen Chemiscorption on Potassium Promoted Supported Ruthenium Catalysts”, J Catal, 1994, 146: 530-536.
    Hoost T E, Goodwin J G. “Potassium Dispersion on Silica-Supported Ruthenium Catalysts”, J Catal, 1991, 130: 283-292.
    Cisneros M D, Lunsford J H. “Characterization and Ammonia Synthesis Activity of Ruthenium Zeolite Catalysis”, J Catal, 1993, 141: 191-205.
    Zeng H S, Hihara T, Inzau K. “Effect of Methanation Active Carbon Support on the Barium-Promoted Ruthenium Catalyst for Ammonia Synthesis”, Cattl Lett, 2001, 76: 193-199.
    Rossetti I, Pernicone N, Forni L. “Promoters Effect in Ru/C Ammonia Synthesis Catalyst”, Appl Catal A: General, 2001, 208(3): 271-278.
    Strongin D R, Somorjai G A. “The Effects of Potassium on Ammonia Synthesis over Iron Single-Crystal Surfaces”, J Catal, 1988, 109: 51-60.
    Benndorf C, Madey T E, “Interaction of NH3 with Adsorbed Oxygen and Sodium on Ru(001): Evidence for both Local and Long-Range Interactions”, Chem Phys Lett, 1983, 101: 59-64.
    Hikita T, Kadowaki Y, Aika K, “Promoter Action of Alkali Nitrate in Raney Ruthenium Catalyst for Action of Dinitrogen”, J Phys Chem, 1991, 95: 9396-9402.
    Aika K, Kawahara T. “Promoter Effect of Alkali Metal Oxide and Alkali earth Metal Oxide on Active Carbon-Supported Ruthenium Catalyst for Ammonia Synthesis”, Bull Chem Soc Jpn, 1990, 63(12): 1221-1225.
    Hai S Z, Koji I, Aika K. “The Working State of the Barium Promoter in Ammonia Synthesis over an Active-Carbon-Supported Ruthenium Catalyst Using Barium Nitrate as the Promoter Precursor”, J Catal, 2002, 211: 33-41.
    Hinrichsen O, Rosowski F, Hornung A, et al. “The Dissociative Chemisorption and Associative Desorption of N2”, J Catal, 1997, 165: 33-44.
    Tenrison S. Catalytic Ammonia Synthesis (Jennings J R, Ed), Plenum, New
    
    
    York, 1991: 303-364.
    Hihita T, Kadowaki Y, Aika K. “Promoter Action of Alkall Nitrate in Raney Ruthenium Catalyst for Activation of Dinitrogen”, J Phys Chem, 95: 9396-9402.
    McClaine B C, Siporin S, Davis R. “X-ray and IR Spectroscopy of Barium-Promoted, Zeolite-Supported Ruthenium Catalysts for Ammonia Synthesis”, J Phys Chem B, 2001, 105: 7525-7532.
    Bielawa H, Hinrichsen O, Birkner A, et al. “The Ammonia-Synthesis Catalyst of the Next Generation Barium-Promoted Oxide-Supported Ruthenium”, Angew Chew Int Ed Engl, 2001, 40: 1061-1063.
    Spencer N D, Schoonmaker R C, Somorjai G A. “Iron Single Crystals Ammonia Synthesis Catalysts: Effect of Surface Structure on Catalyst Activity”, J Catal, 1982, 74: 129-135.
    Strongin D R, Carrazza J, Bare S R, et al. “The Importance of C7 Sites and Surface Roughness in the Ammonia Synthesis Reaction over Iron”, J Catal, 1987, 103: 213-215.
    Dahl S, Logadottir A, Egeberg R C, Larsen J H, et al. “Role of Steps in N2 Activation on Ru (0001)”, Phys Rev Lett, 1999, 83: 1814-1817.
    Dahl S, Tōrnqvist E T, Chorkendorff I. “Dissociative Adsorption of N2 on Ru (0001): A Surface Reaction Totally Dominated by Steps”, J Catal, 2000, 192: 381-390.
    Dahl S, Sehested J, Jacobsen C J H, et al. “Surface Science Based Microkinetic Analysis of Ammonia Synthesis over Ruthenium Catalysts”, J Catal, 2000, 192: 391-399.
    Dahl S, Logadottir A, Jacobsen C J H, et al. “Electronic Factors in Catalysis: the Volcano Curve and the Effect of Promotion in Catalytic Ammonia Synthesis”, Appl Catal A: General, 2001, 222: 19-29.
