石墨烯基催化剂的合成及催化性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
石墨烯基材料导电性较好,比表面积较大且表面易被官能化,具有良好的耐酸碱和耐高温特性。石墨烯基材料本身可以作为非金属催化剂,同时它还可以作为载体用于担载多种类型的传统催化剂。本论文设计合成了一系列石墨烯基复合催化剂,将其用于氧化反应、还原反应以及电催化氧化反应,表现出了优异的催化活性。主要研究结果如下:
     (1)石墨烯作为催化剂用于苯一步氧化制备苯酚的反应,苯的转化率达到18%,苯酚的选择性为97%。催化剂重复应用7次以后,活性仍然没有明显的降低。研究结果表明,石墨烯对双氧水适中的活化能力及对芳环较强的吸附平衡,是此反应获得高选择性和活性的关键。
     (2)通过溶剂蒸发法,合成了钴酞菁/氧化石墨和钴酞菁/石墨烯复合物。由于酞菁钴和氧化石墨之间有着复杂的电子相互作用,石墨烯骨架上的部分电子会转移给钴酞菁,酞菁钴上的电子又会通过类似反馈配位键的方式,转移到氧化石墨上的含氧基团上面。这种复合材料可用于阿司匹林的电化学药物检测。钴酞菁/石墨烯在超大剂量的抗坏血酸干扰下,仍然获得了比较理想的多巴胺的电化学检测效果。
     (3)以氧化石墨烯担载的磷酸银为前体,以载体为还原剂,合成了石墨烯担载的银粒子。并将此材料用于葡萄糖电化学氧化,在较低的氧化电压下获得了较高的催化活性。微波辅助合成了石墨烯担载的钯纳米粒子,其在微波辅助条件下,催化异佛尔酮加氢生成3,3,5-三甲基环己酮,获得了较高的转化率和选择性。
     (4)合成了具有特定形貌的磷酸镍/氧化石墨和磷酸镍/石墨烯复合材料,考察了石墨烯骨架上的含氧基团对材料自组装的影响。进一步合成了磷化镍/石墨烯纳米复合材料。结果表明,具有特定结构的磷化镍/石墨烯,具有较高的电化学氧化甲醇的催化性能。采用类似的方法合成了磷化铁/石墨烯复合材料,并将其用于催化F-T合成反应,获得了较高的活性。
Graphene has good electrical conductivity, large specific surface area, whose surface is easily functionalized with acid and alkali. The graphene based materials are considered to be as a kind of very good nonmetallic catalysts and substrate. In this thesis, we design and synthesize a series of graphene-based materials for the oxidation, reduction reactions and electrochemical catalytic field. They showed higher catalytic activity and. the results are summarized as follow:
     (1) We report an efficient, highly selective, and low temperature graphene-catalyzed reaction process for one-step oxidation of benzene to phenol with hydrogen peroxide as the oxidant. The conversion of benzene reaches18%, with phenol being the sole product. The catalyst was reusable. It was concluded that the moderate H2O2activation rate and good benzene adsorption ability over the oxidation reaction are responsible for the outstanding catalytic performance.
     (2) Cobalt phthalocyanine/graphene oxide (CoPc-GO) and cobalt phthalocyanine/graphene (CoPc-G) layers were prepared via a simple solvent evaporation method driven by the electronic interaction between cobalt phthalocyanine and graphene oxide. The interaction between cobalt phthalocyanine and graphene oxide has been studied in detail by various methods. The result suggests that the interaction is complicated two-way process including the transfer of electron from the graphitic domain to the adsorbed cobalt phthalocyanine, and a feedback from the Co ions through the ligand-like attacking to oxygen functional groups of graphene oxide. The obtained structural hybrid materials have potential in the electrochemical detection of the compounded medicine. The CoPc-G modified glassy electrode showed excellent response to the electro-oxidation of dopamine.
     (3) Graphene nanosheets decorated with gourd-shaped Ag nanoparticles (GAg) were prepared from the precursor silver phosphate-graphene oxide nanocomposite (GOAgPO) by original substrate self-generated reduction methods. The material was studied for electrochemical oxidation of glucose in alkaline solution. GAg showed excellent activity at low peak potential. Graphene-supported Pd nanoparticles were prepared by a microwave-assisted reduction approach. The obtained Pd/G can be very effectively coupled to the microwave field, making it a high-performance catalyst for microwave-assisted selective hydrogenation of isophorone at low temperatures.
     (4) The nickel phosphide graphene nanomaterial (NiPG) was obtained by H2calcination the specific morphology nickel phosphates on graphene oxide (NiPOGO) and graphene (NiPOG) substrate, respectively which were synthesized by one-pot hydrothermal synthesis method. The obtained different structure of nickel phosphates in the same way depended on the influence of different kinds of oxygen-containing groups on graphene substrate. The substrate can also affect the particle size and distribution of nickel phosphates nanoparticles. These materials were employed to be as catalysts for electrochemical oxidation of methanol and the NiPG exhibited high activity. The iron phosphide graphene nanomaterial (FePG) was also obtained by the same method. The Fischer Tropsch Synthesis (FTS) reaction has been selected as model reaction for evaluating FePG.
引文
[1]EMSLEY J. Chemistry of the Elements,1st Edition-Greenwood,Nn, Earnshaw,A [J]. New Sci, 1984,103(1423):41-2.
    [2]LI G X, LI Y L, LIU H B, et al. Architecture of graphdiyne nanoscale films [J]. Chemical Communications,2010,46(19):3256-8.
    [3]FRACKOWIAK E, BEGUIN F. Carbon materials for the electrochemical storage of energy in capacitors [J]. Carbon,2001,39(6):937-50.
    [4]LEE J, KIM J, HYEON T. Recent progress in the synthesis of porous carbon materials [J]. Adv Mater,2006,18(16):2073-94.
    [5]GEIM A K, NOVOSELOV K S. The rise of graphene [J]. Nature Materials,2007,6(3):183-91.
    [6]NOVOSELOV K S, GEIM A K, MOROZOV S V, et al. Electric field effect in atomically thin carbon films [J]. Science,2004,306(5696):666-9.
    [7]FU Q. Progress in graphene chemistry [J]. Csb,2009,54(18):2657.
    [8]LEE C, WEI X D, KYSAR J W, et al. Measurement of the elastic properties and intrinsic strength of monolayer graphene [J]. Science,2008,321(5887):385-8.
    [9]STOLLER M D, PARK S J, ZHU Y W, et al. Graphene-Based Ullracapacitors [J]. Nano Lett, 2008,8(10):3498-502.
