负载型凹凸棒石催化剂催化氧化挥发性有机污染物
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
VOCs(Volatile Organic Compounds)是很多工业过程中排放的主要气体污染物之一,催化氧化可将VOCs在较低的温度下转化为无害的CO2和H2O,是最有前景的处理方法之一。但高活性和长寿命催化剂的缺乏、典型污染物催化氧化过程机理的不明确等问题制约了催化氧化技术的工业应用。针对以上问题本研究以甲苯和甲醛作为目标污染物,采用预处理后的凹凸棒石(Palygorskite,简称:PG)为催化剂载体,负载金属氧化物、尖晶石型氧化物、钙钛矿型氧化物为催化剂,进行了甲苯和甲醛的催化氧化过程研究且对催化剂制备过程进行了优化;并进一步对优选后催化剂的催化氧化动力学机理进行了剖析。
     研究首先对凹凸棒石载体进行了提纯,提纯后可以得到纯度较高的凹凸棒石粘土,透射电镜镜检和X射线衍射显示无明显杂质且凹凸棒石晶束得到了有效的分散。以提纯后的凹凸棒石作为催化剂载体,用浸渍法、共沉淀法和机械混合法等方法负载了铜、锰金属氧化物、尖晶石型氧化物、钙钛矿型氧化物等活性组分;并通过XRD、BET、TEM、TPR、抗压强度等手段对本文制备的一系列催化剂进行了表征:TEM结果表明用浸渍法和共沉淀法制备的催化剂活性组分以纳米级颗粒均匀分散在凹凸棒石载体的表面,用机械混合法制备的钙钛矿型催化剂活性组分粒径约为50~200nm。XRD结果显示金属氧化物以非晶体的形式负载在凹凸棒石载体的表面,催化剂经过不同温度的煅烧在载体上有尖晶石型化合物与钙钛矿型化合物形成,这两种化合物的形成对甲苯和甲醛的去除均有重要影响;抗压强度测定结果显示共沉淀法制备的钙钛矿型催化剂颗粒强度>16N,而机械混合法制备的钙钛矿型催化剂随着活性组分负载量的增加抗压强度呈减小趋势,当负载量达到40%时,抗压强度降为8.6N。
     用共沉淀法可使Cu和Mn氧化物在凹凸棒石表面形成纳米结构的复合金属氧化物催化剂,这种催化剂对甲苯有良好的催化氧化作用,助剂Ce的加入能促进铜锰尖晶石结构的形成并能提高甲苯的转化率,通过实验确定Ce/Cu=0.3且催化剂500℃煅烧后对甲苯的去除率最高,6%CuMn2Ce0.3/PG-500在288℃时甲苯转化率可以达到99%。用共沉淀法可制备纳米结构的La1-xSrxMnO3/PG钙钛矿型催化剂,催化剂经过700℃煅烧后凹凸棒石载体出现非晶化现象而棒状形貌依旧保持。掺杂量x=0~0.3和活性组分La1-xSrxMnO3负载量为3%~11%时随着锶掺杂量的增加和负载量的增加甲苯的转化率随之增高,9%La0.7Sr0.3MnO3/PG催化剂对甲苯完全转化温度(T99)为285.3℃,继续增加锶掺杂量和负载量催化剂活性变化不明显,另外应保持催化氧化反应体系中氧气含量在5vol.%以上以维持反应系统所需的氧气量。在9%La0.7Sr0.3MnO3/PG催化剂的100h稳定性实验中,甲苯转化率保持在95%以上且较为稳定。用机械混合法制备的La1-xSrxMnO3/PG活性组分以微米级别分散于PG表面,当x=0.3时30%La0.7Sr0.3MnO3/PG催化剂甲苯完全转化温度(T99)为302.7℃,高于共沉淀法制备的催化剂约17℃。
     尖晶石型6%CuMn2Ce0.3/PG-500催化剂和共沉淀法制备的钙钛矿型催化剂9%La0.7Sr0.3MnO3/PG催化氧化甲苯的动力学研究结果表明:简单的级数动力学模型不适合描述甲苯催化氧化反应的动力学过程,而Mars and Van Krevelen Model (MVK)动力学模型适合描述甲苯催化氧化反应的动力学过程,甲苯在催化剂6%CuMn2Ce0.3/PG-500和9%La0.7Sr0.3MnO3/PG上的催化氧化反应是基于氧化-还原机理进行的。甲苯在催化剂6%CuMn2Ce0.3/PG-500上的活化能(表面还原活化能17.26kJ/mol和表面氧化活化能23.62kJ/mol)小于催化剂9%La0.7Sr0.3MnO3/PG上的反应活化能(22.77kJ/mol和30.54kJ/mol),证明了甲苯的氧化反应在6%CuMn2Ce0.3/PG-500催化剂上更容易发生。
     用Cu、Mn金属氧化物和尖晶石型以及钙钛矿催化剂催化氧化甲醛同样有明显的效果,6%CuMn2Ce0.5/PG-500在179.3℃时甲醛转化率为99%,助剂Ce的添加同样有促进甲醛转化率的作用,与催化氧化甲苯不同的是Ce与Cu的最佳比例为0.5。当La0.7Sr0.3MnO3钙钛矿作活性组分负载在凹凸棒石上的比例为0.14时,195.7℃时甲醛的转化率为99%,继续增加钙钛矿活性组分比例甲醛转化率增加不明显。
VOCs (Volatile Organic Compounds) is one of major gaseous pollution emissions in many industrial processes. It is a mostly promising approach for catalytic oxidation, by which VOCs can be degraded into CO2and H2O at low temperatures. However, the undefined typical pollutants removal mechanism restrict the high active and patience catalyst to the industrial applications of catalytic oxidation. To solve the problem, toluene and formaldehyde are taken as the target pollutants, while pretreatment palygorskite(PG) as catalyst support, loaded metal oxides(MOC),, spinel-type oxide(STC) or perovskite-type oxide(POC) as the activity components(AC). A study has been carried on catalytic oxidation process of toluene and formaldehyde as well as the catalyst optimition. Thus the kinetic mechanism of the optimized catalytic oxidation is also going to be suggested.
