伺服系统柔性连接负载控制方法研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
工业应用中普遍存在柔性连接负载,可能使伺服系统在速度、位置控制中产生振荡或强迫伺服系统降低响应,影响伺服系统的控制品质,因此研究柔性负载控制的振荡抑制问题对提高伺服系统性能具有重要意义。本文以伺服系统柔性负载控制方法为主线,在广泛总结国内外研究工作的基础上,基于柔性负载二质量系统模型展开分析,采用理论推导、数值仿真与物理实验相结合的研究方法,针对不同频率范围内的振荡现象进行了有针对性的抑制方法研究。主要研究内容与成果如下:
     针对远低于速度环开环-180°穿越频率的低频振荡,采用基于IP速度调节器的控制结构进行振荡抑制,提出了虚实结合与基于扩展反馈结构的极点配置方法,有效拓展了传统极点配置法的惯量比适用范围,实现了较大惯量比范围内低频振荡的有效抑制。
     针对频率稍高,但仍低于速度环穿越频率的中频振荡,采用负载转矩观测器构成扩展反馈结构进行振荡抑制,根据可调惯量比控制的思想与系数图法确定了扩展反馈增益与控制器参数的计算方法。在此基础上分析了非理想反馈对控制性能的影响,并根据理论分析与仿真结果提出了观测器带宽选择的原则,部分解决了中频振荡抑制问题。
     针对速度环穿越频率附近的高频谐振,采用基于自适应陷波器的控制结构进行抑制。针对较高阻尼系数造成的谐振频率检测偏差,运用描述函数法分析其成因,并提出了一种基于自调整低通滤波器的校正方法,提高了自适应陷波器的可靠性,确保了高频谐振的有效抑制。
     针对低负载惯量比情况下干扰力矩较小的情况,采用基于开环控制原理的输入整形器进行抑制,提出了采用输入整形器的柔性连接负载速度、位置控制结构。针对数字控制系统的特点采用了时间最优输入整形器并提出了其参数选择方法,解决了低惯量比振荡抑制问题。
     本文综合采用开环、闭环控制方式,为解决伺服系统柔性负载控制中的振荡抑制问题提供了一整套方法。经实验验证,该套方法能有效抑制多种频率与负载惯量比条件下的振荡。
Compliant coupled loads, which are universal in applications, often lead to lowresponses or vibrations in speed and position control, thus lowering the performance of theservo system. As a result, control of the compliant coupled loads and vibration suppressionhave become an important problem for servo systems. Based on the two-mass model, thisthesis carried out studies towards vibrations within different frequency range. The majorcontents and achievements are as follows:
     For low frequency vibrations which are far below the crossover frequency of thespeed loop, the control structure based on IP speed regulator was adopted. Two new poleplace methods were proposed to expand the narrow load inertia ratio of the traditionalmethods. One of the proposed methods was based on the combination of real and complexpoles, and the other was based on expanded feedback structures, thus achieving effectivevibration suppression within a wide range of load ratio.
     For middle-frequency vibrations whose frequencies are higher, but still below thecrossover frequency, a disturbance observer was adopted to realize the extended feedbackstructure. Parameters of the controller were selected according to resonance ratio controlstructure and coefficient diagram method. The unfavorable effect cussed by undeaddisturbance observe was analyzed and the criterions for band width selection of theobserver was proposed, thus partially achieving vibration suppression within themiddle-frequency range.
     For middle-frequency resonances which are close with the crossover frequency of thespeed loop, suppression methods based on adaptive notch filter was adopted. The reasonfor the resonance frequency detection errors caused by high damping coefficient wasanalyzed with describing function method, and an approach for frequency correction wasproposed based on self-tuning low pass filter, which guaranteed the effectiveness of theadaptive notch filter
     For vibrations with small load inertia ratio and little disturbance, the use of inputshaper was proposed for speed and position control of a servo system with compliantcoupled loads. Time optimal input shaper was selected as the most appropriate for fullydigital controlled servo systems. Parameter selection criterions of the Time optimal inputshaper were also studied, thus achieving vibration suppression for small inertia ratio.