    S. Dahl, N2 activation and NH3 synthesis over Ru, Fe and Fe/Ru model catalysts, Ph D Thesis, Technical University of Denmark, Lyngby, Denmark, 1999.
    Jacobsen C J H, S?ron D. “Structure Sensitivity of Supported Ruthenium Catalysts for Ammonia Synthesis”, J M Catal A: Chemical, 2000, 163: 19-26.
    石天宝.“开发和利用钌基氨合成催化剂”,化工进展, 1993, 6: 46-53.
    Nitrogen. 1991, 193: 17.
    牛继舜.“Kellogg合成氨工艺进展”,大氮肥, 1996 , 19(5): 329-331.
    凯洛格奉献给中国化肥工业的氨合成生产技术. 大氮肥, 1991: 4.
    
    秋鹿研一. 触媒技术の动向と展望, 1997: 14-23.
    Aika K, Kakegawa T. “On-Site Ammonia Synthesis in De-NOx Process”, Catal Today, 1991, 10: 73-80.
    Moggi P, Predieri G, Maione A, “Ru/MgO Sol-Gel Prepared Catalysts for Ammonia Synthesis”, Catal Lett, 2002, 79: 7-15.
    Baris H, Glinski M, Kijenski J. “Ammonia Synthesis over Alumina and Magnesia Supported Ruthenium: Comparative Kinetic Study of the Promotive Action of Metallic and Ionic Potassium”, Appl Catal, 1986, 28: 295-301.
    Kuznetsov V L, Bell A T. “An Infrared Study of Alumina - and Silica - Supported Ruthenium Cluster Carbonyls”, J Catal, 1980, 65: 374-389.
    Rambeau G, Amariglio H, “Ammonia Synthesis Ruthenium Powder from 100 to 500 ℃ and Hydrogenation of Preadsorbed Nitrogen down to -70 ℃”, J Catal, 1981, 72: 1-11.
    Zecchina A, Guglielminotti E. “Surface Characterization of the Ru3(CO)12 /Al2O3 System, 1.Interaction with the Hydroxylated Surface”, J Catal, 1982, 74: 225-239.
    Guglielminotti E, Zecchina A. “Surface Characterization of the Ru3(CO)12 /Al2O3 System, 2.Structure and Reactivity of the Surface Carbonylic Complexes”, J Catal, 1982, 74: 240-251.
    Guglielminotti E, Zecchina A. “Surface Characterization of the Ru3(CO)12 /Al2O3 System, 3.Surface Prosperities after Full Decarbonylation and Deduction”, J Catal, 1982, 74: 252-265.
    Lazar K, Matrse K, Mink J. “Spectroscopic and Catalytic Study on Metal Carbonal Clusters Supported on Cab-O-Ail, 1. Impregnation and Decomposition of Fe3(CO)12”, J Catal, 1984, 87: 163-178.
    Schay Z, Lazar K, Mink J. “Spectroscopic and Catalytic Study on Metal Carbonal Clusters Supported on Cab-O-Ail, 2.Impregnation and Decomposition of Ru3(CO)12 and the Mixture of Ru3(CO)12 and Fe3(CO)12”, J Catal, 1984, 87: 179-195.
    Lin Z Z, Okuhara T, Misono M. “Selectivity Change in CO Hydrogenation by Oxidation-Reduction Treatment of Ru/Al2O3: Selectivity versus Morphology of Ru”, J Phys Chem, 1988, 92: 723-729.
    Uchiyama S, Gatas B C. “CO Hydrogenation Catalysts Prepared from Molecular Ruthenium Carbonal Clusters: Effects of the Support on Catalyst Structure and Stability”, J Catal, 1988, 110: 388-403.
    Solymosi F, Rasko J. “An Infaraed Study of the Influence of CO Adsorption
    
    
    on the Topology of Supported Ruthenium”, J Catal, 1989, 115: 107-119.
    Mieth J A, Schwarz A. “The Effect of Catalyst Preparation on the Performance of Alumina-Supported Ruthenium Catalysts, 1.The Impact of Catalytic Precursor on Particle Size and Catalytic Activity”, J Catal, 1989, 118: 203-217.
    Mieth J A, Schwarz A. “The Effect of Catalyst Preparation on the Performance of Alumina-Supported Ruthenium Catalysts, 2.The Impact of Residual Chloride”, J Catal, 1989, 118: 218-226.
    Wu X, Gerstein B C, King T S. “Characterization of Silica-Supported Ruthenium Catalysts by Hydrogen Chemisorption and Nuclear Magnetic Resonance of Adsorbed Hydrogen”, J Catal, 1989, 118: 238-254.