     PG is purified to get high purity catalyst support. It shows no obvious impurities, but PG crystal beams with effectively dispersion exist characterized by transmission electron microscope and X-ray diffractions. A series catalysts loaded on the Cu, Mn MOC, SOC and POC respectively were prepared by impregnation、hydrolysis coprecipitation and mechanical mixing methods. The catalysts were characterized by means of XRD, BET, TEM, TPR and compressive strength test. TEM results show that AC loaded by impregnation and coprecipitation are uniformly dispersed in the surface of PG. Othwise, the particle size of mechanical mixed AC in the POC is50~200nm. It is indicated PG-supported MOC, STC and POC are synthesized by calcination under different temperatures from XRD patterns. STC and POC play important effects on the removal of toluene and formaldehyde. The compressive strength test simultaneously demonstrates that the particle strength of POC prepared by coprecipitation is more than16N, while the POC prepared by mechanical mixing tend to weaken with the increase of AC. When the loaded wt%ratio reached40%, the compressive strength decreased to8.6N.
     It is through hydrolysis coprecipitation method that MOC can be made with nano structure in PG surface. Obviously MOC have promising catalytic oxidation for toluene, moreover the addition of Ce will promote the formation of copper manganese spinel's structure and also improve the conversion of toluene. The results prove that when Ce/Cu=0.3, the catalyst annealed at500℃has the highest removal rate of toluene,99%toluene can be removed by6%CuMn2Ce0.3/PG-500at288℃. Coprecipitation can be used to get the nano-structral La1-xSrxMnO3/PG POC after calcination at700℃, which exhibits amorphous phenomenon on PG, but remains the rod morphology when doped amount x=0~0.3and La1-xSrxMnO3is up to3%~11%. The conversion of toluene increases with the increase of doped strontium and amount of capacity,9%La0.7Sr0.3MnO3/PG catalyst transformations toluene completely with the temperature (T99) of285.3℃, and catalystic activity changes unconspicuously when a further increase of doped strontium and AC. In addition, the oxygen content in the catalytic oxidation reaction system should be kept above5vol%, in order to maintain the amount of oxygen required by the reaction system. In the stability experiments of9%La0.7Sr0.3MnO3/PG catalyst for100h, a relatively stable95%toluene conversion can be obtained. Micrometer-level La1-xSrxMnO3/PG made by mechanically mixing is established to be dispersed in PG surface when x=0.3. The temperature(T99) of30%La0.7Sr0.3MnO3/PG catalyst for a complete toluene conversion is302.7℃, with a promotion of17℃for that of the coprecipitated catalysts..
     Several steps are used in the kinetic study of toluene catalytic oxidation with. a POC(9%La0.7Sr0.3MnO3/PG) and a STC(6%CuMn2Ce0.3/PG-500). The kinetic results show that:the simple series Model is not suitable for describing toluene catalytic oxidation reaction kinetics, while Mars and Van Krevelen Model (MVK) Model is more suitable. The catalytic oxidation reaction of toluene in both catalysts is based on oxidation-reduction mechanism. The activation energy (surface reduction activation energy17.26kJ/mol and surface oxidation activation energy23.62kJ/mol) of toluene in the STC is less than that (22.77kJ/mol and30.54kJ/mol) of the POC, which proves that the reaction is more likely to occur in the STC.
     MOC, STC and POC have substantial advantage on catalytic oxidation of formaldehyde as well. A99%conversion rate of formaldehyde is performed at179.3℃for6%CuMn2Ce0.5/PG-500, the effect of doped Ce also has been proved in the promotion in formaldehyde conversion rate. However the favorable doped ratio of Ce and Cu is0.5, which is different to the toluene catalytic oxidation. A0.14ratio of La0.7Sr0.3MnO3perovskite to PG can substantially improve the conversion of formaldehyde to99%at195.7℃. In spite of this, experimental results demonstrate that a further increase of AC ratio will bring little promotions.
引文
[1]陈平,陈俊.挥发性有机化合物的控制.石油化工环境保护,2006,29:20
    [2]陶有胜.“三苯”废气治理技术.环境保护,1999,8:20-21
    [3]王宝庆.挥发性有机废气净化技术研究进展.环境污染治理技术与设备,2003,4(5):47-51
    [4]L. Molhave, W.S. Ghaly, J.C. Little, et al. Total volatile organic compounds(TVOC) in indoor air quality investigations. Indoor Air,1997,7(4):225-240.
    [5]洪紫萍.挥发性有机化合物的污染与防治.环境污染与防治,1994,16(4):24-26
    [6]M.J. Ruhl. Recover VOCs via adsorption on activated carbon. Chemical Engineering Progress,1993,89(7):37-41.
