污泥基NOx催化剂的制备及性能表征
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文以城市污水生物法处理产生的剩余污泥为原料,针对传统污泥资源化利用过程中的缺点与弊端,采用化学药剂浸渍的方法来制取了一种多孔炭质催化剂,催化剂的制备方法在两种方法中进行优化选择:一是浸渍-高温热解的方法;二是热解-浸渍-煅烧的方法。负载的活性组分也有两种选择:一是硝酸铁;二是硝酸铜。然后通过催化活性评价和特征分析对比的手段对其制备方法及负载金属硝酸盐类型进行了优化选择,并就制备过程中的相关问题进行了研究。在选定制备方法一和负载硝酸铁后,将方法一制得的负载硝酸铁的催化剂应用到有害气体NO_x的处理中,利用正交实验和单因素实验对影响催化剂效果的因素进行了选择性研究,包括n(Zn~(2+))/n(Fe~(3+))、热解温度、反应温度及反应过程中氧气的浓度。证明了n(Zn~(2+))/n(Fe~(3+))为1:0.5、热解温度750℃、反应温度400℃及氧气浓度15%是催化剂的最佳制备和反应条件,此条件下的最大NO_x转化率可达98.3%。然后对催化剂进行了特征分析,主要包括粒度分析、BET表面积分析、扫描电镜、傅立叶变换红外光谱分析、X射线衍射分析等。粒度分析结果显示,催化剂的颗粒细小均匀,有利于与反应气体的接触;BET分析结果显示催化剂具有较大的比表面积,最大可达307.0 m~2·g~(-1),说明催化剂具有良好的吸附性能,满足固体负载型催化剂的一个基本条件;通过扫描电镜对催化剂的微观表面结构分析得知,催化剂具有良好的孔结构,孔分布比较均匀,且表面有活性粒子的散射,表明催化剂的表面负载了一定量的活性组分;催化剂的傅立叶变换红外光谱图分析结果显示,催化剂表面具有丰富的含氧官能团,它们的存在有利于提高催化剂的催化活性;催化剂的X射线衍射分析结果表明,催化剂具有良好的晶体结构和丰富的氧化物。这些都表明该催化剂具有优良催化剂的基本条件。最后对催化剂进行了应用分析及前景展望。
The residual sewage sludge produced through biologic method treatment domestic sewage is taken as raw material, based on the disadvantages of all kinds of traditional sewage sludge treatment. The chemical activation method is applied to paralysis sewage sludge to obtain porous carbonaceous catalysts. At first, the production method of the catalysts has two choices. The first method included impregnation, pyrolysis, and the second included pyrolysis, impregnation and calcinations. The active matter laden also has two choices. One is ferric nitrate, the other is copper nitrate. The production method and active matter laden were selected by catalytic activity evaluation and character analysis, and the concerned conditions are worked out during the production. The carbonaceous catalysts laden ferric nitrate produced in the first method were applied to the nitrogen oxide treatment process. The catalytic capability of the catalysts varied according to many factors. This experiment examined some factors included Zn:Fe molar ratio, pyrolysis temperature, reaction temperature and oxygen concentration by orthogonal experiments and single factor experiments. The experiment result showed that the maximal NO_X conversion of 98.3% was obtained under the following condition: Zn:Fe molar ratio of 1:0.5, pyrolysis temperature was 750℃, reaction temperature was 400℃, and oxygen concentration of 15%. After selecting the best production conditions and the best reaction conditions, the experiment further examined the catalytic activity, self-reduction and catalytic life of the catalyst under the optimal conditions. The results exhibited the catalyst still keep favorable catalytic capability, and it had definite reductive capability, the catalytic life can be accepted. Then the characteristic analysis on the catalyst are carried out, include granularity analysis, BET analysis, SEM analysis, FT-IR analysis, X-ray analysis. These analyses indicates the catalyst have predominant conditions. The granularity analysis indicates the catalysts' granules are thin and well-proportioned, and propitious to touch with reaction gas. The BET analysis indicates the catalysts have biggish BET area and maximal area is 307.0 m~2·g~(-1). This characteristic indicates the catalysts have well adsorption capability. The SEM analysis indicates the catalysts have well microcosmic structure, in other words, the hole structure of catalysts is well. In addition, lots of active particles are scattered on the catalysts' surface. The FT-IR analysis indicates lots of oxygenous functions are distributed on the catalysts' surface; these are propitious to improve activation of catalysts. The X-ray analysis indicates catalysts have well crystal structure and abundant oxides. At last, the catalyst's application and foreground are analysised.
