橘小实蝇(Bactrocera dorsalis)成虫肠道细菌分子多态性分析及其功能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
橘小实蝇(Bactrocera dorsalis)是一种极具危害性的检疫性害虫,其食性广、寄主杂,可危害柑桔、番石榴、杨桃、芒果和瓜类等40多个科250多种水果、蔬菜和花卉,对农业生产造成了很大的威胁。通过研究橘小实蝇成虫肠道细菌多样性,肠道可培养细菌群落结构组成,及肠道细菌对寄主成虫的引诱作用、存活率和寿命的影响,可为探讨肠道菌群对寄主的生理功能和生态学意义奠定基础,为进一步了解寄主与其共生菌的协同进化、物种进化途径提供新的认知,最终为利用微生物防治此类害虫提供新思路。
     本研究通过利用16S rRNA基因的PCR-DGGE分析技术研究了橘小实蝇三个种群(实验室正常喂养种群,实验室无菌糖水喂养种群和野生种群)成虫肠道细菌多样性及肠道可培养细菌的群落结构组成;研究了肠道细菌对寄主成虫的引诱作用;肠道细菌通过饲喂菌悬液的方式对寄主实蝇死亡率和寿命的影响。主要研究结果如下:
     从橘小实蝇三个种群成虫肠道分离到150种不同细菌遗传型,分属于γ-变形菌纲(Gammaproteobacteria)、放线菌纲(Actinobacteria)、α-变形菌纲(Alphaproteobacteria)、δ-变形菌纲(Deltaproteobacteria)、拟杆菌纲(Bacteroidetes)、黄杆菌纲(Flavobacteria)和厚壁菌门(Firmicutes)等7个不同的细菌纲。在三个种群中,γ-变形菌纲都超过了肠道细菌总数的70%,是肠道的绝对优势细菌种类。此外,我们把每一种群所占比例大于10%的类群也归为优势细菌种类。因此,我们发现放线菌纲为实验室种群的优势细菌种类(所占比例为10.1%),厚壁菌门为野生种群的优势细菌种类(所占比例为12.3%)。而δ-变形菌纲、拟杆菌纲和a-变形菌纲在三个种群中只占据很少的克隆子(每种类群都少于8个克隆子)。在三个种群的150个细菌遗传型中,有3个分类组(文中标记为Unclassified)无法归属于目前已知的细菌类群,这是目前认识不足的一类微生物,可能与橘小实蝇肠道特殊的微环境有关。以序列相似性大于97%的克隆归为相同的细菌种类为标准,三个种群存在一些隶属于肠杆菌科(Enterobacteriaceae)的共有菌种,如Klebsiella, Citrobacter, Enterobacter, Pectobacterium和Serratia。进一步对三个种群的多样性指数计算及群落结构组成分析表明,三个种群的细菌群落存在显著性差异。其中实验室无菌糖水喂养种群的细菌多样性最低,只有很少的细菌遗传型与另外两个种群共存。而实验室种群和野生种群的细菌多样性相对较高。
     从橘小实蝇三个种群成虫肠道600株可培养细菌得到53种不同细菌遗传型,分属于肠杆菌科(Enterobacteriaceae)、肠球菌科(Enterococcaceae)和芽孢杆菌科(Bacillaceae)等三个科。其中肠杆菌科是肠道可培养细菌最优势的细菌种类。同样以序列相似性大于97%的菌株归为相同的细菌种类为标准,找到了三个种群可培养细菌的共有菌种,结合菌落形态观察和生理生化特征鉴定,确定共有菌种为肠杆菌属5株,克雷伯氏菌属2株,柠檬酸杆菌属1株,泛菌属1株,肠球菌属2株,以及芽孢杆菌属4株。
     室内引诱实验发现,所有供试菌株的不同处理发酵液对橘小实蝇均有显著的引诱作用,其中以Bacillus cereus, Enterococcus faecalis, Enterobacter cloacae和Citrobacter freundii四种菌的引诱效果最好。菌悬液离心后的上清液高压灭菌的引诱效果要好于上清液的过滤除菌液和发酵原液。室内引诱效果最好的六种菌进行了野外引诱实验。结果表明:六种菌的引诱效果都好于对照,其中B. cereus和C. freundii引诱到了最多的雌性、雄性和雌性加雄性实蝇,并且除Klebsiella oxytoca(引诱到的雌蝇和雄蝇一样多)外其余五种菌引诱到的雌蝇都多于雄蝇,六种菌的野外引诱结果与室内引诱结果一致。
     利用饲喂菌悬液的方法,研究了肠道可培养细菌占多数比例的肠杆菌科细菌和占少数比例的芽孢杆菌对橘小实蝇存活率和寿命的影响。结果表明:实蝇寿命(无论雌雄)不受喂食抗生素的影响。实蝇对上述两类菌的摄取明显地影响自身的死亡率和寿命。总体而言,饲喂蜡样芽孢杆菌对寿命有不利影响,而饲喂肠杆菌科细菌则有利。对比只饲喂20%蔗糖溶液的实蝇,饲喂蜡样芽孢杆菌的实蝇死亡时间显著加快且寿命明显缩短。相反,饲喂肠杆菌科细菌的实蝇则比只饲喂20%蔗糖溶液的实蝇死亡时间平缓,寿命更长。
Bactrocera dorsalis Hendel is a polyphagous, cosmopolitan and invasive pest at home and abroad, and it can infect fruits, vegetables and flowers of more forty families and two hundred-fifty species, such as mangoes, oranges, tangerines, carambolas, guavas and sorts of gourds. In our study, we investigated the diversity of the intestinal bacteria community of the gut of adult B. dorsalis, the structure of the cultured bacterial community, the attraction function of cultured bacteria and it's influence to host's mortality and longevity. These results contributed to explore intestinal bacteria on the impact of the physiological function and ecological significance of B. dorsalis, to understand coevolution between B. dorsalis and its symbiotic bacteria, and to provide new knowledge for species evolution ways. Further studies will be focused on identifying the function of each representative species and establishing whether these species could play important roles in the future as biocontrol agents.