    [10]BALANDIN A A, GHOSH S, BAO W Z, et al. Superior thermal conductivity of single-layer graphene [J]. Nano Lett,2008,8(3):902-7.
    [11]PARK S; RUOFF R S. Chemical methods for the production of graphenes [J]. Nat Nanotechnol, 2009,4(4):217-24.
    [12]REINA A, JIA X T., HO J, et al. Large Area, Few-Layer Graphene Films on Arbitrary Substrates by Chemical Vapor Deposition [J]. Nano Lett,2009,9(1):30-5.
    [13]EIZENBERG M, BLAKELY J M. Carbon Monolayer Phase Condensation on Ni(111) [J]. Surf Sci,1979,82(1):228-36.
    [14]LI X S, CAI W W, AN J H, et al. Large-Area Synthesis of High-Quality and Uniform Graphene Films on Copper Foils [J]. Science,2009,324(5932):1312-4.
    [15]DERVISHI E, LI Z, WATANABE F, et al. Large-scale graphene production by RF-cCVD method [J]. Chemical Communications,2009,27):4061-3.
    116] NANDAMURI G, ROUMIMOV S, SOLANKI R. Chemical vapor deposition of graphene films [J]. Nanotechnology,2010,21(14):
    [17]SRIVASTAVA A, GALANDE C, CI L, et al. Novel Liquid Precursor-Based Facile Synthesis of Large-Area Continuous, Single, and Few-Layer Graphene Films [J]. Chem Mater,2010, 22(11):3457-61.
    [18]SI Y, SAMULSKI E T. Synthesis of water soluble graphene [J]. Nano Lett,2008,8(6): 1679-82.
    [19]LI D, MULLER M B, GILJE S, et al. Processable aqueous dispersions of graphene nanosheets [J]. Nat Nanotechnol,2008,3(2):101-5.
    [20]HUMMERS W S, OFFEMAN R E. Preparation of Graphitic Oxide [J]. J Am Chem Soc,1958, 80(6):1339-.
    [21]LOMEDA J R, DOYLE C D, KOSYNKIN D V, et al. Diazonium Functionalization of Surfactant-Wrapped Chemically Converted Graphene Sheets [J]. J Am Chem Soc,2008, 130(48):16201-6.
    [22]JEONG H K, LEE Y P, LAHAYE R J W E, et al. Evidence of graphitic AB stacking order of graphite oxides [J]. J Am Chem Soc,2008,130(4):1362-6.
    [23]PARK S, AN J H, JUNG I W, et al. Colloidal Suspensions of Highly Reduced Graphene Oxide in a Wide Variety of Organic Solvents [J]. Nano Lett,2009,9(4):1593-7.
    [24]CHEN H, MULLER M B, GILMORE K J, et al. Mechanically strong, electrically conductive, and biocompatible graphene paper [J]. Adv Mater,2008,20(18):3557-+.
    [25]TUNG V C, ALLEN M J, YANG Y, et al. High-throughput solution processing of large-scale graphene [J]. Nat Nanotechnol,2009,4(1):25-9.
    [26]XU Y X, BAI H, LU G W, et al. Flexible graphene films via the filtration of water-soluble noncovalent functionalized graphene sheets [J]. J Am Chem Soc,2008,130(18):5856-+.
    [27]WANG H L, ROBINSON J T, LI X L, et al. Solvothermal Reduction of Chemically Exfoliated Graphene Sheets [J]. J Am Chem Soc,2009,131(29):9910-+.
    [28]WANG H, ROBINSON J T, LI X, et al. Solvothermal Reduction of Chemically Exfoliated Graphene Sheets [J]. J Am Chem Soc,2009,131(29):9910-+.
    [29]KANG S M, PARK S, KIM D, et al. Simultaneous Reduction and Surface Functionalization of Graphene Oxide by Mussel-Inspired Chemistry [J]. Advanced Functional Materials,2011,21(1): 108-12.
    [30]GAO W, ALEMANY L B, CI L, et al. New insights into the structure and reduction of graphite oxide [J]. Nat Chem,2009,1(5):403-8.
    [31]ROBINSON J T, PERKINS F K, SNOW E S, et al. Reduced Graphene Oxide Molecular Sensors [J]. Nano Lett,2008,8(10):3137-40.
    [32]LONG D, LI W, LING L, et al. Preparation of Nitrogen-Doped Graphene Sheets by a Combined Chemical and Hydrothermal Reduction of Graphene Oxide [J]. Langmuir,2010, 26(20):16096-102.
    [33]FAN Z-J, KAI W, YAN J, et al. Facile Synthesis of Graphene Nanosheets via Fe Reduction of Exfoliated Graphite Oxide [J]. Acs Nano,2011,5(1):191-8.
    [34]FAN Z, WANG K, WEI T, et al. An environmentally friendly and efficient route for the reduction of graphene oxide by aluminum powder [J]. Carbon,2010,48(5):1686-9.
    [35]COMPTON O C, DIKIN D A, PUTZ K W, et al. Electrically Conductive "Alkylated" Graphene Paper via Chemical Reduction of Amine-Functionalized Graphene Oxide Paper [J]. Adv Mater, 2010,22(8):892-+.
    [36]CHEN W, YAN L, BANGAL P R. Chemical Reduction of Graphene Oxide to Graphene by Sulfur-Containing Compounds [J]. J Phys Chem C,2010,114(47):19885-90.
    [37]ZHOU T, CHEN F, LIU K, et al. A simple and efficient method to prepare graphene by reduction of graphite oxide with sodium hydrosulfite [J]. Nanotechnology,2011,22(4):
    [38]WAKELAND S, MARTINEZ R, GREY J K, et al. Production of graphene from graphite oxide using urea as expansion-reduction agent [J]. Carbon,2010,48(12):3463-70.
    [39]FERNANDEZ-MERINO M J, GUARDIA L, PAREDES J I, et al. Vitamin C Is an Ideal Substitute for Hydrazine in the Reduction of Graphene Oxide Suspensions [J]. J Phys Chem C, 2010,114(14):6426-32.
    [40]LIU J, FU S, YUAN B, et al. Toward a Universal "Adhesive Nanosheet" for the Assembly of Multiple Nanoparticles Based on a Protein-Induced Reduction/Decoration of Graphene Oxide [J]. J Am Chan Soc,2010,132(21):7279-+.
