石墨相氮化碳的制备、表征及其光催化性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
半导体光催化技术在温和条件下能将太阳能转化成化学能,同时能彻底氧化分解有机物,在解决环境污染和能源短缺方面表现出巨大的潜力。然而,传统TiO2基无机半导体光催化剂存在太阳能利用率低、光量子效率低和易失活的弊端,严重地制约了光催化技术的实际推广应用。因此,开发新型高效光催化剂和拓宽光催化剂的光响应范围,成为当前光催化领域的研究热点。
     石墨相氮化碳(g-C_3N_4)具有良好的化学惰性、热稳定性以及生物兼容性等,有可能在各种材料科学应用中替代石墨碳材料。g-C_3N_4是一种有机半导体材料,禁带宽度约2.7eV,具有合适的导带价带位置,在光催化领域有着诱人的应用前景。本论文在不破坏半导体光催化材料的基本化学结构的基础上,通过对g-C_3N_4基体的改性来提高其光催化性能,主要包括:(1)通过热聚合法合成体相g-C_3N_4,在空气和氮气中对其进行后退火处理,研究后退火对结构、光学性质和光催化性能的影响。研究发现,后退火可以有效提高g-C_3N_4光解水制氢的活性。(2)采用硬模板法合成有序介孔结构的g-C_3N_4,发现其光电性能和光催化分解水产氢性能都优于体相g-C_3N_4。(3)将金属离子引入g-C_3N_4结构,研究金属-氮化碳化合物在有机光催化合成中的应用。研究结果表明,金属改性不仅改进了氮化碳的电子结构和光学性能,且从基团和催化功能上模拟生物氧化酶,在温和的条件下实现对过氧化氢和分子氧的催化活化,在苯羟基化反应以及苯乙烯环氧化反应中都表现出较高的催化活性和选择性;(4)通过浸渍-化学表面反应技术,将金属-氮化碳化合物负载于氧化硅载体上,得到具有大比表面积的纳米材料,并考察负载样品对苯羟基化反应的活性。研究结果表明,Fe-g-C_3N_4负载样品具有优良的催化氧化能力,与体相材料相比,负载样品的催化性能提高了2.7倍。(5)采用硬模板法合成介孔g-C_3N_4,通过溶剂热法与无机半导体CdS进行复合改性,发现复合材料具有优良的光催化氧化有机污染物和还原水制氢性能。
     本论文的创新点:(1)首次对体相g-C_3N_4光催化剂进行后退火处理,通过优化制备工艺来提高其光催化效率;(2)以SBA-15为模板成功合成了有序介孔g-C_3N_4,研究其光电性能和光催化分解水产氢性能;(3)通过简单的软化学法在g-C_3N_4中成功引入金属离子,得到金属-氮化碳新型催化剂,并首次应用于有机光催化合成。(4)首次将金属-氮化碳化合物负载于SBA-15,得到具有高分散纳米结构的负载型金属-氮化碳化合物。研究发现,对苯羟基化反应,负载样品具有优于体相样品的反应活性。(5)采用溶剂热法制备了CdS/介孔g-C_3N_4复合材料,从优化体相织构和调控能带结构来提高g-C_3N_4光催化降解有机污染物和分解水产氢活性。
Semiconductor photocatalytic technology could convert solar energy to chemical energyunder mild reaction condition, and degrade many organics completely, consequently, it has greatapplied potential in solar energy conversion and environmental pollution control. However,traditional TiO2-based inorganic semiconductor photocatalysts have some defects, such as poorsolar energy utilization, low quantum efficiency and easily deactivation. These seriously limit thelarge-scale application of photocatalytic technology. Therefore, to develop new photocatalystswith high efficiency and to broaden photoresponse range of the photocatalysts have becomechallenging topics in the environmental photocatalytic field.
     Graphitic carbon nitride (g-C_3N_4) has good chemical inertness, thermal stability andbio-compatibility, which are promising candidates to complement carbon in materialsapplications. The graphitic carbon nitride polymer is an organic semiconductor material,exhibiting a band gap of2.7eV, with an appropriate conduction band and valence band position,thus, it has great applied potential in photocatalytic field. In the present research, g-C_3N_4wasmodified by many ways to enhance its photocatalytic performance without destroying the basicchemical structures, including:(1) Bulk g-C_3N_4was firstly prepared by thermal polymerization,and then post-annealed in air and nitrogen atmosphere. The effect of annealing in the structure,optical properties and photocatalytic performance of g-C_3N_4was studies. The results show thatpost-annealing can effectively improve the photocatalytic activity for hydrogen evolution;(2)Ordered mesoporous structure of g-C_3N_4was prepared by using hard template. It was found thatits photoelectric property and photocatalytic efficiency for H2evolution was much better thanthat of the bulk sample;(3) Metal ions were introduced into g-C_3N_4structure and the applicationof metal containing carbon nitride in photocatalytic organic synthesis were studied. The resultsshow that the modification of g-C_3N_4by metal irons not only improves the electronic structureand optical properties of carbon nitride, but also achieves the activation of hydrogen peroxideand molecular oxygen under mild conditions by simulating bio-oxidation enzyme via the groupsand catalytic functional. The modified samples show high catalytic activity and selectivity inboth direct oxidation of benzene to phenol and styrene epoxidation;(4) Metal containing carbonnitride was loaded on the SBA-15by the impregnation-chemical modification method andnanostructured materials with large surface area were obtained. The photocatalytic/catalyticactivities were evaluated by oxidation of benzene to phenol. The results show that the well-dispersed Fe-modified nanomaterials exhibited excellent catalytic activity in the oxidationof benzene,2.7times higher than that of bulk materials;(5) Mesoporous g-C_3N_4was prepared byhard template method, and then coupled with inorganic semiconductor CdS by solvethermalprocess. It was found that the CdS/mpg-C_3N_4composites exhibited excellent photocatalyticactivity in both decomposition of organic pollution and water splitting for H2.
     The original results of this study are as follows:(1) Bulk g-C_3N_4was firstly treated bypostcalcination, and the photocatalytic activity of g-C_3N_4was enhanced from the optimization ofthe preparation procedure;(2) Ordered mesoporous g-C_3N_4was successfully prepared by hardtemplate method with SBA-15as template. The photoelectric property and photocatalyticactivity for H2evolution of the mesoporous g-C_3N_4were fully studied;(3) Metal ions weresuccessfully introduced into g-C_3N_4matrix by a simple soft-chemical method. The novel metalcontaining carbon nitride materials were firstly applied in photocatalytic organic systhesis;(4)Metal containing carbon nitride compounds were firstly loaded on the SBA-15, andwell-dispersed M-g-C_3N_4/SBA-15composites were obtained. It was found that theFe-g-C_3N_4/SBA-15nanomaterials exhibited higher catalytic activity for the oxidation of benzenethan bulk materials;(5) The mesoprous g-C_3N_4were coupled with CdS with solvothermaltreatment, the photocatalytic performance in decomposition of organic pollution and watersplitting for H2of g-C_3N_4were enhanced from optimization of texture structure and adjustmentof band structure.