引文
[1] 蒋扬虎,丁翠娇,郑兆平等.燃烧NO_x生成机理及抑制方法[J].武钢技术,2000,38(6):17-21
    [2] 邱琳,宁平.NO_x选择催化还原的研究进展[J].西南科技大学学报(哲学社会科学版),2004,21(4):109-112
    [3] 白建辉,王明星.鼎湖山臭氧、氮氧化物和太阳可见光辐射相互关系的研究[J].环境科学学报,2000,20(2):173-176
    [4] Stern A C, Wohlers H C, Boubel R W, et al. Fundamental of air pollution[M]. New York: Academic Press, 1973:993-998
    [5] 德利克·埃尔森,田学文,朱志辉等.烟雾警报——城市空气质量管理[M].北京:科学出版社,1999:1-30
    [6] 顾立军,刘宝生,陈小平等.选择性催化还原NO催化剂的研究进展[J].天然气化工,2004,29(3):49-53
    [7] 王旭珍,赵宗彬,徐秀峰.NO_x的催化转化研究进展[J].烟台师范学院学报(自然科学版),200l,17(4):296-304
    [8] 管锡君,董典同,马培建等.NO_x的产生及脱除研究进展[J].青岛建筑工程学院学报,2002,23(4):35-40
    [9] 苏亚欣,毛玉如,徐璋.燃煤氮氧化合物排放控制技术[M].北京:化学工业出版社,2005:1-235
    [10] 罗奇祥.施用氮肥的环境后果-综述[J].土壤学进展,1994,22(2):29-32
    [11] 腾加伟,宋庆英,于岚等.催化法脱除NO_x的研究进展[J].环境污染治理技术与设备,2000,1(1):38~45
    [12] 张强,许世森,王志强.选择性催化还原烟气脱硝技术进展及工程应用[J].热力发电,2004,33(04):1-6
    [13] Duffy B L, Curryhyde H E, Cant N Wet al. Isotopic Labeling Studies of the Effects of Temperature, Water, and Vanadia Loading on the Selective Catalytic Reduction of NO with NH_3 Over Vanadia-titania Cataysts[J]. Journal of Physical Chemistry, 1994, 98(4): 7153-7164
    [14] Busca G, Lietti L, Ramis G, Berti F. Chemical and mechanistic aspects of the selective catalytic reduction of NO_x by ammonia over oxide catalysts: a review. Appl Catal B: Envir, 1998, 18(1-2): 1-36
    [15] 宁平,黄建洪,罗永明等.Ag/A1_2O_3催化剂催化还原NO性能的研究.化工 环保,2004,24(1):335-337
    [16] 高志明,吴越,王学忠等.活性炭作为载体和还原剂对NO的还原作用[J].催化学报,1996,17(2):117-122
    [17] Illan Gomez M J, Raymudo-Pinero E. Catalytic NO_x reduction by carbon supporting metals[J]. Appl CatalB: Envir, 1999, 20:267-275
    [18] 王学中,杨向光,吴越.Pd/C催化剂在处理NO反应中的催化行为[J].催化学报,1998,19(3):191-197
    [19] 赵宗彬,李保庆,管仁贵.a煤中矿物质对NO-半焦还原反应的影响;bCO和O_2气氛下煤中矿物质对NO-半焦还原反应的影响[J].燃料化学学报,2001,a29(2):129-137;b29(3):232-237
    [20] 郭占成.活性炭选择性催化还原烟道气中NO[J].环境工程,1999,17(4):35-39
    [21] 王旭珍,赵宗彬,徐秀峰.NO的催化转化研究进展[J].烟台师范学院学报(自然科学版),2001,17(4):296-304
    [22] 祝静艳,曾玉燕,匡代彬等.弱紫外光下NO_x气相光催化氧化研究[J].中山大学学报(自然科学版),2001,40(6):31-34
    [23] 赵庆祥.污泥资源化技术[M].北京:化学工业出版社,2002:1-2