    [41]AKHAVAN O, ABDOLAHAD M, ESFANDIAR A, et al. Photodegradation of Graphene Oxide Sheets by TiO2 Nanoparticles after a Photocatalytic Reduction [J]. J Phys Chem C,2010, 114(30):12955-9.
    [42]WILLIAMS G, SEGER B, KAMAT P V. TiO2-graphene nanocomposiles. UV-assisted photocatalytic reduction of graphene oxide [J]. Acs Nano,2008,2(7):1487-91.
    [43]CHEN W, YAN L, BANGAL P R. Preparation of graphene by the rapid and mild thermal reduction of graphene oxide induced by microwaves [J]. Carbon,2010,48(4):1146-52.
    [44]COTE L J, CRUZ-SILVA R, HUANG J. Flash Reduction and Patterning of Graphite Oxide and Its Polymer Composite [J]. J Am Chem Soc,2009,131(31):11027-32.
    [45]SOKOLOV D A, SHEPPERD K R, ORLANDO T M. Formation of Graphene Features from Direct Laser-Induced Reduction of Graphite Oxide [J]. Journal of Physical Chemistry Letters, 2010,1(18):2633-6.
    [46]BARAKET M, WALTON S G, WEI Z, et al. Reduction of graphene oxide by electron beam generated plasmas produced in methane/argon mixtures [J]. Carbon,2010,48(12):3382-90.
    [47]YANG D, VELAMAKANNI A, BOZOKLU G, et al. Chemical analysis of graphene oxide films after heat and chemical treatments by X-ray photoelectron and Micro-Raman speclroscopy [J]. Carbon,2009,47(1):145-52.
    [48]MATTEVI C, EDA G, AGNOLI S, et al. Evolution of Electrical, Chemical, and Structural Properties of Transparent and Conducting Chemically Derived Graphene Thin Films[J]. Advanced Functional Materials,2009,19(16):2577-83.
    [49]VOLLMER A, FENG X L, WANG X, et al. Electronic and structural properties of graphene-based transparent and conductive thin film electrodes [J]. Applied Physics a-Matcrials Science & Processing,2009,94(1):1-4.
    [50]MAO S, PU H H, CHEN J H. Graphene oxide and its reduction:modeling and experimental progress[J]. Rsc Adv,2012.2(7):2643-62.
    [51]SHIVARAMAN S, BARTON R A, YU X, ct al. Free-Standing Epitaxial Graphene[J]. Nano Lett,2009,9(9):3100-5.
    |52] SUBRAHMANYAM K S. PANCHAKARLA L S, GOVINDARAJ A, et al. Simple Method of Preparing Graphene Flakes by an Arc-Discharge Method [J]. J Phys Chem C,2009,113(11): 4257-9.
    [53]DATO A, RADMILOVIC V. LEE Z, et al. Substrate-free gas-phase synthesis of graphene sheets [J]. Nano Lett,2008,8(7):2012-6.
    [54]LOTYA M, HERNANDEZ Y, KING P J, et al. Liquid Phase Production of Graphene by Exfoliation of Graphite in Surfactant/Water Solutions [J]. J Am Chem Soc,2009,131(10): 3611-20.
    [55]LOTYA M, KING P J, KHAN U, et al. High-Concentration, Surfactant-Stabilized Graphene Dispersions [J]. Acs Nano,2010,4(6):3155-62.
    [56]JIAO L, WANG X, DIANKOV G, et al. Facile synthesis of high-quality graphene nanoribbons [J]. Nat Nanotechnol,2010,5(5):321-5.
    [57]YANG X, DOU X, ROUHANIPOUR A, et al. Two-dimensional graphene nanoribbons [J]. J Am Chem Soc,2008,130(13):4216-+.
    [58]YAN X, CUI X, LI B, et al. Large, Solution-Processable Graphene Quantum Dots as Light Absorbers for Photovoltaics [J]. Nano Lett,2010,10(5):1869-73.
    [59]ZHOU D, CUI Y, HAN B H. Graphene-based hybrid materials and their applications in energy storage and conversion [J]. Chinese Sci Bull,2012,57(23):2983-94.
    [60]XU C, WANG X, ZHU J. Graphene-Metal Particle Nanocomposites [J]. J Phys Chem C,2008, 112(50):19841-5.
    [61]HASSAN M A H, ABDELSAYED V, KHDER A E R S, et al. Microwave synthesis of graphene sheets supporting metal nanocrystals in aqueous and organic media [J]. J Mater Chem, 2009,19(23):3832-7.
    [62]YANG S, FENG X, WANG L, et al. Graphene-Based Nanosheets with a Sandwich Structure [J]. Angew Chem Int Edit,2010,49(28):4795-9.
    [63]GUO S J, DONG S J. Graphene nanosheet:synthesis, molecular engineering, thin film, hybrids, and energy and analytical applications [J]. Chem Soc Rev,2011,40(5):2644-72.
    [64]YU D, DAI L. Self-Assembled Graphene/Carbon Nanotube Hybrid Films for Supercapacitors [J]. Journal of Physical Chemistry Letters,2010,1(2):467-70.
    [65]FAN Z, YAN J, ZHI L, et al. A Three-Dimensional Carbon Nanotube/Graphene Sandwich and Its Application as Electrode in Supercapacitors [J]. Adv Mater,2010,22(33):3723-+.
    [66]CAO A, LIU Z, CHU S, et al. A Facile One-step Method to Produce Graphene-CdS Quantum Dot Nanocomposites as Promising Optoelectronic Materials [J]. Adv Mater,2010,22(1):103-+.
    [67]HUANG X, QI X Y, BOEY F, et al. Graphene-based composites [J]. Chem Soc Rev,2012, 41(2):666-86.
    [68]ZHANG X Q, FENG Y Y, TANG S D, et al. Preparation of a graphene oxide-phthalocyanine hybrid through strong pi-pi interactions [J]. Carbon,2010,48(1).211-6.
    [69]XU Y F, LIU Z B, ZHANG X L, et al. A Graphene Hybrid Material Covalently Functionalized with Porphyrin:Synthesis and Optical Limiting Property [J]. Adv Mater,2009,21(12):1275-+.
    [70]WANG W, GUO S R, PENCHEV M, et al. Hybrid Low Resistance Ultracapacitor Electrodes Based on 1-Pyrenebutyric Acid Functionalized Centimeter-Scale Graphene Sheets [J]. J Nanosci Nanotechno,2012:12(9):6913-20.
    [71]WANG H B, MAIYALAGAN T, WANG X. Review on Recent Progress in Nitrogen-Doped Graphene:Synthesis. Characterization, and Its Potential Applications [J]. Acs Catal,2012.2(5): 781-94.