     In this study, we employed traditional culture techniques and PCR-DGGE molecular methods to study the diversity of the intestinal bacteria community and the structure of the culturable bacterial community of adult B. dorsalis from three different populations (lab-reared (LR), lab sterile sugar-reared (LSSR) and field-collected (FC)). We also studied the attraction function of intestinal cultured bacteria to adult B. dorsalis and it's influence to host's mortality and longevity. The main results were shown as follows:
     150 different DGGE profiles of bacteria clones were obtained from the adult gut of all three populations of B. dorsalis. By sequence similarities and phylogenetic analyzing, seven major phyla of bacteria were observed. These bacteria respectively belonged to Gammaproteobacteria, Actinobacteria, Alphaproteobacteria, Deltaproteobacteria, Bacteroidetes,. Flavobacteria and Firmicutes. In all three populations, Gammaproteobacteria which was the preponderant bacterium in the gut represented 70% of the total clones. Besides this phylum, the following phyla were judged to be major components of each population since they constituted 10% or more of the total clones of a given population:Actinobacteria (10.1%) was the major component of LR and Firmicutes (12.3%) was the major component of FC. Flavobacteria, Deltaproteobacteria, Bacteroidetes, and Alphaproteobacteria appeared in various populaitons with a few clones (less than 8 per phylum). Among the 150 sequences of bacterial 16S rDNA, three distinct clusters were identified (labeled as unclassified groups). This was the kind of microbial flora which presents lacking of knowledge, might be related to the special microenvironment of B. dorsalis gut. The closely related sequences (>97% sequence similarity) which had been retrieved from three populaitons were grouped as one common species. Three oriental fruit fly populations shared common representatives of the Enterobacteriaceae, including Klebsiella, Citrobacter, Enterobacter, Pectobacterium, and Serratia. According to the analysis of diversity indices, phylotype composition and phylogenetic distribution of the 16S rDNA clones, we found that the bacterial communities of three populations were significantly different from each other. The LSSR populaiton was the least diverse and had fewer phylotypes in common with the other libraries, whereas the populaitons of LR and FC were relatively more diverse.
     600 cultured bacteria in the intestinal tract of adult B. dorsalis from three populations were classified into 53 unique phylotypes. All sequenced bacteria strains were grouped into three families:Enterobacteriaceae, Enterococcaceae and Bacillaceae. The Enterobacteriaceae was dominated in all the populations (72.0%-82.5%). The closely related sequences (>97% sequence similarity) which had been retrieved from culturable bacteria of three populaitons were grouped as one common species. By colony morphology, physiological and biochemical characteristics test, we determined the common species:five strains of bacteria as Enterobacter, two strains of Klebsiella, one strain of Citrobacter, one strain of Pantoea, two strains of Enterococcus, and four strains of Bacillus.