    [24] 顾夏生,黄铭荣,王占生等.水处理工程[M].北京:清华大学出版社,1985:159-160
    [25] 万洪云.利用活性污泥制造活性炭的研究[J].干旱环境监测,2000,14(4):202-206
    [26] 牛樱,陈季华.剩余污泥处理技术进展[J].工业用水与废水,2000,31(5):4-6
    [27] 熊振湖.我国污水厂污泥的处理与资源化研究[J].天津城市建设学院学报,1999,5(3):6-9
    [28] 周少奇.城市污泥处理处置与资源化[J].广州:华南理工大学出版社,2002:1-4
    [29] Reale R J. Sludge reuses strategies changing[J]. Environmental Protection, 1981, 2(1): 20-25
    [30] 鄂勇,刘春颖,王喜艳等.污泥土地利用途径分析[J].东北农业大学学报,2006,37(5):714-717
    [31] Wang Min Jin. Land application of sewage sludge in China[J]. The Science of the total Environment, 1997, 197(1-3): 149-160
    [32] 莫测辉,吴启堂,蔡全英等.论城市污泥资源化与可持续发展[J].应用生态学报,2000,11(1):157-160
    [33] 朱小山,孟范平,赵希锦.城市污泥的处理技术及资源化展望[J].四川环境,2002,21(4):8-12
    [34] 周立祥,胡蔼堂,戈乃玢等.城市污泥土地利用研究[J]_生态学报,1999,19(3):185-193
    [35] 郭媚兰,田若淘,王雁卿等.城市污泥和污泥垃圾堆肥作为肥源对作物重金属积累的影响[J].农业环境保护,1995,14(2):67-71
    [36] 周立祥,胡霭堂,戈乃玢.苏州市生活污泥成分性质及其对蔬菜和菜地土壤的影响[J].南京农业大学学报,1994,17(2):54-59
    [37] Keefer R F. Metal-organic associations in two extracts from nice soils amends with three sewage sludge[J]. Agriculture, Ecosystem and Environment, 1994, 16(5): 151-165
    [38] Hall J E. Soil ingestion of sewage sludge and animal slurries[J]. Fertilizer, 1988, 22(4): 63-68
    [39] 张天红,薛澄泽.西安市污水污泥林地施用效果的研究[J].西北农业大学学 报,1994,22(2):67-71
    [40] 张增强,薛澄泽.几种草本植物对污泥堆肥的生长响应研究[J].西北农业大学学报,1996,24(1):65-69
    [41] 林春野,董克虞,李萍.污泥农用对土壤及作物的影响[J].农业环境保护,1994,13(1):23-25
    [42] 谭启玲,胡承孝,赵斌等.城市污泥的特性及其农业利用现状[J].华中农业大学学报,2002,21(6):587-592
    [43] 曹仁林,霍文瑞,贾晓葵.园林绿地施用污泥堆肥对环境影响研究[J].环境科学研究,1997,10(3):46-50
    [44] 付克强,王殿武,李贵宝等.城市污泥与湖泊底泥土地利用对土壤—植物系统中养分及重金属Cd、Pb的影响[J].水土保持学报,20006,20(4):62-66
    [45] 闫双堆,卜玉山,刘利军.城市污泥、垃圾复混肥对油菜产量及土壤肥力现状的影响[J].山西农业科学,2005,33(2):45-48
    [46] 邱宏俊,郝以琼.国外污泥处置技术[J].重庆建筑大学学报,1998,20(6):12-17
    [47] 牛红义,吴群河.污泥土地利用研究动向[J].环境科学动态,2005,4(3):48-49
    [48] 沈维民,贺新华,王赛辉.生化污泥干燥脱水技术的研究[J].工程建设,2006,38(5):54-59
    [49] Bayer B and Kutubuddin M. Temperature conversion of sludge and Waste to Oil from: K J thome —Kozmiendsy, Eds. Proceedings of the International Recycling Congress[M]. Berlin: EF Verlag, 1978: 314-318