    [72]GUO P, SONG H, CHEN X. Electrochemical performance of graphene nanosheets as anode material for lithium-ion batteries [J]. Electrochem Commun,2009,11(6):1320-4.
    [73]ZHANG L-S, JIANG L-Y, YAN H-J, et al. Mono dispersed SnO2 nanoparticles on both sides of single layer graphene sheets as anode materials in Li-ion batteries [J]. J Mater Chem,2010, 20(26):5462-7.
    [74]YANG S B, FENG X L, IVANOVICI S, et al. Fabrication of Graphene-Encapsulated Oxide Nanoparticles:Towards High-Performance Anode Materials for Lithium Storage [J]. Angew Chem Int Edit,2010,49(45):8408-11.
    [75]YOO E, KIM J, HOSONO E, et al. Large reversible Li storage of graphene nanosheet families for use in rechargeable lithium ion batteries [J]. Nano Lett,2008,8(8):2277-82.
    [76]GUO S, DONG S, WANG E. Three-Dimensional Pt-on-Pd Bimetallic Nanodendrites Supported on Graphene Nanosheet:Facile Synthesis and Used as an Advanced Nanoelectrocatalyst for Methanol Oxidation [J]. Acs Nano,2010,4(1):547-55.
    [77]QU L, LIU Y, BAEK J-B, et al. Nitrogen-Doped Graphene as Efficient Metal-Free Electrocatalyst for Oxygen Reduction in Fuel Cells [J]. Acs Nano,2010,4(3):1321-6.
    [78]LIU C, ALWARAPPAN S, CHEN Z, et al. Membraneless enzymatic biofuel cells based on graphene nanosheets [J]. Biosens Bioelectron,2010,25(7):1829-33.
    [79]WANG Y, CHEN X H, ZHONG Y L, ct al. Large area, continuous, few-layered graphene as anodes in organic photovoltaic devices [J]. Appl Phys Lett,2009,95(6):
    [80]YU D, YANG Y, DURSTOCK M, et al. Soluble P3HT-Grafted Graphene for Efficient Bilayer-Heterojunction Photovoltaic Devices [J]. Acs Nano,2010,4(10):5633-40.
    [81]LI S S, TU K H, LIN C C, et al. Solution-Processable Graphene Oxide as an Efficient Hole Transport Layer in Polymer Solar Cells [J]. Acs Nano,2010,4(6):3169-74.
    [82]WOJCIK A, KAMAT P V. Reduced Graphene Oxide and Porphyrin. An Interactive Affair in 2-D [J]. Acs Nano,2010,4(11):6697-706.
    [83]GUO C X, YANG H B, SHENG Z M, et al. Layered Graphenc/Quantum Dots for Photovoltaic Devices [J]. Angew Chem Int Edit,2010,49(17):3014-7.
    [84]PAN D, WANG S, ZHAO B, et al. Li Storage Properties of Disordered Graphene Nanosheets [J]. Chem Mater,2009,21(14):3136-42.
    [85]DU D, ZOU Z, SHIN Y, et al. Sensitive Immunoscnsor for Cancer Biomarker Based on Dual Signal Amplification Strategy of Graphene Sheets and Multienzyme Funclionalized Carbon Nanospheres [J]. Anal Chem,2010,82(7):2989-95.
    [86]GUO C X. LU Z S, LEI Y, et al. Ionic liquid-graphene composite for ultratracc explosive trinitrotoluene detection [J]. Electroclicm Comniun,2010.12(9):1237-40.
    [87]SCHEDIN F, GEIM A K, MOROZOV S V, et al. Detection of individual gas molecules adsorbed on graphene [J]. Nature Materials,2007,6(9):652-5.
    [88]DONG X, SHI Y. HUANG W, et al. Electrical Detection of DNA Hybridization with Single-Base Specificity Using Transistors Based on CVD-Grown Graphene Sheets[J]. Adv Mater,2010,22(14):1649-+.
    [89]LU C-H, YANG H-H, ZHU C-L, et al. A Graphene Platform for Sensing Biomolecules [J]. Angew Chem Int Edit,2009,48(26):4785-7.
    [90]LIU F, CHOI J Y. SEO T S. Graphene oxide arrays for detecting specific DNA hybridization by fluorescence resonance energy transfer [J]. Biosens Bioelectron,2010,25(10):2361-5.
    [91]SHANG N G, PAPAKONSTANTINOU P, MCMULLAN M, et al. Catalyst-Free Efficient Growth, Orientation and Biosensing Properties of Multilayer Graphene Nanoflake Films with Sharp Edge Planes [J]. Advanced Functional Materials,2008,18(21):3506-14.
    [92]LEE D H, KIM J E, HAN T H, et al. Versatile Carbon Hybrid Films Composed of Vertical Carbon Nanotubes Grown on Mechanically Compliant Graphene Films [J]. Adv Mater,2010, 22(11):1247-+.
    [93]SU D S, ZHANG J, FRANK B, et al. Metal-Free Heterogeneous Catalysis for Sustainable Chemistry [J]. Chemsuschem,2010,3(2):169-80.
    [94]SHARGHI H, SARVARI M H. Graphite as an efficient catalyst for one-step conversion of aldehydes into nitriles in dry media [J]. Synthesis-Stuttgart,2003,2):243-6.
    [95]FOZOONI S, TIKDARI A M. Microwave-assisted graphite-support synthesis of imidazolones [J]. Catal Lett,2008,120(3-4):303-6.
    [96]SEREDA G A, RAJPARA V B, SLABA R L. The synthetic potential of graphite-catalyzed alkylation [J]. Tetrahedron,2007,63(34):8351-7.
    [97]LARSEN J W, FREUND M, KIM K Y, et al. Mechanism of the carbon catalyzed reduction of nitrobenzene by hydrazine [J]. Carbon,2000,38(5):655-61.
    [98]BUTLER T, SWIFT E, LIPSHUTZ B H. Heterogeneous catalysis with nickel-on-graphite (Ni/C-g) [J]. Organic & biomolecular chemistry,2008,6(1):19-25.
    [99]EVANS E L, GRIFFITH.RJ, THOMAS J M. KINETICS OF SINGLE-LAYER GRAPHITE OXIDATION-EVALUATION BY ELECTRON MICROSCOPY [J]. Science,1971, 171(3967):174-&.