引文
[1] Fujishima A., Honda K. Electrochemical photolysis of water at a semiconductor electrode.Nature,1972,238(5358):37-38.
    [2] Regall O.B., Gratzel M. A low-cost, high-efficiency solar cell based on dye-sensitized colloidalTiO2films.Nature,199l,353(6346):737-739.
    [3] Gao F.F., Wang Y., Shi D., et al. Enhance the optical absorptivity of nanocrystalline TiO2filmwith high molar extinction coefficient ruthenium sensitizers for high performancedye-sensitized solar cells. J. Am. Chem. Soc.,2008,130(32):10720-10728.
    [4]黄礼华,魏明灯.未来型太阳能电池-染料敏化太阳能电池研究进展.新材料产业,2010,4:58-62.
    [5] Lehn J.M., Sauvage J.P., Ziessel R. Photochemical water splitting continuous generation ofhydrogen and oxygen by irradiation of aqueous suspensions of metal loadedstrontium-titanate.New J. Chem.,1980,4(11):623-627.
    [6] Gratzel M. Photoinduced water splitting in heterogeneous solution.Boulder, Colo, USA,1981:131-160.
    [7] Heyduk A.E., Nocera D.G. Hydrogen produced from hydrohalic acid solutions by a two-electronmixed-valence photocatalyst.Science,2001,293(5535):1639-164l.
    [8](a) Kudo A., Hijii S. H-2or O-2evolution from aqueous solutions on layered oxide photocatalystsconsisting of Bi3+with6s (2) configurtion and d (0) transition metal ions. Chem. Lett.,1999:1103-1104.(b) Kato H, Kudo A. Photocatalytic water splitting into H2and O2over various tantalatephotocatalysts. Catal. Today,2003,78:561-569.(c) Kudo A, Kato H, Nakagawa S. Water splitting into H2and O2on new Sr2M2O7(M=Nb andTa) photocatalysts with layered perovskite structures: Factors affecting the photocatalyticactivity. J. Phys. Chem. B,2000,104:571-575.
    [9](a) Zou Z.G., Ye J.H., Arakawa H. Structural properties of InNbO4and InTaO4: correlation withphotocatalytic and photophysical properties. Chem. Phys. Lett.,2000,332:271-277.(b) Ye J.H., Zou Z.G., Oshikiri M., et al. A novel hydrogen-evolving photocatalyst InVO4active under visible light irradiation. Chem. Phys. Lett.,2002,356:221-226.(c) Zou Z.G., Ye J.H., Sayama K., et al. Photocatalytic hydrogen and oxygen formation undervisible light irradiation with M-doped InTaO4(M=Mn, Fe, Co, Ni and Cu) photocatalysts. JPhotochem. Photobio. A,2002,148:65-69.(d) Zou Z.G., Ye J.H., Sayama K., et al. Direct splitting of water under visible light irradiationwith an oxide semiconductor photocatalyst. Nature,2001,414:625-627.(e) Zou Z.G., Ye J.H., Arakawa H. Photophysical and photocatalytic properties of InMO4(M=Nb5+, Ta5+) under visible light irradiation. Mater. Res. Bull.,2001,36:1185-1193.
    [10] Maeda K., Teramura K., Lu D.L., et al. Photocatalyst releasing hydrogen from water-Enhancing catalytic performance holds promise for hydrogen production by water splitting insunlight. Nature,2006,440(7082):295-295
    [11](a) Wang X.C., Maeda K., Thomas A., et al. A metal-free polymeric photocatalyst for hydrogenproduction from water under visible light. Nat. Mater.,2009,8:76-80.(b) Wang X.C., Maeda K., Chen X.F., et al. Polymer semiconductors for artificialphotosynthesis: Hydrogen evolution by mesoporous graphitic carbon nitride with visible light.J. Am. Chem. Soc.,2009,131:1680-1681.
    [12] Yue P.L., Khan F., Rizzuti L.J. Photocatalytic ammonia synthesis in a fluidised bed reactor.Chem. Eng. Sci.,1983,38(11):1893-1900.
    [13] Brunet J., Sidot C., Caubere P. Sunlamp-irradiated phase-transfer catalysis.1. Cobalt carbonylcatalyzed SRN1carbonylations of aryl and vinyl halides. J. Org. Chem.,1983,48:1166-1171.
    [14]汤胜山,张宁,朱静.光催化在有机合成中的应用.工业催化,2005,13(1):21-24.
    [15] Tada H., Hyodo M., Kawahara H. Photoinduced polymerization of1,3,5,7-tetramethylcyclo-tetrasiloxane by titania particles. J. Phys. Chem.,1991,95:10185-10188.
    [16](a) Yokota T., Iwano T., Tadaki T. Preparation of propylene oxide by photooxidation of propene.Teor Ek-sp Khim,1977,13(1):35240.(b) Yoshida H., Tanaka T., Yamamoto M., et al. Photooxidation of propene by O2over silicaand Mg-loaded silica. Chem. Commun.,1996:2125-2126.
    [17] Zhang M., Chen C.C., Ma W.H., et al. Visible-light-induced aerobic oxidation of alcohols in acoupled photocatalytic system of dye-sensitized TiO2and TEMPO. Angew. Chem.,2008,120(50):9876-9879.
    [18] Carey J.H., Lawrence J., Tosine H.M. Photodechlorination of PCB'S in the presence of titaniumdioxide in aqueous suspensions. Bull. Environ. Contam.Toxicol.,1976,16(6):697-701.
    [19](a) Ollis D.F., Pelizzetti E., Serpone N. Heterogeneous photocatalysis in the environment:application to water purification, photocatalysis, fundamentals and application. New York:John Wiley&Sons,1989.609-637.(b) Hoffmann M.R., Martin S.T., Choi W., et al. Environmental applications of semiconductorphotocatalysis. Chem. Rev.,1995,95:69-96.
    [20]高濂,郑珊,张青红.纳米氧化钛光催化材料及应用.化学工业出版社,2002.
    [21] Sayama K., Yase K., Arakawa H., et al. Photocatalytic activity and reaction mechanism ofPt-intercalated K4Nb6O17catalyst on the water splitting in carbonate salt aqueous solution. J.Photochem. Photobio. A,1998,114:125-135.
    [22] Hou Y.D., Wu L., Wang X.C., et al. Photocatalytic performance of α-, β-, and γ-Ga2O3for thedestruction of volatile aromatic pollutants in air. J. Catal.,2007,250:12-18.