     The attractancy bioassays results in the laboratory showed that all bacteria strains were significantly more attractive to B. dorsalis adults than the tryptic soy broth control. Among them, Bacillus cereus, Enterococcus faecalis, Enterobacter cloacae and Citrobacter freundii were the most attractive bacteria. The autoclaved supernatants were significantly more attractive than the filtered supernatants or whole beer. Furthermore, the results of the field test showed that the six bacteria strains were significantly more attractive than the control. B. cereus and E. faecalis caught significantly more males, females, and males+females than any other of the bacterial metabolites. All the baits except Klebsiella oxytoca caught more females than males. These results were consistent with that of laboratory bioassays.
     By feeding bacterial suspension solution, we assessed the effect of the dominant Enterobacteriaceae community and the minor Bacillus community on the oriental fruit fly's survival and longevity. The results showed that fly longevity (of both males and females) was not affected by the presence of antibiotics. Ingestion of bacteria significantly affected mortality rate and average fly longevity in both sexes, regardless of previous exposure to antibiotics. In general, feeding on Bacillus had a negative effect on longevity, while feeding on the Enterobacteriaceae mixture had a beneficial effect. Compared to flies fed on sugar alone, flies fed on Bacillus died at a significantly faster rate and their average longevity was significantly reduced. Conversely, flies fed on Enterobacteriaceae died more gradually and lived significantly longer, on average, than flies fed on sugar.
引文
1.贝绍国,刘玉升,崔俊霞.日本龟蜡蚧肠道细菌分离及鉴定研究.山东农业大学学报(自然科学版),2005,36(2):209-212
    2.陈景辉.橘小实蝇综合防治技术的初步研究.华东昆虫学报,2004,13(1):107-110
    3.邓志声.热带果园桔小寡鬃实蝇防治研究进展.热带作物学报,2001,22(4):91-95
    4.杜春明,郭云昌,刘秀梅.API 20E、PCR方法在沙门菌鉴定中的应用.实用预防医学,2005,12(5):1006-1007
    5.冯杨阳,陈俊,刘波,陈英文,郑国洋,陆建华,沈树宝.一株对苯二甲酸降解菌的鉴定及其降解特性.化工学报,2006,57(8):1968-1973
    6.付佑胜,赵桂东.橘小实蝇引诱物质研究进展.安徽农业科学,2006,34(9):1919-1921
    7.何方,康贻军,单君,胡健,殷士学.一株高耐氧反硝化细菌的筛选及其反硝化产物确定.微生物学通报,2008,35(1):35-39
    8.黄素青,韩日畴.橘小实蝇的研究进展.昆虫知识,2005,42(5):479-484
    9.黄振声,颜耀平,张明谦,刘佳莹.番石榴果实挥发性成分之萃取分析鉴定及其对东方果实蝇之诱引性.植物保护学会会刊,2002,44:279-302
    10.李红梅,陈泽炳,林进添.广东省桔小实蝇种,群感染Wolbachia的分子检测.仲恺农业工程学院学报,2010,23(1):12-14
    11.梁广勤,梁帆,吴佳教,邓佩琼,何淑琼,周燕坤.实蝇防除策略和措施的研究.广东农业科学,2002,2:37-40
    12.梁广勤,梁帆,吴佳教,李惠河.桔小实蝇不育处理试验研究初报.江西农业大学学报,2003,25(6):904-905
    13.刘国红,林乃铨,林营志,刘波.芽孢杆菌分类与应用研究进展.福建农业学报,2008,23(1):92-99
    14.刘娜.苏云金杆菌在林木病虫害防治中的应用.现代农业科学,2009,16(5):71-71
    15.刘锐,李志红,孙晓,沈佐锐.首次发现沃尔巴克氏体Wolbachia对我国南亚果实蝇的感染现象.昆虫知识,2006,43(3):368-370
    16.刘秀花.芽孢杆菌的应用研究及进展.商丘师范学院学报,2005,21(5):135-137
    17.刘玉升,陈艳霞,吕飞,何华.斑衣蜡蝉成虫肠道细菌的鉴定研究.山东农业大学学报(自然科学版),2006,37(4):495-498
    18.刘玉升,李明立,刘俊展,郑继法.东亚飞蝗肠道细菌的研究.中国微生态学杂志,2007,19(1):34-39
    19.鲁兴萌,汪方炜.家蚕肠球菌对微孢子虫体外发芽的抑制作用.蚕业科学,2002,28(2):126-128
    20.吕仲贤,俞晓平,陈建明,郑许松,徐红星,陶林勇.共生菌在褐飞虱致害性变化中的作用.昆虫学报,2001,44(2):197-204
    21.萨姆布鲁克,拉塞尔.分子克隆实验指南.北京:科学出版社,2002
    22.商鸿生主编.植物检疫学.北京:中国农业出版社,1997
    23.孙国坤,张清源.橘小实蝇综合防治试验初报.华东昆虫学报,2000,9(1):116-119
    24.孙晓,李志红,梁广勤,陈洪俊,陈乃中.检疫性实蝇体内共生菌Wolbachia的研究展望.植物检疫,2004,5(18):290-293