    [7]K.S. Kumar. Capture or destroy toxic air pollutants. Chemical Engineering,1993,100(6): 12-17
    [8]R. Cloud. Controlling VOC emissions. Chemical Engineering,1996,54(1):71-75.
    [9]闫勇.有机废气回收技术.化工进展,1996,35(5):26-29
    [10]童喜润,党杰,杨明德,等.蓄热催化氧化法处理挥发性有机物的研究进展.安徽化工,2004,1:40-43
    [11]J. Chen. Lower operating temperatures oxidize VOCs. Pollution Engineering,1996, (12): 42-44
    [12]E.L. Biedell, J.L. Nester. VOCs pose a sticky situation for industry. Pollution Engineering, 1995, (11):44-46
    [13]B.P. Barbero, J.A. Gamboa, L.E. Cadus. Synthesis and characterisation of La1-xCaxFeO3 perovskite-type oxide catalysts for total oxidation of volatile organic compounds. [J]. Applied Catalysis B-Environmental,2006,65(1):21-30
    [14]田森林,宁平.有机废气治理技术及其新进展.环境科学动态,2000,(1):23-28
    [15]G. Antonella, R. Vittorio. Catalytic Technology Assisted with Ionization/Ozonization Phase for The Abatement of Volatile Organic Compounds. Catalysis Today,2000,60(1-2): 129-138
    [16]V. Decottignies, L. Gasnot, J.F. Pauwels. A Comprehensive Chemical Mechanism for the Oxidation of Methylethylketone in Flame Conditions. Combustion and Flame,2002,130(3): 225-240
    [17]李志松,蔡复礼.催化焚烧处理挥发性有机物技术进展.工业催化,1998,(5):18-22
    [18]I.E. Sungkono, H. Kameyama, T. Koya. Development of catalytic combustion technology of VOC materials by anodic oxidation catalyst. Applied Surface Science,1997,121: 425-428
    [19]黄正宏,康飞宇,吴慧,梁开明.湿氧化改性多孔炭对低浓度苯和丁酮蒸汽的吸附.清华大学学报(自然科学版),2000,40(10):111-115
    [20]L. Sorrento. The proven process of carbon adsorption. Chemical Engineering,1994,101(7): 94-95.
    [21]荣海琴,郑经堂,王茂章.室内空气中挥发性有机化合物及多孔炭材料在其脱除中的应用.环境科学进展,1999,7(6):104-109
    [22]Y. Guo, A. Rockstraw. Activated carbons prepared from rice hull by onestep phosphoric acid activation. Microporous and Mesoporous Materials,2006,100:12-19
    [23]B. Xia, S. Majumdar, K.K. Sirdar. Regenerative oil scrubbing of volatile organic compounds from a gas stream in hollow fiber membrane devices. Industrial & Engineering Chemistry Research,1999,38:3462-3472
    [24]T.K. Poddar, S. Majumdar, K.K. Sirkar. Membrane-Based Absorption of VOCs from a Gas Stream. AIChE Journal.1996,42(11):3267-3282
    [25]张林,陈欢林,柴红.挥发性有机物废气的膜法处理工艺研究进展.化工环保,2002,22(2):75-80
    [26]徐志康,刘振梅,戴清文.基于溶解的扩散机理的聚合物膜分离烯烃/烷烃的研究进展.石油化工,2002,31(2):135-140
    [27]S. Majumdar, D. Bhaumik, K.K. Sirkar, G Simes. A Pilotscale Demonstra-tion of a Membrane-Based Absorption-Stripping Process for Removal and Recovery of Volatile Organic Compounds. Environmental Process,2001,20(1):27-35
    [28]G. Obuskovic, T.K. Poddar, S.K.K. Sirdar. Flow Swing Membrane Absorption-Permeation. Industrial & Engineering Chemistry Research,1998,37:212-220
    [29]J. McCallion. Membrane process captures vinyl chloride, Other VOCs. Chemical Processing,1994, (9):33-36
    [30]S. Liu, W.K. Teo, X. Tan, et al. Preparation of PDMSⅥ-Al2O3 composite hollow fibre membranes for VOC recovery from waste gas streams. Separation and Purification Technology,2005,46:110-117
    [31]Y. Liu, X. Feng, D. Lawless. Separation of gasoline vapor from nitrogen by hollow fiber composite membranes for VOC emission control. Journal of Membrane Science,2006,271: 114-124.
    [32]G Obuskovic, S. Majumdar, K.K. Sirkar. Highly VOC-selective bollow fiber membranes for separation by vapor permeation. Journal of Membrane Science,2003,217:99-116
    [33]W.I. Sohn, D.H. Ryu, S.J. Oh, et al. A study on the development of composite membranes for the separation of organic vapors. Journal of Membrane Science,2000,175:163-170
    [34]T. Uragami, H. Yamada, T. Miyata. Removal of dilutevolatileorganiccompounds in water through graftcopolymermembranesconsisting of poly(alkylmethacrylate) and poly(dimethylsiloxane) by pervaporation and their membrane morphology. Journal of Membrane Science,2001,187:255-269
    [35]J.E. Burgess, S.A. Parsons, R.M. Stuetz. Developments in odour control and waste gas treatment biotechnology:a review. Biotechnology Advances,2001,19:35-63
    [36]F.T.C. Kennes. Review:Waste gas biotreatment technology. Journal of Chemical Technology and Biotechnology,1998,72:303-319
    [37]A.J. Maira, K.L. Yeung, J. Soria, et al. Gas-phase photo-oxidation of toluene using nanomter-size TiO2 catalysts. Applied Catalysis B:Environmental,2001,29:327-336
    [38]H. Einaga, S. Futamura, T. Ibusuki. Heterogeneous photoeatalytic oxidation of benzene, toluene, cyclohexene and cyclohexane in humidified air:comparison of decomposition behavior on photoirradiated TiO2:catalyst. Applied Catalysis B:Environmental,2002,38: 215-225.