    [23](a) Fujishima A., Hashimoto K. Watanabe T. Photocatalysis fundamentals and applications. Ist.ed., BKC, Tokyo,1999.(b) Hagfeldt A., Gratzel M. Light-induced redox reactions in nanocrystalline systems. Chem.Rev.,1995,95:49-68.
    [24] Pehkonen S., Siefert R., Webb S., et al. Photoreduction of iron oxyhydroxides in the presenceof important atmospheric organic compounds. Environ. Sci. Technol.,1993,27(10):2056-2062.
    [25] Fu X.Z., Zeltner W.A., Anderson M.A. The gas-phase photocatalytic mineralization of benzeneon porous titania-based catalysts. Appl. Catal. B,1995,6(3):209-224.
    [26] Choi W.Y., Termin A., Hoffmann M.R. The role of metal ion dopants in quantum-sized TiO2:correlation between photoreactivity and charge carrier recombination dynamics. J. Phys.Chem.,1994,98(51):13669-13679.
    [27] Zou Z.G., Ye J.H., Arakawa H. Structural properties of InNbO4and InTaO4: correlation withphotocatalytic and photophysical properties. Chem. Phys. Lett.,2000,332:271-277.
    [28] Asahi R., Morikawa T., Ohwakl T., et al. Visible-light photocatalysis in nitrogen-dopedtitanium oxides. Science,2001,293(5528):269-271.
    [29] Irie H., Watanabe Y., Hashimoto K. Carbon-doped anatase TiO2powders as a visible-lightsensitive photocatalyst. Chem. Lett.,2003,32(8):772-773.
    [30] Ohno T., Mitsui T., Matsumura M. Photocatalytic activity of S-doped TiO2photocatalyst undervisible light. Chem. Lett.,2003,32(4):364-365.
    [31] Li D., Haneda H., Hishita S., et al. Visible-light-driven N-F-codoped TiO2photocatalysts.1.synthesis by spray pyrolysis and surface characterization. Chem. Mater.,2005,17(10):2588-2595.
    [32](a) Do Y.R., Lee W., Dwight K., et al. The effect of WO3on the photocatalytic activity of TiO2.J. Solid State Chem.,1994,108:198-201.(b) Bedja I., Kamat P.V. Capped semiconductor colloids-synthesis and photoelectrochemicalbehavior of TiO2-capped SnO2nanocrystallites. J. Phys. Chem.,1995,99:9182-9188.(c) Vogel R., Pohl K., Weller H. Sensitization of highly porous, polycrystalline TiO2electrodesby quantum sized CdS. Chem. Phys. Lett.,1990,174(3):241-246.(d) Haesselbarth A., Eychiiller A., Eichbberger R. Chemistry and photophysics of mixedCdS/HgS colloids. J. Phys. Chem.,1993,97:5333-5340.(e) Contreras M., Ramanathan K., AbuShama J. Diode (characteristics in state-of-the-artZnO/CdS/Cu(In(1-x)Gax)Se-2solar cells. Prog. Photovolt.,2005,13:209-216.(f) Rabani J. Sandwich colloids of ZnO and ZnS in aqueous solutions. J. Phys. Chem.,1989,93:7707-7715.
    [33](a) Choi H., Stathatos E., Dionysiou D. Sol-gel preparation of mesoporous photocatalytic TiO2films and TiO2/Al2O3composite membranes for environmental applications. Appl. Catal. B:Environ.,2006,63:60-67.(b) Ennaoui A., Sankapal B., Skryshevsky V. TiO2and TiO2-SiO2thin films and powders byone-step soft-solution method: Synthesis and characterizations. Sol. Energy Mater. Sol. Cell,2006,90:1533-1541.(c) Kitiyanan A., Yoshikawa S. The use of ZrO2mixed TiO2nanostructures as efficientdye-sensitized solar cells' electrodes. Mater. Lett.,2005,59:4038-4040.
    [34]程萍,顾明元,金燕苹. TiO2光催化剂可见光化研究进展.化学进展,2005,17(1):8-14.
    [35]陈崧哲,张彭义,祝万鹏,等.可见光响应光催化剂研究进展.化学进展,2004,16(4):613-619.
    [36] Kresge C.T., Leonovicz M. E., Roth W. J., et al. Ordered mesoporous molecular sievessynthesized by a liquid-crystal template mechanism. Nature,1992,359,710-712.
    [37](a) Jiao F., Harrison A., Jumas J.C., et al. Ordered Mesoporous Fe2O3with Crystalline Walls. J.Am. Chem. Soc.,2006,128(16):5468-5474.(b) Luca V., Maclachlan D.J., Hook J.M., et al. Long-lived charge separation in a donoracceptor dyad adsorbed in mesoporous V2O3. Chem. Mater.,1995,7(9):2220-2227.(c) Antonelli D.M., Yng J.Y. Synthesis of hexagonally packed mesoporous TiO2by a modifiedsol-gel method. Angew. Chem. Int. Ed. Engl.,1995,34(8):2014-2019.(d) Antonelli D.M., Ymg J.Y. Synthesis of a stable hexagonally packed mesoporous niobiumoxide molecular sieves through a novel ligand-assisted templating mechanism. Chem. Mater.,1996,168(3):874-882.(e) Tian Z.R., Tong W., Wang J.Y., et al. Manganese oxide mesoporous structures:mixed-valent semiconducting catalysis. Science.,1997,276(6):926-928.
    [38](a) Kudo A., Domen K., Maruya K., et al. Photocatalytic activities of TiO2loaded with NiO.Chem. Phys. Lett.,1987,133(6):517-519.(b) Domen K., Kudo A., Onishi T., et al. Photocatalytic decomposition of water into H2and O2over NiO-SrTiO3powder: structure of the catalyst. J. Phys. Chem.,1986,90(2):292-295.(c) Mizoguchi H., Ueda K., Orita M.,et al. Decomposition of water by a CaTiO3photocatalystunder UV light irradiation. Mater. Res. Bull.,2002,37(15):2401-2406.(d) Ogura S., Sato K., Inoue K. Effects of RuO2dispersion on photocatalytic activity for waterdecomposition of BaTi4O9with a pentagonal prism tunnel and K2Ti4O9with a zigzag layerstructure. Phys. Chem. Chem. Phys.,2000,2:2449-2454.(e) Hwang D., Kim H., Lee J., et al. Photocatalytic hydrogen production from water overM-doped La2Ti2O7(M=Cr, Fe) under visible light irradiation (λ>420nm). J. Phys. Chem. B,2005,109(6):2093-2102.