    [100]ZHANG J, SU D, ZHANG A, et al. Nanocarbon as robust catalyst:Mechanistic insight into carbon-mediated catalysis [J]. Angew Chem Int Edit,2007,46(38):7319-23.
    [101]DELGADO J J, SU D S, REBMANN G, et al. Immobilized carbon nanofibers as industrial catalyst for ODH reactions [J]. J Catal,2006,244(1):126-9.
    [102]ZHANG J, WANG X, SU Q, et al. Metal-Free Phenanthrenequinone Cyclotrimer as an Effective Heterogeneous Catalyst [J]. J Am Chem Soc,2009,131(32):11296-+.
    [103]ARRIGO R, HAEVECKER M, SCHLOEGL R, et al. Dynamic surface rearrangement and thermal stability of nitrogen functional groups on carbon nanotubes [J]. Chemical Communications,2008,40):4891-3.
    [104]ZHANG J, SU D S, ZHANG A H, et al. Nanocarbon as robust catalyst:Mechanistic insight into carbon-mediated catalysis [J]. Angew Chem Int Edit,2007,46(38):7319-23.
    [105]ZHANG J, LIU X, BLUME R, et al. Surface-modified carbon nanotubes catalyze oxidative dehydrogenation of n-butane [J]. Science,2008,322(5898):73-7.
    [106]FRANK B, ZHANG J, BLUME R, et al. Heteroatoms Increase the Selectivity in Oxidative Dehydrogenation Reactions on Nanocarbons [J]. Angew Chem Int Edit,2009,48(37):6913-7.
    [107]VANVEEN J A R, COLIJN H A, VANBAAR J F. ON THE EFFECT OF A HEAT-TREATMENT ON THE STRUCTURE OF CARBON-SUPPORTED METALLOPORPHYRINS AND PHTHALOCYANINES [J]. Electrochim Acta,1988,33(6): 801-4.
    [108]GOETTMANN F, THOMAS A, ANTONIETTI M. Metal-free activation CO2 by mesoporous graphitic carbon nitride [J]. Angew Chem Int Edit,2007,46(15):2717-20.
    [109]WANG X, MAEDA K, THOMAS A, et al. A metal-free polymeric photocatalyst for hydrogen production from water under visible light [J]. Nature Materials,2009,8(1):76-80.
    [110]BEGIN D, ULRICH G, AMADOU J, et al. Oxidative dehydrogenation of 9,10-dihydroanthracene using multi-walled carbon nanotubes [J]. J Mol Catal a-Chem,2009, 302(1-2):119-23.
    [111]VILLA A, TESSONNIER J-P, MAJOULET O, et al. Amino-functionalized carbon nanotubes as solid basic catalysts for the transesterification of triglycerides [J]. Chemical Communications,2009,29):4405-7.
    [112]ZHU J, HOLMEN A, CHEN D. Carbon Nanomatcrials in Catalysis:Proton Affinity, Chemical and Electronic Properties, and their Catalytic Consequences [J]. Chemcatchem,2013,5(2): 378-401.
    [113]CHIZARI K, DENEUVE A, ERSEN O, et al. Nitrogen-Doped Carbon Nanotubes as a Highly Active Metal-Free Catalyst for Selective Oxidation [J]. Chemsuschem,2012,5(1):102-8.
    [114]GALVIS H M T, BITTER J H, KHARE C B, et al. Supported Iron Nanoparticles as Catalysts for Sustainable Production of Lower Olefins [J]. Science,2012,335(6070):835-8.
    [115]MACHADO B F, SERP P. Graphene-based materials for catalysis [J]. Catal Sci Technol,2012, 2(1):54-75.
    [116]FRANK B, BLUME R, RINALDI A, et al. Oxygen Insertion Catalysis by sp(2) Carbon [J]. Angew Chem Inl Edit,2011,50(43):10226-30.
    [117]LONG Y, ZHANG C C, WANG X X, et al. Oxidation of SO2 to SO3 catalyzed by graphenc oxide foams [J]. J Mater Chem,2011,21(36):13934-41.
    [118]DREYER D R, JIA H P, BIELAWSKI C W. Graphene Oxide:A Convenient Carbocatalyst for Facilitating Oxidation and Hydration Reactions [J]. Angew Chem Int Edit,2010,49(38): 6813-6.
    [119]JIA H P, DREYER D R, BIELAWSKI C W. Graphite Oxide as an Auto-Tandem Oxidation-Hydration-Aldol Coupling Catalyst [J]. Advanced Synthesis & Catalysis,2011, 353(4):528-32.
    [120]JIA H P, DREYER D R, BIELAWSKI C W. C-H oxidation using graphite oxide [J]. Tetrahedron,2011,67(24):4431-4.
    [121]YEH T F, SYU J M, CHENG C, ct al. Graphite Oxide as a Photocatalyst for Hydrogen Production from Water [J]. Advanced Functional Materials,2010,20(14):2255-62.
    [122]SONG Y, QU K, ZHAO C, et al. Graphene Oxide:Intrinsic Peroxidasc Catalytic Activity and Its Application to Glucose Detection [J]. Adv Mater,2010,22(19):2206-+.
    [123]JI J Y, ZHANG G H, CHEN H Y, et al. Sulfonated graphene as water-tolerant solid acid catalyst [J]. Chemical Science,2011,2(3):484-7.
    [124]GAO Y J, MA D, WANG C L, et al. Reduced graphene oxide as a catalyst for hydrogenation of nitrobenzene at room temperature [J]. Chemical Communications.2011,47(8):2432-4.
    [125]SCHEUERMANN G M, RUMI L, STEURER P, et al. Palladium Nanoparticles on Graphite Oxide and Its Functionalized Graphene Derivatives as Highly Active Catalysts for the Suzuki-Miyaura Coupling Reaction [J]. J Am Chem Soc,2009,131(23):8262-70.
    [126]LI Y, FAN X B, QI J J, et al. Palladium nanoparticle-graphene hybrids as active catalysts for the Suzuki reaction [J]. Nano Res,2010,3(6):429-37.
    [127]SCHMIDT R J. Industrial catalytic processes-phenol production [J]. Appl Catal a-Gen,2005, 280(1):89-103.
    [128]NOTTE P P. The AlphOx((TM)) process or the one-step hydroxylation of benzene into phenol by nitrous oxide. Understanding and tuning the ZSM-5 catalyst activities [J]. Top Catal,2000, 13(4):387-94.
    [129]NIWA S, ESWARAMOORTHY M, NAIR J, et al. A one-step conversion of benzene to phenol with a palladium membrane [J]. Science,2002,295(5552):105-7.