    [39]X. Deng, Y. Yue, Z. Gao. Gas-phase photo-oxidation of organic compounds over nanosized TiO2 photocatalysts by various preparations. Applied Catalysis B:Environmental,2002,39: 135-147
    [40]张前程,张凤宝,张国亮.苯在TiO2上的气相光催化氧化反应历程.催化学报,2004,25:39-43
    [41]吴祖良,周勇平,高翔,等.放电等离子体处理VOCs的研究.电站系统工程,2003,19:7-12
    [42]黄立维,林鑫海,顾巧浓等.电晕-吸收法治理甲苯废气实验研究.环境科学学报,2006,26:17-21.
    [43]B. Lu, X. Zhang, X. Yu, et al. Cataiytic oxidation of benzene using DBD corona discharge. Journal of Hazardous Materials,2006,137:633-637
    [44]黄立维,谭天恩,施耀.高压脉冲电晕法治理有机废气实验研究.环境污染防治,1995,20:4-7.
    [45]C. Subrahmam, M. Magureanu, A. Renken, et al. Catalytic abatement of volatile organic compounds assisted by non-thennal plasma Part1. A novel dielectric barrier discharge reactor containing catalytic electrode. Applied Catalysis B:Environmental,2006,65: 150-156.
    [46]何小龙.催化燃烧在控制废气污染排放方面应用进展.广东化工,2000,5:6-10.
    [47]T.V. Choudhary, S. Banerjee, V.R. Choudhary. Catalysts for combustion of methane and lower alkanes. Applied Catalysis A:General,2002,234:1-23
    [48]Z.R. Ismagilov, M.A. Kerzhentsev. Fluidized bed catalytic combustion. Catalysis Today, 1999,47:339-346
    [49]M. Jason. New design of reverse-flow reactors with enhanced thermal dispersion. Industrial & Engineering Chemistry Research,1999,38:667-682
    [50]J. Kaspar, P. Fomasiero, N. Hickey. Automotive catalytic converters:current status and some perspectives. Catalysis Today,2003,77:419-449
    [51]P. Papaefthimiou, T. Ioannides, X. Verykios. Performance of doped Pt/TiO2(W6+) catalysts for combustion of volatile organic compounds(VOCs). Applied Catalysis B:Environmental, 1998,15:75-92
    [52]K. Okumura, T. Kobayashi, H. Tanaka, et al. Toluene combustion over palladium supported on various metal oxide supports. Applied Catalysis B:Environmental,2003,44:325-331.
    [53]X.W. Su, L.Y. Jin, J. Q. Lu, M. F. Luo. Pd/Ce0.9Cu0.1O1.9-Y2O3 catalysts for catalytic combustion of toluene and ethyl acetate. Journal of Industrial and Engineering Chemistry, 2009,15:683-686
    [54]李鹏,何炽,程杰,等.含钯类水滑石衍生复合氧化Pd/M3AlO(M=Mg, Co, Ni, Cu, Zn)催化剂上氯苯的催化氧化.物理化学学报,2009,25(11):2279-2284
    [55]S. Aouad, E. Abi-Aad, A. Aboukais. Simultaneous oxidation of carbon black and volatile organic compounds over Ru/CeO2 catalysts. Applied Catalysis B:Environmental,2009, 3-4(88):249-256
    [56]H.L. Tidahy, S. Siffert, F. Wyrwalski, J.F. Lamonier, A. Aboukais. Catalytic activity of copper and palladium based catalysts for toluene total oxidation. Catalysis Today,2007, 1-4(119):35-38
    [57]D. Li, Y. Zheng, X.Y. Wang. Effect of phosphoric acid on catalytic combustion of trichloroethylene over Pt/P-MCM-41. Applied Catalysis A:General,2008,340(1):33-41
    [58]G. Avgouropoulos, E. Oikonomopoulos, D. Kanistras, T. Ioannides. Complete oxidation of ethanol over alkali-promoted Pt/Al2O3 catalysts. Applied Catalysis B:Environmental,2006, 65(1-2):62-69
    [59]J. Okal, M. Zawadzki. Catalytic combustion of butane on Ru/γ-Al2O3 catalysts. Applied Catalysis B:Environmental,2009,89(1-2):22-32
    [60]M. Haruta. Novel catalysis of gold deposited on metal oxides. Catalysis Surveys from Japan,1997,1(1):61-73
    [61]索掌怀,安立敦,尚坚,等. Au/Fe2O3催化剂在CO低温氧化中的催化活性.燃料化学学报,1999,27(5):451-454
    [62]D. Andreeva, T. Tabakoca, V. Idakiev, et al. Au/a-Fe2O3 catalyst for water-gas shift prepared by deposition-precipitation. Applied Catalysis A:General,1998,169(1):9-14
    [63]H. Hamada. Cooperation of catalytic species for the selective reduction of nitrogen monoxide with hydrocarbons. Catalysis Surveys from Japan,1997,1(1):53-60.