     With the study of compliant coupled loads controls the main theme, this thesis performed a detailed survey of relevant research reports. The close-loop method wascombined with the open-loop method in providing an entire set of solutions for vibrationsuppression problems in the control of compliant coupled loads. Experiment resultsproved that the proposed set of solutions is capable of suppressing vibrations within widefrequency ranges and inertia ratio range.
引文
[1]赵希梅,郭庆鼎.交流伺服系统的发展现状及其研究热点.伺服控制,2010(6):15-16.
    [2]李现兵.现代电力电子器件的发展与现状.世界电子元器件,2005(5):24-28.
    [3]崔丽丽,刘栋良.全数字交流伺服系统及其控制策略综述.伺服控制,2007(3):16-18.
    [4]刘栋良,赵光宙.交流伺服系统及其控制策略综述.电气时代,2006(2):38-41.
    [5]崔凤波.伺服技术的应用与发展趋势.机电设备,2007(4):6-8.
    [6]王健.现代交流伺服系统技术和市场发展综述.伺服控制,2007(1):16-21.
    [7]舒志兵.伺服运动控制系统及其数控加工应用.自动化博览,2010(11):24-28.
    [8]陈伯时.电力拖动自动控制系统.北京:机械工业出版社,2005.
    [9]黄声华,吴芳.永磁交流伺服系统国内外发展概况.微特电机,2008(5):15-21.
    [10]暨绵浩.永磁同步电动机及其调速系统综述和展望.电气时代,2005(5):23-26.
    [11]周志辉,林燕.纺织机械的自动控制技术.化纤与纺织技术,2010(2):27-32.
    [12]黄挚雄,李志勇,危韧勇.智能功率模块Igbt-Ipm及其应用.半导体技术,2002(9):53-56.
    [13]胡清,童怀.伺服系统机械谐振问题的研究.电气传动,2000(32):7-11.
    [14]暨绵浩.永磁同步电动机及其调速系统综述和展望.电气时代,2005(5):
    [15]杨明,胡浩,徐殿国.克服电气传动机械谐振的一种新的控制结构.电机与控制学报,2012(16):79-84.
    [16]孙炳达.克服电气传动机械谐振的一种新的控制结构.伺服控制,1998(3):45-48.
    [17]钱照明.我国电力电子与电力传动面临的挑战与机遇.电工技术学报,2004(8):10-22.
    [18]余小丽.中国交流伺服市场规模格局变化及增长趋势.伺服控制,2009(5):20-21.
    [19] Zhang Guoguang, Junji Furusho. Speed Control of Two-Inertia Systemby PI/PIDControl. IEEE Transactions on Industrial Electronics,2000(47):603-609.
    [20] G. Zhang. Comparison of control schemes for two-inertia systems. Proc. Int. Conf.PEDS,1999:573–578.
    [21] G. Zhang, J. Furusho, M. Kajitani, A new design method of servo drive systemwith torsional load. Proc. IEEE IECON’98,1998:1114–1119.
    [22] Y. Wu, K. Fujikawa, H. Kobayashi. A torque control method of two-mass resonantsystem with PID-P controller. Proc. Int. Workshop AMC,1998:240–245.
    [23] P. Tomei. A Simple PD Controller for Robots With Elastic Joints. IEEETransaction.on Automat. Control,1991(36):1208-1213.
    [24] M.Sugano. Torsional vibration suppression control by speed differentiation,IEE-jpn. Tech.Meeting,1990:90-109.
    [25] Y. Hori. Comparison of vibration suppression control strategies in2-mass systemsincluding a novel two-degrees-of-freedom controller. Proc.2ndInt. WorkshopAMC,1992:409–416.
    [26] Y. Hori, Y. Chun, H. Sawada, Experimental evaluation of disturbanceobserver-based vibration suppression and disturbance rejectioncontrol in torsionalsystem. Proc. PEMC’96,1996:120–124.
    [27] Umeno, Y. Hori, Robust speed control of DC servomotors using moderntwo-degrees-of-freedom controller design. IEEE Transactions on IndustrialElectronics,1991(38):363–368.