    Rarog W, Kowalczyk Z, Sentek J, et al. “Effect of K、Cs and Ba on the Kinetics of NH3 Synthesis over Carbon-Based Ruthenium Catalysts”, Chem Lett, 2000, 68: 163-168.
    Kim K S, Winograd N. “X-Ray Photoelectron Spectroscopic Studies of Ruthenium-Oxygen Surfaces”, J Catal, 1974, 35: 66-72.
    Bossi A, Garbassi F, Pftrini G. “Support Effects on the Catalytic Activity and Selectivity of Ruthenium in CO and N2 Activation”, J Chem Soc Faraday Trans I, 1982,78: 1029-1038.
    Zheng X L, Zhang S J, Xu J X, Wei K M. “Effect of Thermal and Oxidative Treatment of Activated Carbon on its Surface Structure and Suitability as a Support for Barium-Promoted Ruthenium in Ammonia Synthesis Catalysts”, Carbon, 2002, 40(14): 2597-2603.
    厦门大学化学系催化教研室,南京化学工业公司催化剂厂编著. 氨合成催化剂,北京:化学工业出版社, 1980.
    Webb P A. Analytical Methods in Fine Particle Technology, (Orr C, Ed), Micromeritics Instrument Corporation, Norcross GA USA, 1997: 70.
    郑晓玲,许交兴,张淑娟,魏可镁.“活性炭材料为载体的钌系氨合成催化剂”,功能材料, 2001, 32(suppl): 1125-1128.
    Auer E, Freund A, Pietsch J, et al. “Carbon as Supports for Industrial Precious Metal Catalysts”, Appl Catal A: General, 1998, 173: 259-271.
    Stoeckli H F. “Microporous carbons and their characterization: The Present State of the Art”, Carbon, 1990, 28(1): 1-3.
    Rodriguez-Reinoso F. Introduction to Carbon Technologies, University of Alicante, Alicante Spain, 1997: 35.
    Rodriguez-Reinoso F. Porosity in Carbons: Characterization and
    
    
    Applications, (Patrick J W Ed), Edward Arnold, London, 1995: 253.
    Rodriguez-Reinoso F. “The Role of Carbon Materials in Heterogeneous Catalysis”, Carbon, 1998, 36(3): 159-175.
    Liang C H, Wei Z B, Xin Q, et al. “Ammonia Synthesis over Ru/C Catalysts with Different Carbon Supports Promoted by Barium and Potassium Compounds”, Appl Catal A: General, 2001, 208: 193-201.
    王晓南,朱虹,夏伟琴,刘化章.“活性炭负载钌基氨合成催化剂的制备和催化活性”,催化学报, 2000, 21(3): 276-278.
    郑晓玲,傅武俊,魏可镁,等.“助剂对Ru/C催化剂的表面性质及氨合成催化性能的影响”,燃料化学学报, 2003, 31(1): 86-91.
    郑晓玲,张淑娟,许交兴,魏可镁.“钌系氨合成催化剂中炭载体与活性组分的相互作用”,第八届全国青年催化会议论文摘要集,北京, 2001: 144-145.
    Kowalczyk Z, Krukowski M, Raróg-Pilecka W, et al. “Carbon-Based Ruthenium Catalyst for Ammonia Synthesis Role of the Barium and Caesium Promoters and Carbon Support”, Applied Catalysis A: General, 2003, 248: 67-73.
    Trovarelli A, Dolcetti G, Leitenburg C, et al. “Rh-CeO2 Interaction Induced by High-Temperature Reduction Characterization and Catalytic Behaviour in Transient and Continuous Conditions”, J Chem Soc Faraday Trans, 1992, 9, 88(9): 1311-1319.
    Mendelovici L, Steinberg M. “Reaction of Ethylene with Oxygen on a Pt/CeO2 Catalyst”, J Catal, 1985, 93: 353-359;
    Mendelovici L, Steinberg M. “Methanation and Water-Gas Shift Reactions over Pt/CeO2”, J Catal, 1985, 96: 285-287.
    Burch R, Flambard A R. “Strong Metal-Support Interactions in Nickel/Titania Catalysts: The Importance of Interfacial Phenomena”, J Catal, 1982, 78: 389-405.
    郑晓玲,魏可镁.“第二代氨合成催化体系—钌系氨合成催化剂及其工业应用”,化学进展, 2001, 13(6): 472-480.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700