    [64]徐秀峰,崔怀娟,索掌怀,等.Au/Mn2O3/Al2O3催化剂的制备及NOx活性.燃料化学学报,2002,30(4):377-379.
    [65]M.A. Centeno, I.M. Paul, M. Montes, et al. Catalytic combustion of volatile organic compounds on Au/CeO2/Al2O3 and Au/Al2O3 catalytic. Applied Catalysis A:General,2002, 234:65-78.
    [66]S. Scire, S. Minico, C. Crisafulli, et al. Catalytic combustion of volatile organic compounds on gold/cerium oxide catalysts. Applied Catalysis B:Environmental,2003,40:43-49.
    [67]C.H. Wang, S.S. Lin. Preparing an active cerium oxide for the catalytic incineration of aromatic hydrocarbons. Applied Catalysis A:General,2004,268(1-2):227-233
    [68]A. K. Sinha, K. Suzuki. Novel mesoporous chromium oxide for VOCs elimination. Applied Catalysis B:Environmental,2007,70(1-4):417-422.
    [69]C.H. Wang. Al2O3-supported transition-metal oxide catalysts for catalytic incineration of toluene. Chemosphere,2004,55(1):11-17.
    [70]P.O. Larsson, A. Anderson, L.R. Wallenberg, et al. Combustion of CO and toluene; characterization of copper oxide supported on titania and activity comparisons with supported cobalt, iron, and manganese oxide. Journal of Catalysis,1996,163(2):279-293
    [71]应卫勇,Sungkonoie,龟山秀雄.MnCuOx/Al2O3催化剂上的催化燃烧及其动力学研究.华东理工大学学报,1999,6:636-639
    [72]T. Ataloglou, C. Fountzoula, K. Bourikas, et al. Cobalt oxide/g-alumina catalysts prepared by equilibrium deposition filtration:The influence of the initial cobalt concentration on the structure of the oxide phase and the activity for complete benzene oxidation. Applied Catalysis A:General,2005,288:1-9
    [73]W.B. Li, W.B. Chu, M. Zhuang, et al. Catalytic oxidation of toluene on Mn-containing mixed oxides prepared in reverse microemulsions. Catalysis Today,2004,93-95:205-209.
    [74]K. Everaert., J. Baeyens. Catalytic combustion of volatile organic compounds. Journal of Hazardous Materials,2004,109:113-139.
    [75]K. Mori, M. Inomata, A. Miyamoto, et al. Activity and selectivity in the oxidation if benzene on supported vanadium oxide catalysts. Journal of the Chemical Society,1984, 80(10):2655-2668.
    [76]V.R. Choudhary, G.M. Deshmukh, S.G. Pataskar. Low temperature complete combustion of dilute toluene and methyl ethyl ketone over transition metal-doped ZrO2(cubic)catalysts. Catalysis Communications,2004,5:115-119.
    [77]杨玉霞,孙鲲鹏,丘彦明,等.铁酸盐催化剂上乙醇的催化燃烧分子催化.分子催化,2005,19(6):34
    [78]U. Zavyalova, B. Nigrovski, K. Pollok, et al. Gel-combustion synthesis of nanocrystalline spinel catalysts for VOCs elimination. Applied Catalysis B:Environmental,2008,83(3-4):221-230
    [79]李鹏,童志权,黄妍,等.新型CuMn/TiO2苯类催化燃烧催化剂的研制及活性实验.环境科学学报,2008,28(3):468-474
    [80]D. Fino, N. Russo, G. Saracco, et al. CNG engines exhaust gas treatment via Pd-Spinel-type-oxide catalysts. Catalysis Today,2006,117:559-563
    [81]M. Ruszel, B. Grzybowska, K. Samson, et al. MⅡCr2O4-spinels as supports for Au nanoparticles in oxidation of CO. Catalysis Today,2006,112:126-129.
    [82]D. Fino, N. Russo, G. Saracco, et al. Removal of NOx and diesel soot over catalytic traps based on spinel-type oxides. Powder Technology,2008,180:74-78.
    [83]N. Takahashi, S. Matsunaga, T. Tanaka, et al. New approach to enhance the NOx storage performance at high temperature using basic MgAl2O4 spinel support. Applied Catalysis B:Environmental,2007,77:73-78.
    [84]H. Tanaka, M. Misono. Advances in designing perovskite catalysts. Current Opinion in Solid State & Materials Science,2001,5(5):381-387.
    [85]C.S. Swamy, J. Christopher. Decomposition of N2O on perovskite-related oxides. Catalysis Reviews, Science and Engineering,1992,34(4):409-425.
    [86]W.F. Libby. Promising catalyst for auto exhaust. Science,1971,171(3970):499-500.
    [87]L.A. Pedersen, W.F. Libby. Unseparated rare earth cobalt oxide as auto exhaust catalysts. Science,1972,176(4041):1355-1366.