    25.伍丽芳,刘淑娴,阮贤聪,徐社金,谢细东.广州地区橘小实蝇生活史观察研究.广东农业科学,2007,10:52-53
    26.武心镇,高玉霞,欧海龙,吴凌.奶牛瘤胃中反刍兽月形单胞菌的分离鉴定.动物医学进展,2008,29(10):25-28
    27.夏北成.植被对土壤微生物群落结构的影响.应用生态学报,1998,9(3):296-300
    28.相辉,黄勇平.肠道微生物与昆虫的共生关系.昆虫知识,2008,45(5):687-693
    29.相辉,李木旺,赵勇,赵立平,张月华,黄勇平.家蚕幼虫中肠细菌群落多样性的PCR-DGGE和16S rDNA文库序列分析.昆虫学报,2007,50(3):222-233
    30.杨宇,万民熙,彭宏,邱冠周,黄菊芳,胡岳华.一株黄铜矿专属浸出细菌的分 离与鉴定.中南大学学报(自然科学版),2007,38(4):639-644
    31.杨志波,张绍升.蜜蜂肠道细菌菌群结构及其季节性变动.中国蜂业,2010,61(5):11-14
    32.詹开瑞,赵士熙,朱水芳,周卫川,王念武.橘小实蝇在中国的适生性研究.华南农业大学学报,2006,27(4):21-25
    33.张伟,何正波,邓新平,殷幼平.桑粒肩天牛幼虫肠道菌群的种类及分布.西南农业大学学报(自然科学版),2004,26(2):169-172
    34.赵荣杰,韩玉梅.昆虫病原细菌及其利用的研究.农牧情报研究,1989,8:22-32
    35.卓凤萍,陈仕江,殷幼平,王中康,夏玉先.贡嘎蝠蛾幼虫肠道菌群的分析.重庆大学学报(自然科学版),2004,27(11):26-29
    36. Altschul S F, Madden T L, Schaffer A A, Zhang J, Zhang Z, Miller W, Lipman D J. Gapped BLAST and PSI-BLAST:a new generation of protein database search programs. Nucleic Acids Res,1997,25:3389-3402
    37. Andreoni V, Cavalca L, Rao M A, Nocerino G, Bernasconi S, Dell'Amico E, Colombo M, Gianfreda L. Bacterial communities and enzyme activities of PAHs polluted soils. Chemosphere,2004,57:401-412
    38. Anselme C, Vallier A, Balmand S, Fauvarque M, Heddi A. Host PGRP Gene Expression and Bacterial Release in Endosymbiosis of the Weevil Sitophilus zeamais. Appl Environ Microbiol,2006,72(10):6766-6772
    39. Araya R, Tani K, Takagi T, Yamaguchi N, Nasu M. Bacterial activity and community composition in stream water and biofilm from an urban river determined by fluorescent in situ hybridization and DGGE analysis. FEMS Microbiol Ecol,2003, 43(1):111-119
    40. Bano N, Hollibaugh J T. Phylogenetic Composition of Bacterioplankton Assemblage from the Arctic Ocean. Appl Environ Microbiol,2002,68(2):505-518
    41. Basset A, Khush R S, Braun A, Gardan L, Boccard F, Hoffmann J A, Lemaitre B. The phytopathogenic bacteria Erwinia carotovora infects Drosophila and activates an immune response. PNAS,2000,97(7):3376-3381
    42. Behar A, Jurkevitch E, Yuval B. Bringing back the fruit into fruit fly-bacteria interactions. Mol Ecol,2008a,17:1375-1386
    43. Behar A, Yuval B, Jurkevitch E. Enterobacteria-mediated nitrogen fixation in natural pop lations of the fruit fly Ceratitis capitata. Mol Ecol,2005,14:2637-2643
    44. Behar A, Yuval B, Jurkevitch E. Gut bacterial communities in the Mediterranean fruit fly (Ceratitis capitata) and their impact on host longevity. J Insect Physiol,2008b,54: 1377-1383
    45. Ben-Yosef M, Jurkevitch E, Boazyuval. Effect of bacteria on nutritional status and reproductive success of the Mediterranean fruit fly Ceratitis capitata. Physiol Entomol,2008,33:145-154
    46. Bergey D H, Holt J G, Krieg N R. Bergey's Manual of Systematic Bacteriology (ed. Garrity G M.). Williams and Wilkins, Baltimore,2001
    47. Broderick N A, Raffa K F, Goodman R M, Handelsman J. Census of the bacterial community of the gypsy moth larval midgut using culturing and culture-independent methods. Appl Environ Microbiol,2004,70:293-300
    48. Burger J M S, Hwangbo D S, Corby-Harris V, Promislow D E L. The functional costs and benefits of dietary restriction in Drosophila. Aging Cell,2007,6:63-71