    [50] Campbell H W. Sewage Sludge Treatment and Use: New Development[M]. London: Elsevier Applied Science, 1989: 281-290
    [51] Bridle T R, Hammerton I, Hertle C K. Control of heavy metals and organochlorines using the oil from sewage process[J]. Wat. Sci. Tech., 1990, 22(12): 249-258
    [52] Frost R C, Bruce A. M. Alternative Uses for Sewage Sludge[M]. Oxford: Pergamon Press, 1991: 323-341
    [53] 何晶晶,顾国维,邵立明等.污水污泥低温热解处理技术研究[J].中国环境科学,1996,16(4):254-257
    [54] 欧国荣,陈奇洲.生活水污泥油化试验研究[J].环境污染与防治,1996,18(4):20-21
    [55] 何晶晶,邵立明,陈正夫等.污水厂污泥低温热化学转化过程机理研究[J].中国环境科学,1998,18(1):39-42
    [56] 胡光埙,洪云希.城市污泥合成燃料的应用研究[J].中国给水排水,1996,12(2):13-15
    [57] 汪恂.污泥热化学处理的试验研究[J].武汉理工大学学报,2002,24(6):35-37
    [58] Shen Lilly, Zhang Dong-Ke. An experimental study of oil recovery sewage sludge by low temperature pyrolysis in a fluidised-bed[J]. Fuel, 2003, 82(4): 455-472
    [59] Dominguez A, Menendez J A, Inguanzo M, et al. Gas chromatographic-mass spectrometric study of the oil fractions produced by microwave-assisted pyrolysis of different sewage sludges[J]. Journal of Chromatography A, 2003, 1012(2): 193-206
    [60] 邵立明,何晶晶,李国建.污水厂污泥低温热解过程能量平衡分析[J].上海环境科学,1996,15(6):19-21
    [61] 何晶晶.城市污水处置厂污泥直接热化学液化处理技术[J].环境科学,1999,16(4):75-80
    [62] 程丽华,倪福祥.剩余活性污泥处理的清洁生产方向[J].青岛理工大学学报,2006,27(1):104-109
    [63] 王敦球,谢庆林,李金城.城市污水污泥农用资源化研究[J].重庆环境科学,1999,21(6):50-52
    [64] 国家环境保护局编.水污染防治及城市污水资源化技术(成果汇编)[M].北京:科学出版社,2002:171-179
    [65] 唐黎华,朱子彬,赵庆祥.活性污泥作为汽化用型煤黏结剂—污泥在粉煤灰中的分散性与型煤质量的关系[J].华东理工大学学报,1998,24(5):506-509
    [66] 唐黎华.活性污泥作为气化用型煤黏结剂的研究[J].环境科学学报,1999,1(1):87-90
    [67] 蔡文金.城市污泥的处理利用的探索[J].环境工程,1991,9(4):22-23
    [68] Hudson J A. Treatment and disposal of sewage sludge in the mid-1990s[J]. JCIWEN, 1995, 9(3): 93-99
    [69] 朱建平,常钧,芦令超等.利用城市垃圾、污泥烧制生态水泥[J].硅酸盐通报,2003,22(2):57-61
    [70] Heart S. Protecting the environment from waste disposal: the cement kiln option[J]. Environmental Protection Engineering, 1997, 23 (1): 25-35