    [88]R.J.H. Voorhoeve, L.E. Trimble. Exploration of perovskite-like catalysts:Ba2CoW06 and Ba2FeNbO6 in NO reduction and CO oxidation. Materials Research Bulletin,1974,9(5): 655-666
    [89]R.J.H. Voorhoeve, J.P. Remeika, L.E. Trimble. Perovskites containing ruthenium as catalysts for nitric oxide reduction. Materials Research Bulletin,1974,9(10):1393-1404
    [90]R.J.H. Voorhoeve, J.P. Remeika, L.E. Trimble, et al. Perovskite-like La1-xKxMnO3 and related compounds:Solid state chemistry and the catalysis of the reduction of NO by CO and H2. Journal of Solid State Chemistry,1975,14(4):395-406
    [91]H.F. Huang, Y.Q. Liu, W. Tang, et al. Catalytic activity of nanometer La1-xSrxCoO3(x=0,0.2) perovskites towards VOCs combustion. Catalysis Communications,2008,9:55-59.
    [92]R. Spinicci, M. Faticanti, P. Marini, et al. Catalytic activity of LaMnO3 and LaCoO3 perovskites towards VOCs combustion. Journal of Molecular Catalysis A:Chemical,2003, 197:147-155.
    [93]B. Bialobok, J. Trawczynski, W. Mista, et al. Ethanol combustion over strontium-and cerium-doped LaCoO3 catalysts. Applied Catalysis B:Environmental,2007,72:395-403.
    [94]K. Urasaki, K. Tokunaga, Y. Sekine, et al. Production of hydrogen by steam reforming of ethanol over cobalt and nickel catalysts supported on perovskite-type oxides. Catalysis Communications,2008,9:600-604.
    [95]S. Petrovic, A. Terlecki-Baricevic, L. Karanovic, et al. LaMO3(M=Mg, Ti, Fe)perovskite type oxides:Preparation, characterization and catalytic properties in methane deep oxidation. Applied Catalysis B:Environmental,2008,79:186-198
    [96]S. Haag, A.C. Veen, C. Mirodatos. Influence of oxygen supply rates on performances of catalytic membrane reactors Application to the oxidative coupling of methane. Catalysis Today,2007,127:157-164.
    [97]A.A. Leontiou, A.K. Ladavos, A.E. Giannakas, et al. A comparative study of substituted perovskite-type solids of oxidic La1-xSrxFeO3±ε and chlorinated La 1-xSrxFeO3±δClσ form: catalytic performance for CH4 oxidation by O2 or N2O_ Journal of Catalysis,2007,251: 103-112
    [98]R. Zhang, H. Alamdari, S. Kaliaguine. Fe-based perovskites substituted by copper and palladium for NO+CO reaction. Journal of Catalysis,2006,242:241-253
    [99]K. Rida, A. Benabbas, F. Bouremmad, et al. Surface properties and catalytic performance of La1-xSrxCrO3 perovskite-type oxides for CO and C3H6 combustion. Catalysis Communications,2006,7:963-968
    [100]R. Karita, H. Kusaba, K. Sasaki, et al. Synthesis, characterization and catalytic activity for NO-CO reaction of Pd-(La, Sr)2MnO4 system. Catalysis Today,2007,119:83-87
    [101]M. Uenishi, H. Tanaka, M. Taniguchi, et al. Time evolution of palladium structure change with redox fluctuations in a LaFePdO3 perovskite automotive catalyst by high-speed analysis with in situ DXAFS. Catalysis Communications,2008,9:311-314
    [102]M. Machida, K. Ochiai, K. Ito, et al. Catalytic properties of novel La-Sr-Cu-O-S perovskites for automotive C3H6/CO oxidation in the presence of SOX. Catalysis Today, 2006,117:584-587
    [103]H. Tanaka, I. Tan, M. Uenishi, et al. LaFePdO3 perovskite automotive catalyst having a self-regenerative function. Journal of Alloys and Compounds,2006,408-412:1071-1077.
    [104]M. Uenishi, H. Tanaka, M. Taniguchi, et al. The reducing capability of palladium segregated from perovskite-type LaFePdOx automotive catalysts. Applied Catalysis A: General,2005,296:114-119
    [105]Y. Nishihata, J. Mizuki, H. Tanaka, et al. Self-regeneration of palladium-perovskite catalysts in modern automobiles. Journal of Physics and Chemistry of Solids,2005,66: 274-282.
    [106]J.P. Dacquin, C. Dujardin, P. Granger. Surface reconstruction of supported Pd on LaCoO3: consequences on the catalytic properties in the decomposition of N2O. Journal of Catalysis, 2008,253:37-49.
    [107]J. Liu, Z. Zhao, C.M. Xu, et al. Simultaneous removal of NOx and diesel soot over nanometer Ln-Na-Cu-O perovskite-like complex oxide catalysts. Applied Catalysis B: Environmental,2008,78:61-72.
    [108]G.L. Chiarello, D. Ferri, J.D. Grunwaldt, et al. Flame-synthesized LaCo03-supported Pd:2. Catalytic behavior in the reduction of NO by H2 under lean conditions. Journal of Catalysis, 2007,252:137-147
    [109]F. Bertinehamps, C. Gregoire, E.M. Gaigneaux. Systematic investigation of supported transition metal oxide based formulations for the catalytic oxidative elimination of(chloro)-aromatics, Part Ⅰ:Identifieation of the optimal main active phases and supports. Applied Catalysis B:Environmental,2006,66:1-9
    [110]Y. Liu, M.F. Luo, Z.B. Wei, et al. Catalytic oxidation of chlorobenzene on supported manganese oxide catalysts. Applied Catalysis B:Environmental,2001,29:61-67
    [111]M.C.M. Alvim-Ferraz, C.M.T.B. Gaspar. Impregnated active carbons to control atmospheric emissions:Influence of impregnation methodology and raw material on the catalytic activity. Environmental Science and Technolog,2005,39:6231-6236
    [112]V. Gaur, A. Sharma, N. Verma. Catalytic oxidation of toluene and m-xylene by activated carbon fiber impregnated with transition metals. Carbon,2005,43:3041-3053
    [113]M.A. Alvarez-Merino, M.F. Ribeiro, J.M. Silva, et al. Aetivated carbon and tungsten oxide supported on activated carbon catalysts for toluene catalytic combustion. Environmental Science and Technology,2004,38:4664-4670.