    [39](a) Kudo A., Tanaka A., Domen K., et al. Photocatalytic decomposition of water overNiO/K4Nb6O17catalyst. J. Catal.,1988,111(1):67-76.(b) Kudo A., Kato H., Nakagawa S. Water splitting into H2and O2on new Sr2M2O7(M=Nb andTa) photocatalysts with layered perovskite structures: factors affecting the photocatalyticactivity. J. Phys. Chem. B,2000,104(3):571-575.(c) Hosogi Y., Kato H., Kudo A. Synthesis of SnNb2O6nanoplates and their photocatalyticproperties. Chem. Lett.,2006,35(6):578-579.(d) Hosogi Y., Shimodaira Y., Kato H., et al. Role of Sn2+in the band structure of SnM2O6andSn2M2O7(M=Nb and Ta) and their photocatalytic properties. Chem. Mater.,2008,20(4):1299-1307.(e) Yamasita D., Takata T., Hara M., et al. Recent progress of visible-light-drivenheterogeneous photocatalysts for overall water splitting. Solid State Ionics.,2004,172(1-4):591-595.
    [40](a) Kato H., Kudo A. New tantalate photocatalysts for water decomposition into H2and O2.Chem. Phys. Lett.,1998,295(5-6):487-492.(b) Kato H., Asakura K., Kudo A. Highly efficient water splitting into H2and O2overlanthanum-doped NaTaO3photocatalysts with high crystallinity and surface nanostructure. J.Am. Chem. Soc.,2003,125(10):3082-3089.(c) Machida M., Yabunaka J., Kijima T., et al. Electronic structure of layered tantalatesphotocatalysts: RbLnTa2O7(Ln=La, Pr, Nd, Sm). Interna. J. Inorg. Mater.,2001,3(6):545-550.
    [41](a) Li D., Zheng J., Zou Z. Band structure and photocatalytic properties of perovskite-typecompound Ca2NiWO6for water splitting. J. Phys. Chem. Solids,2006,67(4):801-806.(b) Kadowaki H., Saito N., Nishiyama H., et al. Overall splitting of water by RuO2-loadedPbWO4photocatalyst with d10s2-d0configuration. J. Phys. Chem. C,2007,111(1):439-444.(c) Hitoki G., Takata T., Ikeda S., et al. Mechano-catalytic overall water splitting on somemixed oxides. Catal. Today,2000,63(2-4):175-181.[42](a) Ikarashi K., Sato J., Kobayashi H., et al. Photocatalysis for water decomposition byRuO2-Dispersed ZnGa2O4with d10configuration. J. Phys. Chem. B,2002,106(35):9048-9053.(b) Sato J., Kobayashi H., Ikarashi K., et al. Photocatalytic activity for water decomposition ofRuO2-dispersed Zn2GeO4with d10configuration. J. Phys. Chem. B,2004,108(14):4369-4375.(c) Sato J., Saito N., Nishiyama, H., et al. Photocatalytic activity for water decomposition ofRuO2-loaded SrIn2O4with d10configuration. Chem. Lett.,2001,(9):868-869.(d) Sato J., Saito N., Nishiyama H., et al. Photocatalytic water decomposition by RuO2-loadedantimonates, M2Sb2O7(M=Ca, Sr), CaSb2O6and NaSbO3, with d10configuration. J.Photochem. Photobiol. A: Chem.,2002,148(1-3):85-89.
    [43] Muktha B., Darriet J., Madras G., et al. Crystal structures and photocatalysis of the triclinicpolymorphs of BiNbO4and BiTaO4. J. Solid State Chem.,2006,179(12):3893-3899.
    [44] Wu L., Bi J. H., Li Z. H., et al. Rapid preparation of Bi2WO6photocatalyst with nanosheetmorphology via microwave-assisted solvothermal synthesis. Catal. Today,2008,131(1-4):15-20.
    [45](a) Li Z. H., Xue H., Wang X.X., et al. Characterizations and photocatalytic activity ofnanocrystalline La1.5Ln0.5Ti2O7(Ln=Pr, Gd, Er) solid solutions prepared via a polymericcomplex method. J. Mol. Catal. A: Chem.,2006,260(1-2):56-61.(b) Wang J., Yin S., Komatsu M., et al. Preparation and characterization of nitrogen dopedSrTiO3photocatalyst. J. Photochem. Photobio. A: Chem.,2004,165(1-3):149-156.(c) Kapoor P., Umab S., Rodriguez S., et al. Aerogel processing of MTi2O5(M=Mg, Mn, Fe,Co, Zn, Sn) compositions using single source precursors: synthesis, characterization andphotocatalytic behavior. J. Mol. Catal. A: Chem.,2005,229(1-2):145-150.(d) Tang J., Zou Z., Ye J. Effects of Substituting Sr2+and Ba2+for Ca2+on the StructuralProperties and Photocatalytic Behaviors of CaIn2O4. Chem. Mater.,2004,16(9):1644-1649.(e) Lou X., Jia X., Xu J., et al. Hydrothermal synthesis, characterization and photocatalyticproperties of Zn2SnO4nanocrystal. Mater. Sci. Eng. A,2006,432(-2):221-225.(f) Lin X., Huang F., WangW., et al. Photocatalytic activity of Bi24Ga2O39for degradingmethylene blue. Scripta Mater.,2007,56(3):189-192.(g) Hur S., Kim T., Hwang S., et al. Influences of A-and B-site cations on the physicochemicalproperties of perovskite-structured A(In1/3Nb1/3B1/3)O3(A=Sr, Ba; B=Sn, Pb) photocatalysts.J. Photochem. Photobio. A: Chem.,2006,183(1-2):176-181.
    [46](a) Chen X.F., Wang X.C., Hou Y.D., et al. The effect of postnitridation annealing on thesurface property and photocatalytic performance of N-doped TiO2under visible lightirradiation J. Catal.,2008,255(1):59–67.(b) Umebayashi T., Yamaki T., Tanaka S., et al. Visible light-induced degradation of methyleneblue on S-doped TiO2. Chem. Lett.,2003,32(4):330-331.
    [47](a) Liu H., Yuan J., Shangguan W., et al. Visible-light-responding BiYWO6solid solution forstoichiometric photocatalytic water splitting. J. Phys. Chem. C,2008,112(23):8521-8523.(b) Kamat P.V., Huehn R., Nicolaescu R.A.A “Sense and Shoot” approach for photocatalyticdegradation of organic contaminants in wate.r J. Phys. Chem. B,2002,106(4):788-794.(c) Maruyama Y., Irie H., Hashimoto K. Visible light sensitive photocatalyst, delafossitestructured α-AgGaO2. J. Phys. Chem. B,2006,110(46):23274-23278.(d) Hosogi Y., Kato H., Kudo A. Synthesis of SnNb2O6nanoplates and their photocatalyticproperties. Chem. Lett.,2006,35(6):578-579.(e) Kato H., Kobayashi H., Kudo A. Role of Ag+in the band structures and photocatalyticproperties of AgMO3(M:Ta and Nb) with the perovskite structure. J. Phys. Chem. B,2002,106(48):12441-12447.