    [28] S. Mortimoto, A. Hamamoto, Y. Takeda, Vibration control of two-mass systemwith low inertia ratio considering practical use. Electrical Engineering Jpn.1998(125):1-9.
    [29] Umida. Novel control strategies of torsional vibration system: A fully tuneddisturbance observer. Conf. Rec. Inst. Elect. Eng. Jpn, IAS Annu. Meeting,1994:12-31.
    [30] T.Harakawa. Development of Spindle Torsional Control System using Observer forTandem Cold Mill in Steel Production Process. Proceeding of IEEE-PESC'88,1988:106-110.
    [31] Y.Hori, H.Iseki, K.Sugiura, Basic Consideration of Vibration Suppression andDisturbance Rejection Control of Multi-Inertia System using SFLAC (StateFeedback and Load Acceleration Control), IEEE Transactions. on IndustrialApplications,1994(30):889-896.
    [32] Y.Hori,2-Mass System Control based on Resonance Ratio Control and ManabePolynomials, Proceeding of ASCC (First Asian Control Conference),1994(3):741-744.
    [33] Y.Hori, Vibration suppression and disturbance rejection control on torsionalsystems. Proceeding of IFAC Motion Control,1995:41-50.
    [34] Ohmae, T. Matsuda. A Microprocessor-based motor speed regulatorusingfast-response state observer forreduction of torsional vibration. IEEE TransactionsonIndustryApplications,1987(23):863-871.
    [35] B. R. Murphy, I. Watanabe. Digital Shaping Filters for Reducing MachineVibration, IEEE Transactions on Robotics and Automation.1992(8):285–289.
    [36] H.Sugimoto, Speed control of two inertia resonant system with integrator addedobserver. Trans.IEE-Jpn,1999(111):798-799.
    [37] S. Katsura, K. Ohnishi. Force servoing by fexible manipulator basedon resonanceratio control. IEEE Transactions on Industrial Electronics,2007(54):539–547.
    [38] Katsura, K. Ohnishi. Absolute stabilization of multimass resonantsystem byphase-lead compensator based on disturbance observer. IEEE Transactions onIndustrial Electronics,2007(54):3389–3396.
    [39] S. Kumagai, K. Ohishi, T. Miyazaki. High Performance Robot Motion ControlBased on Zero Phase Error Notch Filter and D-PD Control.Proceeding of International Conference on Mechatronics2009:12-18.
    [40] Miyazaki, K. Ohishi. Robust speed control system consideringvibrationsuppression caused by angular transmission error of planetary gear. IEEE/ASMETransactions on Mechatronics,2002(7):235–244.
    [41] K. Ohnishi, M. Shibata, T. Murakami. Motion Control for Advanced Mechatronics.IEEE Transaction. on Mechatronics,1996(1):56–67.
    [42] K. Ohishi, T. Miyazaki. High performance robust motion control of industrial robotusing parameter identifcation based on resonant frequency. Proc.30th AnnualConference of the IEEE Ind. Elec. Society,2004:1-6.
    [43] S. Urushihara, Y. Imaizumi, K. Ohishi. Robust Load Position Servo Systemwithout Vibration and End-effector Offset for Industrial Robots. InternationalSymposium on Industrial Electronics2009:409-414.
    [44] S. Tung, K. Ohishi, T. Miyazaki. Robust Motion Control of Industrial Robot Basedon Robot Parameter Identifcation and Feedforward Control Considering ResonantFrequency. IEEJ Trans. IA,2005(125):568–574.
    [45] K. Ohishi, S. Katsura, T. Miyazaki. Motion Control of Industrial Robot UsingNew Notch Filtering System for Vibration Suppression and Little Phase Error.Proceeding of International Conference on Mechatronics,2007:113-121.
    [46] Y. Hori. Slow resonance ratio control forvibration suppression and disturbancerejection in torsional system. IEEE Transactions on Industrial Electronics,1999(46):162–168.
    [47] Sugiura, Y. Hori. Vibration suppression in2-and3-mass systembased on thefeedback of imperfect derivative of the estimated torsionaltorque. IEEETransactions on Industrial Electronics,1996(43):56–64.