    [130]CHEN J, GAO S, XU J. Direct hydroxylation of benzene to phenol over a new vanadium-substituted phosphomolybdate as a solid catalyst [J]. Catal Commun,2008,9(5): 728-33.
    [131]BIANCHI D, BALDUCCI L, BORTOLO R, et al. Oxidation of benzeene to phenol with hydrogen peroxide catalyzed by a modified titanium silicalite (TS-1B) [J]. Advanced Synthesis & Catalysis,2007,349(6):979-86.
    [132]BALDUCCI L, BIANCHI D, BORTOLO R, et al. Direct oxidation of benzene to phenol with hydrogen peroxide over a modified titanium silicalite [J]. Angew Chem Int Edit,2003,42(40): 4937-40.
    [133]THUAN DUC B, KIMURA A, IKEDA S, et al. Determination of Oxygen Sources for Oxidation of Benzene on TiO2 Photocatalysts in Aqueous Solutions Containing Molecular Oxygen [J]. J Am Chem Soc,2010,132(24):8453-8.
    [134]CHEN X, ZHANG J, FU X, et al. Fe-g-C3N4-Catalyzed Oxidation of Benzene to Phenol Using Hydrogen Peroxide and Visible Light [J]. J Am Chem Soc,2009,131(33):11658-+.
    [135]TANEV P T, CHIBWE M, PINNAVAIA T J. TITANIUM-CONTAINING MESOPOROUS MOLECULAR-SIEVES FOR CATALYTIC-OXIDATION OF AROMATIC-COMPOUNDS [J]. Nature,1994,368(6469):321-3.
    [136]NEIDIG M L, HIRSEKORN K F. Insight into contributions to phenol selectivity in the solution oxidation of benzene to phenol with H2O2 [J]. Catal Commun,2011,12(6):480-4.
    [137]JIA H-P, DREYER D R, BIELAWSKI C W. Graphite Oxide as an Auto-Tandem Oxidation-Hydration-Aldol Coupling Catalyst [J]. Advanced Synthesis & Catalysis,2011. 353(4):528-32.
    [138]DREYER D R, JIA H-P, TODD A D, et al. Graphite oxide:a selective and highly efficient oxidant of thiols and sulfides [J]. Organic & biomolecular chemistry,2011,9(21):7292-5.
    [139]DREYER D R, BIELAWSKI C W. Carbocatalysis:Heterogeneous carbons finding utility in synthetic chemistry [J]. Chemical Science,2011,2(7):1233-40.
    [140]CHAUDHARI K, SRINIVAS D, RATNASAMY P. Reactive oxygen species in titanosilicates TS-1 and TiMCM-41:An in situ EPR spectroscopic study [J]. J Catal,2001,203(1):25-32.
    [141]YOON C W, HIRSEKORN K F, NEIDIG M L, et al. Mechanism of the Decomposition of Aqueous Hydrogen Peroxide over Heterogeneous TiSBA15 and TS-1 Selective Oxidation Catalysts:Insights from Spectroscopic and Density Functional Theory Studies [J]. Acs Catal, 2011,1(12):1665-78.
    [142]REY A, ZAZO J A, CASAS J A, et al. Influence of the structural and surface characteristics of activated carbon on the catalytic decomposition of hydrogen peroxide [J]. Appl Catal a-Gen, 2011,402(1-2):146-55.
    [143]SI Y C, SAMULSKI E T. Exfoliated Graphene Separated by Platinum Nanoparticles [J]. Chem Mater,2008,20(21):6792-7.
    [144]YEH W-L, KUO Y-R, CHENG S-H. Voltammetry and flow-injection amperometry for indirect determination of dopamine [J]. Electrochem Commun,2008,10(1):66-70.
    [145]JIA Z, LIU J, SHEN Y. Fabrication of a template-synthesized gold nanorod-modified electrode for the detection of dopamine in the presence of ascorbic acid [J]. Electrochem Commun,2007, 9(12):2739-43.
    [146]JIA N, WANG Z, YANG G, et al. Electrochemical properties of ordered mesoporous carbon and its electroanalytical application for selective determination of dopamine [J]. Electrochem Commun,2007,9(2):233-8.
    [147]JIANG L Y, LIU C Y, JIANG L P, et al. A chitosan-multiwall carbon nanotube modified electrode for simultaneous detection of dopamine and ascorbic acid [J]. Analytical Sciences, 2004,20(7):1055-9.
    [148]FUJISHIMA A, RAO T N, POPA E, et al. Electroanalysis of dopamine and NADH at conductive diamond electrodes [J]. J Electroanal Chem,1999,473(1-2):179-85.
    [149]RAMESH P, SURESH G S, SAMPATH S. Selective determination of dopamine using unmodified, exfoliated graphite electrodes[J]. J Electroanal Chem,2004,561(1-2):173-80.
    [150]WANG Y, LI Y, TANG L, et al. Application of graphene-modified electrode for selective detection of dopamine [J]. Electrochem Commun,2009,11(4):889-92.
    [151]ALWARAPPAN S, ERDEM A, LIU C, et al. Probing the Electrochemical Properties of Graphene Nanosheets for Bioscnsing Applications[J]. J Phys Chem C,2009,113(20):8853-7.
    [152]MALLESHA M, MANJUNATHA R, NETHRAVATHI C, et al. Funclionalized-graphene modified graphite electrode for the selective determination of dopamine in presence of uric acid and ascorbic acid[J]. Bioelectrochemistry,2011,81(2):104-8.
    [153]HAUBNER K, MURAWSKI J, OLK P, et al. The Route to Functional Graphene Oxide [J]. Chemphyschem,2010,11(10):2131-9.
    [154]STANKOVICH S, PINER R D,NGUYEN S T, ct al. Synthesis and exfoliation of isocyanate-treated graphene oxide nanoplatclets [J]. Carbon.2006,44(15):3342-7.
    [155]MUGADZA T, NYOKONG T. Synthesis, characterization and application of monocarboxy-phthalocyanine-single walled carbon nanotube conjugates in electrocatalysis[J]. Polyhedron,2011,30(11):1820-9.
    [156]ALARCON-ANGELES G, PEREZ-LOPEZ B, PALOMAR-PARDAVE M, et al. Enhanced host-guest electrochemical recognition of dopamine using cyclodextrin in the presence of carbon nanotubes [J]. Carbon,2008,46(6):898-906.