    [48](a) Jung H.S., Hong Y.J., Li Y.R., et al. Photocatalysis using GaN aanowires. ACS Nano,2008,2(4):637-642.(b) Yashima M., Lee Y., Domen K. Crystal structure and electron density of tantalumoxynitride, a visible light responsive photocatalyst Chem. Mater.,2007,19(3):588-593.
    [49](a) Lei Z.B., You W.S., Liu M.Y., et al. Photocatalytic water reduction under visible light on anovel ZnIn2S4catalyst synthesized by hydrothermal method. Chem. Commun.,2003,2142.(b) Ma G.J.,Yan H.J., Shi J.Y., et al. Direct splitting of H2S into H2and S on CdS-basedphotocatalyst under visible light irradiation. J. Catal.,2008,260(1):134-140.
    [50](a) Maeda K., Teramura K., Domen K. Effect of post-calcination on photocatalytic activity of(Ga1xZnx)(N1xOx) solid solution for overall water splitting under visible light. J. Catal.,2008,254(2):198-204.(b) Lee Y., Terashima H., Shimodaira Y., et al. Zinc Germanium Oxynitride as a photocatalystfor overall water splitting under visible light. J. Phys. Chem. C,2007,111(2):1042-1048.
    [51](a) Nogueira A.F., Micaroni L., Gazotti W.A., et al. Enhanced photoresponse of poly-(3-methylthiophene) supported on TiO2. Electrochem. Conmmun.,1999,1(7):262-265.(b)柳闽生,郝彦忠,乔学斌等,纳米尺度TiO2聚苯胺多孔膜电极光电化学研究,电化学,1998,4(3):246-251.(c) Martini M., De Paoli M. A. Effect of the electrolyte cations and anions on the photocurrentof dodecylsulphate doped polypyrrole films,Sol. Energ. Mat. Sol. Cells.,2002,73(3):235-247.
    [52](a) Qiu R.L., Song L., Mo Y.Q., et al.Visible light induced photocatalytic degradation of phenolby polymer-modified semiconductors: study of influence factors and kinetics. React. Kinet.Catal. L.,2008,94(1):183-189.(b) Song L., Qiu R.L., Mo Y.Q., et al., Photodegradation of phenol in a polymer modified TiO2semiconductor particulate system under the irradiation of visible light. Catal. Commun.,2007,8(3):429-433.
    [53] Suzuki M., Ohta Y., Nagae H., et al. Synthesis, characterization and application of a novelpolymer solid photoseusitizer. Chem.Commun.,2000,(3):213-214.
    [54] Spiller W.,Wohrle D.,Schulz-Ekloff G., et al., Photo-oxidation of sodium sulfide by sulfonatedphthalocyanines in oxygen-saturated aqueous solutions containing detergents or latexes,J.Photochem. Photobiol. A: Chem.,1996,95:161-173.
    [55] Liebig J. About some nitrogen compounds. Ann. Pharm.,1834,10:10.
    [56](a) Leupin W., Wirz J. Low-lying electronically excited states of cycl[3.3.3]azine,a bridged12π-perimeter. J. Am. Chem. Soc.,1980,102:6068–6075(b) Hosmane R.S., Rossman M.A., Leonard N.J. Synthesis and structure of tri-s-triazine. J. Am.Chem. Soc.,1982,104:5497–5499.
    [57] Liu A.Y., Cohen M.L. Prediction of new low compressibility solid. Science,1989,245:841-842.
    [58] Teter D.M., Hemley R.J.Low-compressibility carbon nitrides. Science,1996,271:53–55.
    [59] Liu A.Y., Cohen M.L. Structural properties and electronic structure of low compressibilitymaterials:β-Si3N4and hypothetical β-C3N4. Phys. Rev. B,1990,41:10727–10734.
    [60](a) Reyes-Serrato A., Galvan D.H., Garzon I.L. ab initio Hartree-Fock study of structural andelectronic properties of β-Si3N4andβ-C3N4compounds. Phys. Rev. B,1995,52:6293-6300.(b) Corkill J.L., Cohen M.L. Calculated quasiparticle band gap of β-C3N4. Phys. Rev. B,1993,48:17622-17624.(c) Yoa H., Ching W.Y. Optical properties of β-C3N4and its pressure dependence. Phys. Rev. B,1994,50:12231-l2234.
    [61](a)Vinu A., Ariga K., Mori T., Nakanishi T., et al. Preparation and characterization ofwell-ordered hexagonal mesoporous carbon nitride. Adv. Mater.,2005,17:1648-1652.(b) Donnet C., Erdemir A. Historical developments and new trends in tribological and solidlubricant coatings. Surf. Coat. Technol.,2004,180:76-84.(c) Goettmann F., Fischer A., Antonietti M., et al. Chemical synthesis of mesoporous carbonnitrides using hard templates and their use as a metal-free catalyst for friedel-crafts reaction.Angew. Chem. Int. Ed.,2006,45:4467-4471.(d) Zhao H.Z., Lei M., Yang X., et al. Route to GaN and VN assisted by carbothermalreduction process. J. Am. Chem. Soc.,2005,127:15722-15723.(e) Zimmerman J.L., Williams R., Khabashesku V.N., et al. Synthesis of spherical carbonnitride nanostructures. Nano Lett.,2001,1:731-734.(f) Cao C.B., Huang F.L., Cao C.T., et al. Synthesis of carbon nitride nanotubes via acatalytic-assembly solvothermal route. Chem. Mater.,2004,165:213-5215.
    [62] Kroke E., Sehwarz M., Kroll P., et al. Tri-s-triazine derivatives. Part1. From trichioro-tri-s-triazine to graphitic C3N4structures, New J. Chem.,2002,26:508-512.
    [63]Thomas A., Fischer A., Goettmann F., et al. Graphitic-carbon nitride materials: Variation ofstructure and morphology and their use as metal-free catalysts. J. Mater. Chem.,2008,18:4893-4908.
    [64](a) Kouvetakis J., Bandari A., Todd M., et al. Novel synthetic routes to carbon-nitrogenthin-films. Chem. Mater.,1994,6(6):811-814.(b) Todd M., Kouvetakis J., Groy T.L., Chandrasekhar D., Smith D.J., Deal P.W.,Novelsynthetic routes to carbon nitride. Chem. Mater.,1995,7:1422-1426.