    [48] K. Itoh, M. Iwasaki. Optimal design of robust vibration suppressioncontroller usinggenetic algorithms. IEEE Transactions on Industrial Electronics,2004(51):947-953.
    [49] K. Itoh, M. Iwasaki, N. Matsui. GA-based practical compensatordesign for amotion control system. IEEE/ASME Transactions on Mechatronics,2001(6):143–148.
    [50] P. Schmidt, T. Rehm. Notch filter tuning forresonant frequency reduction in dualinertia systems. Proc. of IEEE IAS,1999:1730-1734.
    [51] G. Ellis, R. D. Lorenz. Resonant load controlmethods for industrial servo drives.Proc. of IEEE IAS,2000:1438-1445.
    [52] G. Ellis, R. D. Lorenz. Cures for Low-Frequency Mechanical Resonance inIndustrial Servo. Proc. of IEEE IAS,2001:252-258.
    [53] M. O’Sullivan, N. Schofeld, C. M. Bingham. Simulation and experimentalvalidation of induction machines dynamics drivingmulti-inertia loads. Journal of.Applied Electromagneticsand Mechanics,2004(19):231–236.
    [54] M. O’Sullivan, N. Schofeld, C. M. Bingham, Enhanced servo-controlperformanceof dual-mass systems. IEEE Transactions on Industrial Electronics,2007(54):1387-1399.
    [55] K. Szabat T. Orlowska-Kowalska. Vibration suppressionin two-mass drive systemusing PI speed controller and additionalfeedbacks. IEEE Transactions on IndustrialElectronics,2007(54):1193–1206.
    [56] Orlowska-Kowalska, K. Szabat. Neural-networks application formechanicalvariables estimation of two-mass drive system. IEEE Transactions on IndustrialElectronics,2007(54):1352–1364.
    [57] T. Orlowska-Kowalska, K. Szabat. Control of the drive system withstiff and elasticcouplings using adaptive neuro-fuzzy approach. IEEE Transactions on IndustrialElectronics,2007(54):228–240.
    [58] Orlowska-Kowalska, K. Szabat, Damping of torsional vibrationsin two-masssystem using adaptive sliding neuro-fuzzy approach. IEEETrans. Industrial.Information,2008(4):47–57.
    [59] T. Orlowska-Kowalska, M. Dybkowski, K. Szabat. Adaptive neuro-fuzzy controlof the sensorless induction motor drive system. Proc.12th Int. EPE-PEMC,2006:1836–1841.
    [60] Orlowska-Kowalska, K. Szabat, M. Dybkowski. Neuro-fuzzyadaptive control ofthe IM drive with elastic coupling. Proc.13th Conf. EPE-PEMC, Poznan, Poland,2008:2211–2218.
    [61] T. Orlowska-Kowalska, M. Dybkowski. Stator current-based MRASestimator for awide range speed-sensorless induction motor drive. IEEE Transactions onIndustrial Electronics,2010.
    [62] R. Muszy′nski, T. Kaczmarek. The elastic servo drive with state controller. Arch.Elect. Eng,2003(2):185–200.
    [63] J. M. Pacas, A. John, T. Eutebach. Automatic identification and damping oftorsional vibrations in high-dynamic-drives. Proc.2000IEEE InternationalSymposium onIndustrial Electronics,2000:201-206.
    [64] Bahr, S. Beineke. Mechanical resonance damping in an industrial servo drive,Power Electronics and Applications.2007European Conference on2007:1-10
    [65] Thomsen, N. Hoffmann, F. W. Fuchs. PI Control, PI-Based State Space Control,andModel-Based Predictive Control for DriveSystems With ElasticallyCoupledLoads—A Comparative Study. IEEE Transactions on IndustrialElectronics,2010(58):3647-3657.
    [66] K. Peter, I. Sch ling. Robust Output-Feedback Control With aNonlinear Observerfor a Two-Mass System. IEEETransactions on Industrial. Application,2003(39):637-644.