    [157]HAWLEY M D, TATAWAWA.SV, PIEKARSK.S, et al. ELECTROCHEMICAL STUDIES OF OXIDATION PATHWAYS OF CATECHOLAMINES [J]. J Am Chem Soc,1967,89(2): 447-&.
    [158]RASSAEI L, SILLANPAA M, MARKEN F. Modified carbon nanoparticle-chitosan film electrodes:Physisorption versus chemisorption [J]. Electrochim Acta,2008,53(19):5732-8.
    [159]GEIM A K. Graphene:Status and Prospects [J]. Science,2009,324(5934):1530-4.
    [160]ALLEN M J, TUNG V C, KANER R B. Honeycomb Carbon:A Review of Graphene [J]. Chem Rev,2010,110(1):132-45.
    [161]GAO Y J, MA D, HU G, et al. Layered-Carbon-Stabilized Iron Oxide Nanostructures as Oxidation Catalysts [J]. Angew Chem Int Edit,2011,50(43):10236-40.
    [162]STANKOVICH S, DIKIN D A, PINER R D, et al. Synthesis of graphene-based nanosheets via chemical reduction of exfoliated graphite oxide [J]. Carbon,2007,45(7):1558-65.
    [163]HASSAN H M A, ABDELSAYED V, KHDER A E.R S, et al. Microwave synthesis of graphene sheets supporting metal nanocrystals in aqueous and organic media [J]. J Mater Chem,2009,19(23):3832-7.
    [164]PISAREK M, LUKASZEWSKI M, WINIAREK P, et al. Catalytic activity of Cr-or Co-modified Ni-based rapidly quenched alloys in the hydrogenation of isophorone [J]. Appl Catal a-Gen,2009,358(2):240-8.
    [165]PISAREK M, LUKASZEWSKI M, WINIAREK P, et al. Influence of Cr addition to Raney Ni catalyst on hydrogenation of isophorone [J]. Catal Commun,2008,10(2):213-6.
    [166]PISAREK M, LUKASZEWSKI M, WINIAREK P, et al. Selective catalytic hydrogenation of isophorone on Ni-Al alloy modified with Cr [J]. Mater Chem Phys,2009,114(2-3):774-9.
    [167]ZHAN E S, LI S, XU Y D, et al. Heterogeneous enantioselective hydrogenation of isophorone over proline modified Pd catalysts [J]. Catal Commun,2007,8(8):1239-43
    [168]FODOR M, TUNGLER A, VIDA L. Asymmetric hydrogenation of isophorone in the presence of (S)-proline:Revival of a 20 years old reaction [J]. Catal Today,2009,140(1-2):58-63.
    [169]FARKAS G, HEGEDUS L, TUNGLER A, et al. Effect of carbon support properties on enantioselective hydrogenation of isophorone over palladium catalysts modified with (-)-dihydroapovincaminic acid ethyl ester [J]. J Mol Catal a-Chem,2000,153(1-2):215-9.
    [170]MHADGUT S C, TOROK M. ESQUIBEL J, et al. Highly asymmetric heterogeneous catalytic hydrogenation of isophorone on proline modified base-supported palladium catalysts [J]. J Catal,2006,238(2):441-8.
    [171]SATO T, RODE C V, SATO O, et al. Hydrogenation of isophorone with noble metal catalysts in supercritical carbon dioxide [J]. Appl Catal B-Environ,2004,49(3):181-5.
    [172]MHADGUT S C, BUCSI I, TOROK M, et al. Sonochemical asymmetric hydrogenation of isophorone on proline modified Pd/Al2O3 catalysts [J]. Chemical Communications,2004,8): 984-5.
    [173]LICENCE P, KE J, SOKOLOVA M, et al. Chemical reactions in supercritical carbon dioxide: from laboratory to commercial plant [J]. Green Chem,2003,5(2):99-104.
    [174]HITZLER M G, SMAIL F R, ROSS S K, et al. Selective catalytic hydrogenation of organic compounds in supercritical fluids as a continuous process [J]. Org Process Res Dev,1998,2(3): 137-46.
    [175]PILLAI U R, SAHLE-DEMESSIE E. Hydrogenation of 4-oxoisophorone over a Pd/Al2O3 catalyst under supercritical CO2 medium [J]. Ind Eng Chem Res,2003,42(26):6688-96.
    [176]QUAN H, PARK S U, PARK J. Electrochemical oxidation of glucose on silver nanoparticle-modified composite electrodes [J]. Electrochim Acta,2010,55(7):2232-7.
    [177]LIU S, TIAN J Q, WANG L, et al. A simple route for preparation of highly stable CuO nanoparticles for nonenzymatic glucose detection [J]. Catal Sci Teclmol,2012,2(4); 813-7.
    [178]D'SOUZA F,ITO O. Supramolecular donor-acceptor hybrids of porphyrins/phthalocyanines with fullerencs/carbon nanotubes:electron transfer, sensing, switching, and catalytic applications [J]. Chemical Communications,2009,33):4913.
    [179]YAN X, LI Q, LI L-S. Formation and Stabilization of Palladium Nanoparticles on Colloidal Graphcne Quantum Dots [J]. J Am Chem Soc,2012,134(39):16095-8.
    [180]BRODIE B C. Ann Chim Phys,1860,59(466.
    [181]STAUDENMAIER L. Ber Dtsch Chem Gcs,1898,31 (1481.
    [182]TITELMAN G I, GELMAN V, BRON S, ct al. Carbon,2005,43(641.
    [183]BOUKHVALOV D W, KATSNELSON M I. J Am Chem Soc,2008,130(10697.
    [184]HUMMERS W S, OFFEMANN R E. J Am Chem Soc,1958,80(1339.
    [185]BOEHM H P, SCHOLZ W. Liebigs Ann Chem,1965,691(1.
    [186]LERF A, HE H Y, FORSTER M, et al. J Phys Chem B,1998,102(4477.
    [187]SCHNIEPP H C, LI J L, MCALLISTER M J, et al. J Phys Chem B,2006,110(8535.
    [188]GAO W, ALEMANY L B, Cl L J, et al. New insights into the structure and reduction of graphite oxide [J]. Nat Chem,2009,1(5):403-8.
    [189]LUO J Y, COTE L J, TUNG V C, et al. Graphenc Oxide Nanocolloids[J]. J Am Chem Soc, 2010,132(50):17667-9.
    [190]WANG H L, ROBINSON J T, DIANKOV G, et at. Nanocrystal Growth on Graphcne with Various Degrees of Oxidation [J]. J Am Chem Soc,2010,132(10):3270-+.