    [65](a) Montigaud H., Tanguy B., Demazean G., et al.C3N4: Dream or reality? Solvothermalsynthesis as macroscopic samples of the C3N4graphitic form. J. Mater. Scie.,2000,35(10):2547-2552.(b) Montigaud H., Tanguy B., Demazeau G., et al. Solvothermal synthesis of the graphitic formof C3N4as macroscopic sample. Diamond Relat. Mater.,1999,8(8-9):1707-1710.
    [66] Gu Y.L., Chen L., Shi L., et al. Synthesis of C3N4and graphite by reacting cyanuric chloridewith calcium cyanamide. Carbon,2003,41(13):2674-2676.
    [67] Zhang Z.H., Leinenweber K., Bauer M., et al. High-pressure bulk synthesis of crystallineC6N9H3center dot HCl: A novel C3N4graphitic derivative. J. Am. Chem. Soc.,2001,123(32):7788-7796.
    [68](a) Komatsu T. Attempted chemical synthesis of graphite-like carbon nitride. J. Mater. Chem.,2001,11(3):799-801.(b) Komatsu T. Prototype carbon nitrides similar to the symmetric triangular form of melon. J.Mater. Chem.,2001,11(3):802-805.(c) Komatsu T. The first synthesis and characterization of cyameluric high polymers.Macromol. Chem. Phys.,2001,202(1):19-25.
    [69] Gillan E.G. Synthesis of nitrogen-rich carbon nitride networks from an energetic molecularazide precursor. Chem. Mater.,2000,12(12):3906-3912.
    [70] Zimmerman J.L., Williams R., Khabashesku V. N. Synthesis of spherical carbon nitridenanostructures. Nano Lett.,2001,1(12):731-734.
    [71] Lu X.F., Gai L.G., Cui D.L., et al. Synthesis and characterization of C3N4nanowires andpseudocubic C3N4polycrystalline nanoparticles. Mater. Lett.,2007,61(21):4255-4258.
    [72] Jun Y., Hong W., Antonietti M., et al. Mesoporous,2D hexagonal carbon nitride and titaniumnitride/carbon composites. Adv. Mater.,2009,21,4270–4274.
    [73] Guo Q.X., Xie Y., Wang X.M., et al. Characterization of well-crystallized graphitic carbonnitride nanocrystallites via a benzene-thermal route at low temperatures. Chem. Phys. Lett.,2003,380(1-2):84-87.
    [74] Guo Q.X., Xie Y., Wang X., et al. Synthesis of carbon nitride nanotubes with the C3N4stoichiometry via a benzenethermal process at low temperatures. Chem. Commun.,2004,(1):26-27.
    [75] Zhao Y.C., Lu D.L., Zhou H.W., et al. Turbostratic carbon nitride prepared by pyrolysis ofmelamine. J. Mater. Sci.,2005,40(9-10):2645-2647.
    [76] Lotsch B.V., Schnick W. From triazines to heptazines: Novel nonmetal tricyanomelaminates asprecursors for graphitic carbon nitride materials. Chem. Mater.,2006,18(7):1891-1900.
    [77] Miller D.R., Holst J.R., Gillan E.G. Nitrogen-rich carbon nitride network materials via thethermal decomposition of2,5,8-triazido-s-heptazine. Inorg. Chem.,2007,46(7):2767-2774.
    [78] Li J., Cao C.B., Zhu H.S. Synthesis and characterization of graphite-like carbon nitridenanobelts and nanotubes. Nanotechnology,2007.18:115605
    [79] Groenewolt M. Nanostrukturierte Materialien durch neue Templatsystheme und Nutzungmesopor ser Silikate als Nano-Reaktoren. PhD Thesis, University of Potsdam,2004.
    [80] Jurgens B., Irran E., Senker J., et al. Melem (2,5,8-triamino-tri-s-triazine), an importantintermediate during condensation of melamine rings to graphitic carbon nitride: Synthesis,structure determination by X-ray powder diffractometry, solid-state NMR, and theoreticalstudies. J. Am. Chem. Soc.,2003.125(34):10288-10300.
    [81] Claridge J.B., York A.P.E., Brungs A.J., et al.Study of the temperature-programmed reactionsynthesis of early transition metal carbide and nitride catalyst materials from oxide precursors.Chem. Mater.,2000,12:132-142.
    [82] Jacob K.T., Verman R., Mallya R.M. Nitride synthesis using ammonia and hydrazine-athermodynamic panorama. J. Mater. Sci.,2002,37(20):4465-4472.
    [83](a) Kawaguchi M., Nozaki K. Synthesis, structure, and characteristics of the new host material
    [(C3N3)2(NH)3]n. Chem. Mater.,1995,7(2):257-264.(b) Zhao H.Z., Lei M., Yang X., et al. Route to GaN and VN assisted by carbothermalreduction process. J. Am. Chem. Soc.,2005,127:15722-15723.
    [84](a) Buha J., Djerdj I., Antonietti M., et al. Thermal transformation of metal oxide nanoparticlesinto nanocrystalline metal nitrides using cyanamide and urea as nitrogen source. Chem. Mater.,2007,19(14):3499-3505.(b) Fischer A., Antonietti M., Thomas A., et al., High-surface-area TiO2and TiN as catalystsfor the C C coupling of alcohols and ketones. Chemsuschem,2008,1:444-449.
    [85] Fischer A., Antonietti M., Thomas A., Growth confined by the nitrogen source: synthesis ofpure metal nitride nanoparticles in mesoporous graphitic carbon nitride. Adv. Mater.,2007,19:264-267.
    [86] Zhang J.S., Chen X.F., Takanabe K., et al., Synthesis of a carbon nitride structure forvisible-light catalysis by copolymerization. Angew. Chem. Int. Ed.,2009,122(2):451-454.
    [87] Wang X.C., Chen X.F., Thomas A., et al. Metal-containing carbon nitride compounds: a newfunctional organic-metal hybrid material. Adv. Mater.,2009,21:1609-1612.
    [88] Galarneau A., Cambon, N., Renzo, F. D., et al. Microporosity and connections between pores inSBA-15mesostructured silicas as a function of the temperature of synthesis. New J. Chem.,2003,27:73-79.
    [89] Zhao D.Y., Huo, Q.S., Feng, J.L., et al. Nonionic triblock and star diblock copolymer andoligomeric surfactant syntheses of highly ordered, hydrothermally stable, mesoporous silicastructures. J. Am. Chem. Soc.,1998,120:6024.
    [90] Barreto J.C., Smith G.S., Strobel N.H.P., et al. Terephthalic acid: a dosimeter for the detectionof hydroxyl radicals in vitro. Life Sci.,1995,56(4):89-96.