    [67] S. Thomsen, N. Hoffmann F. W. Fuchs. Comparative study ofconventionalPI-control, PI-based state space control and model basedpredictive control for drivesystems with elastic coupling. Proc. ECCE,2010:2827–2835.
    [68] Cychowski, K. Delaney, K. Szabat. Low-cost high-performancepredictive controlof drive systems with elastic coupling. Proc. EPE-PEMC,2008:2241–2247.
    [69] K. Szabat, P. Serkies, T. Orlowska-Kowalska. Robusttorque constraints handling indrive systems with elastic transmission. inProc. ICIT,2010:398–403.
    [70] R. Dhaouadi, K. Kubo, M. Tobise. Analysis and compensation ofspeed drivesystems with torsional loads. IEEE Transactions on Industrial. Applicatoins,1994(30):760–766.
    [71] R. Dhaouadi, K. Kubo, M. Tobise. Two-degree-of-freedom robustspeed controllerfor high-performance rolling mill drives, IEEE Transactions on Industrial.Applicatoins,1993(29):919–926.
    [72] R.Dhaouadi, Vibration Suppression and High Performance Speed Control ofRolling Mill Drives, IEEE2nd International Workshop on Advanced MotionControl,1992:409-416.
    [73] I. Sch ling, B. Orlik, Control of a nonlinear two-mass system with uncertainparameters and unknown states. Conference Record of IEEE-IAS Annu. Meeting,2000(2):1096–1103.
    [74] K. Peter, I. Sch ling, B. Orlik. Robust state-feedback control of a nonlineartwo-mass system, Conference Record of IEEE-IAS Annual Meeting,2001:569–575.
    [75] Muszynski, J. Deskur. Damping of torsional vibrations in high-dynamic industrialdrives. IEEE Transactions on Industrial Electronics,2010(57):544–552.
    [76] K. Erenturk. Nonlinear two-mass system control with sliding-mode andoptimisedproportional-integral derivative controller combined with agrey estimator. IETControl Theory and Application,2008(2):635–642.
    [77] M. O’Sullivan, C. M. Bingham, and N. Schofeld. High-performancecontrol ofdual-inertia servo-drive systems using low-cost integrated SAWtorque transducers.IEEE Transactions on Industrial Electronics,2006(53):1226–1237.
    [78] N. Vukosavic, M. R. Stojic, Suppression of torsional oscillationsin ahigh-performance speed servo drive. IEEE Transactions on Industrial Electronics,1998(45):108–117.
    [79] J. M. Smith. Posicast Control of Damped Oscillatory Systems. Processding oftheIRE,1957:1249–1255.
    [80] C. Singer, W. Seering, K. A. Pasch. Shaping Command Inputs to MinimizeUn-wanted Dynamics. Patent No.2801351, USA,1988.
    [81] E. Singhose, W. P. Seering, N. C. Singer. The Effect of Inpue Shaping onCoordi-nate Measuring Machine Repeatablility. Proceedings of the1995WorldCongresson the Theory of Machines and Mechanisms(IFToMM),1995:1–5.
    [82] D. Wijdeven, J. M. Jeroen, T. Singh. Adaptive Pulse Amplitude PulseWidthControl of Systems Subject to Coulomb and Viscous Friction. ProceedingsofAmerican Control Conference,2003:1068–1073.
    [83] Muenchof, T. singh. Near Minimax Robust Control of Flexible Structures.Proceedings of American Control Conference,2003:4–6.
    [84] singh, Y. L. Kuo. Mini-max Design of Prefilters for Maneuvering FlexibleStruc-tures.2002AIAA Guidance, Navigation and Control Conference,2002:8–10.
    [85]吴东生,陈醒.含有弹性负载的伺服系统谐振的分析及补偿问题.山东轻工业学院学报(自然科学版),1988(2):66-75.
    [86]胡清,童怀.伺服系统机械谐振问题的研究.电气传动,2000(32):7-11.
    [87]王国富,余法山.机载光电转台的谐振分析及自适应滤波器设计.光学精密工程2007(11):1802-1808.