    [114]郑起,詹瑛瑛,魏可镁,等.烧结温度对LaMnO3晶胞常数的影响.福州大学学报(自然科学版),1997,25(2):1062-1081.
    [115]A. Lyubov, M.A. Galina, V.T. Sergei, et al. Real structure and catalytic activity of La1-xSrxCoO3 perovskites. International Journal of Inorganic Materials,2001,3: 5592-5621.
    [116]J. Kirchnerova, D. Klvana. Synthesis and characterization of perovskite catalysts. Solid State Ionics,1999,123:3072-3171.
    [117]崔秀兰,杨桔材,刘源,等.钙钛矿型LaMnO3及La1-xSrxMnO3纳米粒子的XPS表征.稀土,2000,21(3):232-261
    [118]M. Hackenberger, K. Stephan, D. Kiebling, et al. Influence of the preparation conditions on the properties of perovskite-type oxide catalysts. Solid State Ionics,1997,101-103: 1195-1200
    [119]梁珍成,秦永宁,乔冠东,等.La-Ce-Mn系钙钛矿型催化性能研究.化学物理学报, 1997,10(1):602-661
    [120]徐鲁华,翁端,吴晓东,等.La0.7sr0.3Mn0.7Zn0.3O3钙钛矿的制备及稀燃条件下氮氧化物的催化还原性能.中国稀土学报,2002,20(4):3782-3811
    [121]翟学良,刘伟华,宋双居,等.溶胶-凝胶法制备功能陶瓷纤维材料的研究进展.河北师范大学学报(自然科学版),2007,31(2):233-237
    [122]J. Shu, S. Kaliaguine. Well-dispersed perovskite-type oxidation catalysts. Applied Catalysis B:Environmental,1998,16(4):303-308
    [123]L. Simonot, F. Garin, G. Maire. Acomparativestudy of LaCoO3, Co3O4 and LaCoO3-Co3O4: I. Preparation, characterisation and catalytic properties for the oxidation of CO. Applied Catalysis B:Environmental,1997,11(2):167-179.
    [124]刘源.钙钛矿型LaCoO3和LaMnO3超细粒子的制备.内蒙古工业大学学报,2000,19(3):1922-1961
    [125]田煦,郑自立,易发成.中国坡缕石矿石特征及物化性能研究.矿产综合利用,1996,34(6):1-4
    [126]周济元,崔炳芳.国外凹凸棒石粘土的若干情况.资源调查与环境,2004,25(4):248-259
    [127]陈天虎,徐晓春,岳书仓.苏皖凹凸棒石黏土纳米矿物学及地球化学.北京:科学出版社,2004
    [128]A. Aranzabal, J.L. Ayastuy- Arizti, J.A. Gonzalez-Marcos, J.R. Gonzalez-Velaseo. Kinetics of the catalytic oxidation of lean trichloroethylene in air over Pd/Alumina, Industrial and Engineering Chemistry Research,2003,42:6007-6011
    [129]J. Blanco, A.L. petre, M. Yates, et al.. Martin-Luengo Tailor-made high porosity VOC oxidation catalysts prepared by a single-step proeedure. Applied Catalysis B: Environmental,2007,73:128-134
    [130]H.L. Tidahy, S.Siffert, J.F. Lamonier, et al. Influence of the exehanged cation in Pd/BEA and Pd/FAU zeolites for catalytic oxidation of VOCs. Applied Catalysis B:Environmental, 2007,70:377-383
    [131]M. Labaki, J.F. Lamonier, S. Siffert, et al. Influence of the prepara-tion method on the activity and stability of copper-zirconium catalysts for propene deep oxidation reaetion. Colloids and surfaces A:Physicochemstry Engineering Aspects,2003,227:63-75
    [132]A. O'Malley, B.K. Hodnett. The influence of volatile organic compound strueture on conditi-ons required for total oxidation. Catalysis Today,1999,54:31-38
    [133]M.A. Alvarez-Merino, M.F. Ribeiro, J.M. Silva, et al. Activated carbon and tungsten oxide supported on activated carbon catalysts for toluene catalytic combustion. Environmental Science and Technology,2004,38:4664-4670
    [134]S. Preis, J.L. Falconer, R.P. Asensio. Photocatalytic oxidation of gas-phase methyl tert-butyl ether and tert-butyl alcohol. Applied Catalysis B:Environmental,2006,64:79-87
    [135]M. Stoyanova, P. Konova, P. Nikolov, et al. Alum-ina-supported nickel oxide for ozone decomposition and catalytic ozonation of CO and VOCs. Chemical Engineering Journal, 2006,122:41-46
    [136]P. Konova, M. Stoyanova, A. Naydenov, et al. Catalytic oxidation of VOCs and CO by ozone over alumina supported cobalt oxide. Applied Catalysis A:General,2006,298: 109-114