    [91] Eisenberg G.M. Colorimetric determination of hydrogen peroxide. Ind. Eng. Chem. Anal.,1943,15,327-328.
    [92](a) Kudo A., Niishiro R., Iwase A., et al. Effects of doping of metal cations on morphology,activity, and visible light response of photocatalysts. Chem. Phys.,2007,339(1-3):104-110.(b) Hara M., Nunoshige J., Takata T., et al. Unusual enhancement of H2evolution by Ru onTaON photocatalyst under visible light irradiation. Chem. Commun.,2003,9(24):3000-3001.(c) Abe R., Takata T., Sugihara H., et al. Photocatalytic overall water splitting under visiblelight by TaON and WO3with an IO3/I shuttle redox mediator. Chem. Commun.,2005,30:3829-3831.(d) Kato H, Kobayashi H, Kudo A. Role of Ag+in the band structures and photocatalyticproperties of AgMO3(M: Ta and Nb) with the perovskite structure. J. Phys. Chem. B,2002,106(48):12441-12447.(e) Wang X.C., Maeda K., Lee Y. et al. Enhancement of photocatalytic activity of(Zn1+xGe)(N2Ox) for visible-light-driven overall water splitting by calcination under nitrogen.Chem. Phys. Lett.,2008,457:134–136.(f) Kudo A., Tsuji I., Kato H. AgInZn7S9solid solution photocatalyst for H2evolution fromaqueous solutions under visible light irradiation. Chem. Commun.,2002,8(17):1958-1959.(g) Tsuji I., Kato H., Kobayashi H., et al. Photocatalytic H2evolution reaction from aqueoussolutions over band structure-controlled (AgIn)xZn2(1-x)S2solid solution photocatalysts withvisible-light response and their surface nanostructures. J. Am. Chem. Soc.,2004,126(41):13406-13413.(h) Tsuji I., Kato H., Kudo A. Photocatalytic hydrogen evolution on ZnS-CuInS2-AgInS2solidsolution photocatalysts with wide visible light absorption bands. Chem. Mater.,2006,18(7):1969-1975.
    [93](a) Kominami H., Murakami S. Y., Kera Y., et al. Titanium(IV) oxide photocatalyst ofultra-high activity: new preparation process allowing compatibility of high adsorptivity andlow electron-hole recombination probability. Catal. Lett.,1998,56:125-129.(b) Kominami H., Murakami S.Y., Kato J.I., et al. Correlation between some physicalproperties of titanium dioxide particles and its photocatalytic activity for some probe reactionsin aqueous systems. J. Phys. Chem. B,2002,106:10501-10507.
    [94] Zhang Y.J., Antonietti M. Photocurrent generation by polymeric carbon nitride solids: an initialstep towards a novel photovoltaic system. Chem. Asian J.,2010,5:1307-1311
    [95] Kresge C., Leonowicz M., Roth W., et al. Ordered mesoporous molecular sieves synthesized bya liquid-crystal template mechanism. Nature,1992,359:710–712.
    [96](a) Luca V., Maclachlan D.J., Hook J.M., et al. Long-lived charge separation in a donoracceptor dyad adsorbed in mesoporous V2O3. Chem. Mater.,1995,7(9):2220-2227.(b) Antonelli D.M., Yng J.Y. Synthesis of hexagonally packed mesoporous TiO2by a modifiedsol-gel method. Angew. Chem. Int. Ed. Engl.,1995,34(8):2014-2019.(c) Antonelli D.M., Ymg J.Y. Synthesis of a stable hexagonally packed mesoporous niobiumoxide molecular sieves through a novel ligand-assisted templating mechanism. Chem. Mater.,1996,168(3):874-882.(d) Tian Z.R., Tong W., Wang J.Y., et al. Manganese oxide mesoporous structures: mixed-valent semiconducting catalysis. Science,1997,276(6):926-928.
    [97] Ryoo R., Joo S.H., Kruk M., et al. Ordered mesoporous carbons. Adv. Mater.,2001,13:677-681.
    [98] Li G., Zhang D., Yu J. Ordered mesoporous BiVO4through nanocasting: a superior visiblelight-driven photocatalyst. Chem. Mater.,2008,20,3983-3992.
    [99] Wang Y., Wang X.C., Antonietti M., et al. Facile one-pot synthesis of nanoporous carbonnitride solids by using soft templates. Chemsuschem,2010,3:435-439.
    [100] Sono M., Roach M., Coulter E., et al. Heme-containing oxygenases. Chem. Rev.,1996,96:2841-2888.
    [101](a) Ostovic D., Bruice T. Mechanism of alkene epoxidation by iron, chromium, andmanganese higher valent oxo-metalloporphyrins. Acc. Chem. Res.,1992,25:314-320.(b) Che C., Huang J. Metalloporphyrin-based oxidation systems: from biomimetic reactions toapplication in organic synthesis. Chem. Commun.,2009,(27):3996-4015.
    [102](a) Sorokin A., Séris J., Meunier B. Efficient oxidative dechlorination and aromatic ringcleavage of chlorinated phenols catalyzed by iron sulfophthalocyanine. Science,1995,268:1163-1166.(b) Sorokin A., Meunier B. Oxidative degradation of polychlorinated phenols catalyzed bymetalosulfophthalocyanines. Chem. Eur. J.,1996,2:1308-1317.
    [103](a) Jacobsen E., Zhang W., Guler M. Electronic tuning of asymmetric catalysts. J. Am. Chem.Soc.,1991,113:6703-6704.(b) Jacobsen E., Zhang W., Muci A., et al. Highly enantioselective epoxidation catalystsderived from1,2-diaminocyclohexane. J.Am. Chem. Soc.,1991,113:7063-7064.(c) Xia Q., Ge H., Ye C., et al. Advances in homogeneous and heterogeneous catalytic.asymmetric eoxidation. Chem. Rev.,2005,105:1603-1662.
    [104](a) Vankelecom I., Tas D., Parton R., et al. Chiral catalytic membranes. Angew. Chem. Int. Ed.,1996,35:1346-1348.(b) Zhang J., Liu Y., Che C. Chiral ruthenium porphyrin encapsulated in ordered mesoporousmolecular sieves (MCM-41and MCM-48) as catalysts for asymmetric alkene epoxidation andcyclopropanation. Chem. Commun.,2002,(23):2906-2907.(c) Pu L.1,1'-Binaphthyl dimers, oligomers, and polymers: molecular recognition, asymmetriccatalysis, and new materials. Chem. Rev.,1998,98,(7):2405-2494.
    [105] Vandermade A., Smeets J., Nolte R., et al. Olefin epoxidation by a mono-oxygenase model.Effect of site isolation. Chem. Commun.,1983,1204-1206.