    [88]蔡立华,高慧斌.应用复杂陷波器精确消除经纬仪机械谐振方法的研究.测控技术,2009(28):58-61.
    [89]马小亮,魏学森.有机械联系的多电机传动系统的负荷均衡控制和扭振抑制.电气传动,2007(37):3-6.
    [90]马小亮,蒋琪.升船机交流主拖动系统中扭振抑制的研究,电工技术学报,2001(16):29-34.
    [91]马小亮.驱动弹性负载的调速传动.电气传动,2008(38):3-7.
    [92]马小亮.电气传动中的扭振现象及其抑制.电气自动化,2000(5):19-21.
    [93]唐涛,黄永梅.负载加速度反馈的伺服系统谐振抑制.光电工程,2007(34):14-17.
    [94]王侃夫,王芳.基于机械速度反馈的全闭环位置伺服系统振荡现象的消除.上海电机学院学报,2006(9):9-13.
    [95]于晶.电机负载谐振的高阶滑模抑制方法研究:[硕士学位论文].哈尔滨:哈尔滨工业大学图书馆,2008
    [96]于晶,冯勇.基于高阶滑模和加速度反馈的机械谐振抑制方法.控制理论与应用,2009(26):1133-1136.
    [97]李杰.伺服系统惯量识别及谐振抑制方法研究:[硕士学位论文].哈尔滨:哈尔滨工业大学图书馆,2008.
    [98]李秋影.两惯量旋转系统振动抑制方法的研究:[硕士学位论文].大连:大连交通大学图书馆,2008.
    [99]石文兵,唐小琦.基于模糊自整定PID的二质量伺服控制系统的研究.工业仪自动化装置,2007(12):3-5.
    [100]邱志成.旋转柔性梁系统振动频响特性分析及振动抑制.振动与冲击,2008(27):75-80.
    [101]傅剑,杨卫东.基于H滤波器和负荷观测器复合补偿的轧机主传动振荡抑制方法.北京科技大学学报,2007(29):513-518.
    [102]赵国勇.数控系统运动平滑处理伺服控制及轮廓控制技术研究:[硕士学位论文].大连:大连理工大学图书馆,2006.
    [103]梁春燕,谢剑英.提升起重机的时滞滤波消摆控制,应用科学学报,2001(19):157-160.
    [104]梁春燕,谢剑英.桥式起重机抓斗防摆控制方法研究.测控技术,2000(19):24-26.
    [105]梁春燕,谢剑英.柔性系统的最小时间鲁棒时滞滤波器设计.机器人,2001(23):98-101.
    [106]梁春燕,谢剑英.抑制柔性机械臂残留振荡的时滞滤波器设计.控制与决策,2001(16):943-946.
    [107]梁春燕,谢剑英.时滞滤波器抑制残留振荡:理论方法及应用.控制与决策,2001(16):263-268.
    [108]王晓军,邵惠鹤.鲁棒最优随机时滞滤波器的频域设计方法.控制与决策,2006(21):1171-1175.
    [109]李兵,谢里阳.基于时间优化的多模态输入整形法抑制柔性系统的振动.东北大学学报(自然科学版),2010(31):1337-1340.
    [110]黄华.基于输入整形技术的固晶机柔性臂减振研究:[硕士学位论文].哈尔滨:哈尔滨工业大学图书馆,2009.
    [111]陈俊恒.输入整形减振算法的研究与实现:[硕士学位论文].哈尔滨:哈尔滨工业大学图书馆,2010.
    [112]经迎龙.闭环输入整形器控制策略研究:[硕士学位论文].北京:电子科技大学图图书馆,2011.
    [113]祝雪妹.新型PID控制器及参数整定.控制工程,2008(15):429-431
    [114] S. Manabe. Coefficient Diagram Method.14thIFAC Symposium on AutomaticControl in Aerospace,1998:199-210.
    [115]刘金琪,马洪飞.基于干扰观测器的调速系统的防振控制.电气传动自动化,1999(21):49-52.
    [116]刘海华,陈心洁.基于FPGA的数字陷波器的设计与实现.中南民族大学学报(自然科学版),2004,23(4):44-47.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700