    [137]辛勤.固体催化剂研究方法.北京:科学出版社,2004
    [138]许冀泉,方邺森,李立文.江苏六合小盘山凹凸棒石粘土的发现及其意义.科学通报,1980,25(11):513
    [139]刘海波,陈天虎,张先龙,等.助剂对镍基催化剂催化裂解生物质气化焦油性能的影响[J].催化学报,2010,31(4):409-414
    [140]陈天虎,徐惠芳,彭书传,等.凹凸棒石与酸反应纳米尺度研究:反应机理和比表面积变化.高校地质学报,2004,10(1):98-105
    [141]李金虎,张先龙,陈天虎,等.凹凸棒石负载锰氧化物低温选择性催化还原催化剂的表征及对氨的吸脱附.2010,31(4):454-460
    [142]银凤翔,季生福,陈能展,等.Ce(1-x)CuxO(2-x)/Al2O3催化剂的制备及其甲烷催化燃烧性能.化工学报,2006,57(4):744-750
    [143]杨玉霞,孙鲲鹏,,丘彦明,等.铁酸盐催化剂上乙醇的催化燃烧.分子催化,2005,19(6):34-38
    [144]M. Chen, X.M. Zheng. The effect of K and Al over NiCo2O4 catalyst on its character and catalytic oxidation of VOCs. Journal of Molecular Catalysis A:Chemical,2004,221:77-80
    [145]丁佳,罗来涛.钴系尖晶石型复合氧化物的甲烷催化燃烧性能研究,分子催化,2009,23(1):48-52
    [146]U. Zavyalova, B. Nigrovski, K. Pollok, et al. Gel-combustionsynthesis of nanocrystalline spinel catalysts for VOCs elimination. Applied Catalysis B-Environmental,2008,83: 221-228.
    [147]P.R. Ettireddy, N. Ettireddy, S. Mamedov, et al. Surface characterization studies of TiO2 supported manganese oxide catalysts for low temperature SCR of NO with NH3. Applied Catalysis B-Environmental,2007,76:123-134
    [148]张悦,张磊,邓积光,等.水热法制备特定形貌单晶La(2-x)SrxCuO4及甲烷催化氧化性能,催化学报,2009,30:347
    [149]杨继涛,非均相催化反应动力学,石油工业出版社,1999年9月第1版
    [150]陈天虎,王健,庆承松,等.凹凸棒石热处理结构、形貌和表面性质变化.硅酸盐学报,2006,34(11):106-110
    [151]黎维彬,龚浩.催化燃烧去除VOCs污染物的最新进展.物理化学学报,2010,26(4),885-894.
    [152]W.P. Stege, L.E. Cadus, B.P. Barbero. La(1-X)Ca(X)MnO(3) perovskites as catalysts for total oxidation of volatile organic compounds. Catalysis Today,2011,172(1):53-57.
    [153]明彩兵,叶代启,刘艳丽,等.钙钛矿LaMnO3负载贵金属在催化氧化碳烟中的作用.环境科学,2008,29(3):576
    [154]翁惠新,毛信军.石油炼制过程反应动力学.北京:烃加工出版社,1987:48-116
    [155]C.J. Heyes, J.G. Irwin, H.A. Johnson, et al. The catalytic oxidation of organic air pollutants. Part 1, Single Metal Oxide Catalysts. Journal of Chemical Technology & Biotechnology,1982,32(7-12):1025-1033.
    [156]江惠中.有机废气触媒焚化及废热回收.有机废气触媒焚化处理技术研讨会,1989,4:1-25
    [157]T.K. Tseng, H. Chu. The kinetics of catalytic incineration of styrene over a MnO/Fe2O3 catalyst. Science of the Total Environment,2001,275(1-3):83-93
    [158]C.M. Hung. Decomposition kinetics of ammonia in gaseous stream by a nanoscale copper-cerium bimetallic catalyst. Journal of Hazardous Materials,2008,150(1):53-61
    [159]M.A. Vannice. An analysis of the Mars-van Krevelen rate expression. Catalysis Today, 2007,123(1-4):18-22
    [160]H.T. Salt, S. Mentese, R. Marutzky. Formaldehyde in the indoor environment. Chemical Reviews,2010,110(4):2536-2572
    [161]张春菊,叶代启,吴军良.先进实用挥发性有机废气吸附与催化净化技术.能源环境保护,2005,19(4):5-8
    [162]W.B. Li, J.X. Wang, H. Gong. Catalytic combustion of VOCs on non-noble metal catalysts. Catalysis Today,2009,148(1-2):81-87
    [163]M.C. Alvarez-Galvan, B. Pawelec, P.L. Arias, et al. Formaldehyde/methanol combustion on alumina supported manganese-palladium oxide catalyst. Applied Catalysis B-Environmental,2004,51(2):83-91
    [164]X.F. Tang, J.L. Chen, Y.G. Li, et al. Complete oxidation of formaldehyde over Ag/MnOx-CeO2 catalysts. Chemical Engineering,2006,118(1-2):119-125
    [165]Y.N. Shen, X.Z. Yang, Y.Z. Wang, et al. The states of gold species in CeO2 supported gold catalyst for formaldehyde oxidation. Applied Catalysis B- Environmental,2008,79(2): 142-148.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700