    [106] Sorokin A., Tuel A. Metallophthalocyanine functionalized silicas: catalysts for the selectiveoxidation of aromatic compounds. Catal. Today,2000,57:45-59.
    [107](a) Mack J., Stillman M. Assignment of the optical spectra of metal phthalocyanine anions.Inorg. Chem.,1997,36,(3):413-425.(b) Nemykin V., Galloni P., Floris B., et al. Metal-free and transition-metal tetraferrocenyl-porphyrins part1: synthesis, characterization, electronic structure, and conformationalflexibility of neutral compounds. Dalton Trans.,2008,4233-4246.(c) Bauer E., Cardarilli D., Ercolani C., et al. Tetrakis(thiadiazole)porphyrazines.2. Metalcomplexes with Mn(II), Fe(II), Co(II), Ni(II), and Zn(II). Inorg. Chem.,1999,38,(26):6114-6120.(d) Raymundo-Pinero E., Cazorla-Amorós D., Linares-Solano A., et al. Structuralcharacterization of N-containing activated carbon fibers prepared from a low softening pointpetroleum pitch and a melamine resin. Carbon,2002,40:597-608.
    [108](a) Gervasini A., Manzoli M., Martra G., et al. Dependence of copper species on the nature ofthe support for dispersed CuO catalysts. J. Phys. Chem. B,2006,110:7851-7861.(b) Zhang G., Wang X., Long J.,et al. Deposition chemistry of Cu[OCH(Me)CH2NMe2]2overmesoporous silica. Chem. Mater.,2008,20,(14):4565-4575.
    [109](a) Páez-Mozo E., Gabriumas N., Lucaccioni F., et al. Cobalt phthalocyanine encapsulated inY zeolite: a physicochemical study. J. Phys. Chem.,1993,97,(49):12819-12827.(b) Karweik D., Winograd N. Nitrogen charge distribution in free-base porphyrins.Metalloporphyrins and their reduced analogs observed by x-ray photoelectron spectroscopy.Inorg. Chem.,1976,15:2336-2342.
    [110](a) Malinski T., Ciszewski A., Bennett J., et al. Characterization of conductive nickel (II)tetrakis (3-methoxy-4-hydroxy-phenyl) porphyrin as an anodic material for electrocatalysis. JElectrochem Soc.,1991,138:2008-2015.(b) Berríos C., Cárdenas-Jirón G., Marco J., C. et al. Theoretical and spectroscopy study ofNi(II)-porphyrin derivatives. J. Phys. Chem. A,2007,111:2706-2714.
    [111](a) Sebastian J., Jinka K., Jasra R.,et al. Epoxidation of styrene with molecular oxygencatalyzed by cobalt(II)-containing molecular sieves. J. Catal.,2006,244:208-218.(b) Tang Q., Zhang Q., Wu H., et al. Effect of alkali and alkaline earth metal ions on thecatalytic epoxidation of styrene with molecular oxygen using cobalt(II)-exchanged zeolite X. J.Catal.,2005,230:384-397.
    [112] Zhou W., Hu B., Liu Z. Metallo-deuteroporphyrin complexes derived from heme: Ahomogeneous catalyst for cyclohexane oxidation. Appl. Catal. A,2009,358,(2):136-140.
    [113](a) Herron N., Tolman C. A highly selective zeolite catalyst for hydrocarbon oxidation. Acompletely inorganic mimic of the alkane.omega.-hydroxylases. J. Am. Chem. Soc.,1987,109:2837-2839.(b) Mimoun H., Saussine L., Daire E., et al. Vanadium(V) peroxy complexes. New versatilebiomimetic reagents for epoxidation of olefins and hydroxylation of alkanes and aromatichydrocarbons. J. Am. Chem. Soc.,1983,105:3101-3110.
    [114] Bal R., Tada M., Sasaki T., et al. Direct phenol synthesis by selective oxidation of benzenewith molecular oxygen on an interstitial-N/Re cluster/zeolite catalyst. Angew. Chem. Int. Ed.,2006,45:448-452.
    [115] Tani M., Sakamoto T., Mita S., et al. Hydroxylation of benzene to phenol under air and carbonmonoxide catalyzed by molybdovanadophosphoric acid. Angew. Chem. Int. Ed.,2005,44:2586-2588.
    [116] Balducci L., Bianchi D., Bortolo R., et al. Direct oxidation of benzene to phenol withhydrogen peroxide over a modified titanium silicalite. Angew. Chem. Int. Ed.,2003,42:4937-4940.
    [117] Niwa S., Eswaramoorthy M., Nair J., et al. A one-step conversion of benzene to phenol with apalladium membrane. Science,2002,295:105-107.
    [118] Bianchi D., Bortolo R., Tassinari R., et al. A novel iron-based catalyst for the biphasicoxidation of benzene to phenol with hydrogen peroxide. Angew. Chem. Int. Ed.,2000,39:4321-4323.
    [119] Bojdys M., Müller J., Antonietti M., et al. Ionothermal Synthesis of Crystalline, Covalent,Graphitic Carbon Nitride. Chem. Eur. J.,2008,14:8177-8182.
    [120] Ito S., Mitarai A., Hikino K., et al. Deactivation reaction in the hydroxylation of benzene withFenton's reagent. J. Org. Chem.,1992,57:6937-6941.
    [121] Sorokin A., Meunier B. Oxidative degradation of polychlorinated phenols catalyzed bymetallosulfophthalocyanines. Chem. Eur. J.,1996,2:1308-1317.
    [122](a) Wang X.C., Yu J.C., Liu P. et al. Probing of photocatalytic surface sites on SO42/TiO2solid acids by in situ FT-IR spectroscopy and pyridine adsorption J. Photoch. Photobio. A,2006,179(3):339-347.(b) Martra G. Lewis acid and base sites at the Surface of microcrystalline TiO2anatase:Relationships between surface morphology and chemical behavior. Appl. Catal. A,2000,200(2):275-283.
    [123] Sze S.M. Physics of semiconductor devices. New York: Wiley. Interscience,1981.
    [124] Wang Z.Y., Yu Z.P., Liu B. et al., Sonochemical synthesis of core/Shell structured CdS/TiO2nanocrystals composites. J. Wuhan Univ. Technol.-Mater. Sci. Edi.,2008,24(5),698-701.
    [125](a) Watanabe T., Takirawa T., Honda K. Photocatalysis throuth excitation of adsorbates-Highly efficient N-decthylation of Rhodamine B adsorbed to CdS. J. Phys. Chem.1977,81(19):1845-1851.(b) Chen C., Zhao W., Zhao J. C. Photosensitized degradation of dyes in polyoxometalatesolutions versus TiO2dispersions under visible light irradiation: mechanistic implication.Chem. Eur. J.2004,10(8):1956-1965.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700