    [191]PETIT C, BANDOSZ T J. MOF-Graphite Oxide Composites:Combining the Uniqueness of Graphene Layers and Metal-Organic Frameworks [J]. Adv Mater,2009,21(46):4753-+.
    [192]CAI Y Y, LI H, DU B. et al. Ultrasensitive electrochemical immunoassay for BRCA1 using BMIM center dot BF4-coatcd SBA-15 as labels and functionalized graphenc as enhancer[J]. Biomatcrials,2011,32(8):2117-23.
    [193]L1 D, QIU L, WANG K, ct al. Growth of zeolite crystals with graphene oxide nanoshects [J]. Chemical Communications,2012.48(16):2249-51.
    [194]CHEN X. HE Y, ZHANG Q, ct al. Fabrication of sandwich-structured ZnO/reduced graphite oxide composite and its pholocatalytic properties [J]. J Mater Sci,2009,45(4):953-60.
    [195]YANG J, MU D, GAO Y, et al. Cobalt phthalocyanine-graphene complex for clectro-catalytic oxidation of dopamine[J]. J Nat Gas Chem,2012.21(3):265-9.
    [196]GAO Y, MA D, HU G, ct al. Layered-Carbon-Stabilized Iron Oxide Nanostructures as Oxidation Catalysts[J]. Angew Chem lnt Edit,2011,50(43):10236-40.
    [197]TOEBES M L, VAN DILLEN J A, DE JONG Y P. Synthesis of supported palladium catalysts [J]. J Mol Catal a-Chem,2001,173(1-2):75-98.
    [198]WILDGOOSE G G, BANKS C E, COMPTON R G. Metal nanopartictes and related materials supported on carbon nanotubes:Methods and applications [J]. Small,2006,2(2):182-93.
    [199]GUILLOU N, GAO Q, FORSTER P M, et al. Nickel(Ⅱ) phosphate VSB-5:A magnetic nanoporous hydrogenation catalyst with 24-ring tunnels [J]. Angew Chem Int Edit,2001, 40(15):2831-4.
    [200]YU J, WANG A, TAN J, et al. Synthesis of novel nanotubular mesoporous nickel phosphates with high performance in epoxidation [J]. J Mater Chem,2008,18(30):3601.
    [201]TAN J, YANG J-H, LIU X, et al. Electrochemical oxidation of methanol on mesoporous nickel phosphates and Si-incorporated mesoporous nickel phosphates [J]. Electrochem Commun,2013,27:141-3.
    [202]YANG J, TAN J, YANG F, et al. Electro-oxidation of methanol on mesoporous nickel phosphate modified GCE [J]. Electrochem Commun,2012,23:13-6.
    [203]LU Y, WANG X L, MAI Y J, et al. Ni2P/Graphene Sheets as Anode Materials with Enhanced Electrochemical Properties versus Lithium [J]. J Phys Chem C,2012,116(42):22217-25.
    [204]DOU Y Y, LI G R, SONG J, et al. Nickel phosphide-embedded graphene as counter electrode for dye-sensitized solar cells [J]. Phys Chem Chem Phys,2012,14(4):1339-42.
    [205]SEO H R, CHO K S, LEE Y K. Formation mechanisms of Ni2P nanocrystals using XANES and EXAFS spectroscopy [J]. Mater Sci Eng B-Adv,2011,176(2):132-40.
    [206]CECILIA J A, INFANTES-MOLINA A, RODRIGUEZ-CASTELLON E, et al. A novel method for preparing an active nickel phosphide catalyst for HDS of dibenzothiophene [J]. J Catal,2009,263(1):4-15.
    [207]SAWHILL S, LAYMAN K, VANWYK D, et al. Thiophene hydrodesulfurization over nickel phosphide catalysts:effect of the precursor composition and support [J]. J Catal,2005,231(2): 300-13.
    [208]SCHULZ H. Short history and present trends of Fischer-Tropsch synthesis [J]. Appl. Catal, A: Gen.1999,186:3-12.
    [209]KHODAKOV A Y, CHU W, FONGARLAND P. Advances in the Development of Novel Cobalt Fischer-Tropsch Catalysts for Synthesis of Long-Chain Hydrocarbons and Clean Fuels [J]. Chem Rev,2007,107:1692-1744.
    [210]DAVIS B H. Fischer-Tropsch synthesis:relationship between iron catalyst composition and process variables [J]. Catal. Today,2003,84:83-98.
    [211]高恋,徐耀,侯博,等.介孔氧化硅球负载钴基催化剂在费托合成中的应用[J].化学学报,2008,66(16):1851-1856.
    [212]ZHAO H, ZHU Q, GAO Y, et al. Iron oxide nanoparticles supported on pyrolytic graphene oxide as model catalysts for Fischer Tropsch synthesis [J]. App. Cata. A:Gen,2013,456: 233-239.
    [213]DESMIT E, WECKHUYSEN B M. The renaissance of iron-based Fischcr-Tropsch synthesis: on the multifaceted catalyst deactivation behaviour [J]. Chem. Soc. Rev.,2008,37: 2758-2781.
    [214]HUMMEL A A, WILSON A P, DELGASS W N. Surface and bulk changes in iron nitride catalysts in H2/CO mixtures [J]. J. Catal.,1988,113:236-249.
    [215]SONG X, DING Y, CHEN M, et al. Synthesis of Mixed Alcohols from CO Hydrogenation over Iron and Nickel Metal Phosphide Catalysts[J]. Chinese J. Catal.,2012,33:1938-1944
    [216]RAO C, SOOD A K, SUBRAHMANYAM K S, et al. Graphene:The New Two-Dimensional Nanomatcrial [J]. Angcw. Chem. Int. Edit.,2009,48:7752-7777.
    [217]YAND J H, SUN G, GAO Y, ct al. Direct catalytic oxidation of benzene to phenol over metal-free graphene-based catalyst [J]. Energ. Environ. Sci.,2013,6:793-798.
    [218]SCHEUERMANN G M, RUMI L, STEURER P, et al. Palladium Nanoparticles on Graphite Oxide and Its Functionalized Graphene Derivatives as Highly Active Catalysts for the Suzuki-Miyaura Coupling Reaction [J]. J. Am. Chem. Soc.,2009,131:8262-8270.
    [219]ZHANG Q, KANG J, WANG Y. Development of Novel Catalysts for Fischcr-Tropsch Synthesis:Tuning the Product Selectivity [J]. ChemCatChem,2010,2:1030-1058.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700