    [71] 北川浩,北川睦夫.日本活性炭生产的工艺流程[J].化学装置,1978,20(9):75-79
    [72] 万洪云.利用活性污泥制造活性炭的研究[J].干旱环境监测,2000,14(4):202-206
    [73] Nasrin R. Khalili, Hitendra Jain, Hamid Arastoopour. Synthesis and characterization of catalysts produced from paper mill sludge I. Determination of NO_x removal capability[J]. Journal of Hazardous Materials,2000,80(1-3): 207-221
    [74] 彭会清,胡海祥,赵根成等.活性炭材料用于烟气脱硫脱氮的研究现状与展望[J].炭素技术,2003,4(6):31-35
    [75] 周润兰,喻胜华.应用概率统计[M].北京:科学出版社,1999:211-235
    [76] 辛勤.固体催化剂研究方法(上册)[M].北京:科学出版社,2004:103-383
    [77] 唐有祺.结晶化学[M].北京:高等教育出版社,1957:203-207
    [78] 张秀兰,栗印环,余国忠.X射线粉末衍射分析法分析石墨插层化合物的结构[J].信阳师范学院学报(自然科学版),2004,17(2):183-184
    [79] 谢有畅,杨乃芬,刘英俊等.某些催化剂活性组份在载体表面分散的自发倾向[J].中国科学,B辑,1982,24(8):3-12
    [80] 陈懿。 双金属氧化物和氧化物载体组分间的相互作用[J].复旦学报自然科学版,2002,41(3):251-259
    [81] 胡波,藏雅茹,汪跃民,等.金属氧化物在γ—Al_2O3上单层分散的表面对称模型[J].催化学报,1996,17(6):517-521
    [82] 刘金香,曲秀云,高秀英等.第六届溶液化学,热力学,热分析论文报告会摘要集[C].郑州:中国化学会,STTT专业委员会,1992:377-378
    [83] 蒋宗轩,孟淑纯,李灿,等.钼酸根与γ—Al_2O3表面羟基相互作用的定性和定量研究[J].催化学报,1994,15(5):387-391
    [84] Suzuki T. Study on the carbon-nitric oxide reaction in the presence of oxygen[J]. Ind Eng Chem Res, 1994, 33(11): 2840-2845
    [85] Yamashita H. Reaction of nitric oxide with metal-loaded carbon in the presence of oxygen[J]. Applied Catalysis B: Environment, 1991, 78(2): 1-6
    [86] Xiao Shan. The lean catalytic reduction of nitric oxide by solid carbonaceous material[J]. Applied Catalysis B: Environment, 2001, 32(1-2): 107-122
    [87] 尾崎萃(日)等著,《催化剂手册》翻译小组译.催化剂手册[M].北京:化学工业出版社,1982:198-200
    [88] 李丽,王道.氮氧化物选择催化还原的研究进展[J].工业催化,2003,11(6):1-6
    [89] 张金昌,王艳辉,陈标华等.负载活性炭催化脱除油品中硫化物的研究:1脱硫实验研究[J].石化技术与应用,2002,20(3):149-151
    [90] 周继红,华玉芝,史长林等.负载型活性炭脱硫(H_2S)的试验研究[J].河北建筑科技学院学报,2003,20(1):8-10
    [91] 余谟鑫,李忠,夏启斌等.活性炭表面负载金属离子对其吸附苯并噻吩的影响阴.化工学报,2006,57(8):1943-1948
    [92] 李伟峰,祝社民,宋天顺等.金属负载活性炭催化氧化处理印染废水[J].南京工业大学学报,2006,28(4):5-8
    [93] 王连生,王广庆,费学宁等.金属负载活性炭催化氧化法处理ZPT生产废水[J].城市环境与城市生态,2003,16(6):238-240

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700