    49. Capuzzo C, Firrao Q Mazzon L, Squartini A, Girolami V.'Candidatus Erwinia dacicola',a coevolved symbiotic bacterium of the olive fly Bactrocera oleae (Gmelin). Int J Syst Evol Micr,2005,55:1641-1647
    50. Casamayor E O, Schafer H, Baneras L, Pedros-Alio C, Muyzer G Identification of and spatio-temporal diffenrences between microbial assemblages from two nerghboring sulfurous lakes:comparison by microscopy and denaturing gradient gel electrophoresis. Appl Environ Microbiol,2000,66(2):499-508
    51. Chao A. Nonparametric estimation of the number of classes in a population. Scand J Stat,1984,11:265-270
    52. Chouari R, Le Paslier D, Dauga C, Daegelen P, Weissenbach J, Sghir A. Novel major bacterial candidate division within a municipal anaerobic sludge digester. Appl Environ Microbiol,2005,71(4):2145-2153
    53. Courtice A C, Drew R A I. Bacterial regulation of abundance in tropical fruit flies (Diptera:Tephritidae).Aust J Zool,1984,21:251-268
    54. Daser U, Brandl R. Microbial gut floras of 8 species of Tephritids. Bot J Linn Soc, 1992,45:155-165
    55. Dillon R J, Webster G, Weightman A J, Keith-Charnley A. Diversity of gut microbiota increases with aging and starvation in the desert locust. Anton Leeuw Int J G,2010, 97:69-77
    56. Dillon R, Dillon V. The gut bacteria of insects:nonpathogenic interactions. Annu Rev Entomol,2004,49:71-92
    57. Douglas A E, Darby A C, Birkle L M. The ecological significance of symbiotic microorganisms in animals:Perspectives from the microbiota of aphids. In:Hails R M, Beringer J, Godfray H C eds. Genes in the Environment. Oxford:Blackwell Publishing,2002,306-325
    58. Douglas A E. The nutritional quality of phloem sap utilized by natural aphid populations. Ecol Entomol,1993,18(1):31-38
    59. Drew R A I, Lloyd A C. Bacteria in the life cycle of tephritid fruit flies. In:Barbosa P, Krishchik V A, Jones C G, (Eds.), Microbial Mediation of Plantherbivore Interactions, John Wiley and Sons, New York,1991:441-465
    60. Drew R A I, Lloyd A C. Relationship of fruit flies (Diptera:Tephritidae) and their bacteria to host plants. Ann Entomol Soc Am,1987,80(5):629-636
    61. Drew R A I. Behavioural strategies of fruit flies of the genus Dacus (Diptera: Tephritidae) significant in mating and host-plant relationships. Bull Entomol,1987, 77:73-81
    62. Du C, Wu Z, Xiao E, Zhou Q, Cheng S, Liang W, He F. Bacterial diversity in activated sludge from a consecutively aerated submerged membrane bioreactor treating domestic wastewater. J Environ Sci-China,2008,20:1210-1217
    63. Duineveld B M, Rosado A S, Van Elsas J D, Van Veen J A. Analysis of the dynamics of bacterial communities in the rhizophere of the chrysanthemum via denaturing gradient gel electrophoresis and substrate utilization patterns. Appl Environ Microbiol, 1998,64(12):4950-4957
    64. Epsky N D, Heath R R, Dueben B D, Lauzon C R, Proveaux A T, MacCollom G B. Attraction of 3-methyl-l-butanol and ammonia identified from Enterobacter agglomerans to Anastrepha suspense. J Chem Ecol,1998,24(11):1868-1880
    65. Eya B K, Kenny P T M, Tamura S Y, Ohnishi M, Naya Y, Nakanishi K, Sugiura M. Chemical association in symbiosis sterol donors in planthoppers. J Chem Ecol,1989, 15(1):373-380
    66. Ferris M J, Muyzer G, Ward D M. Denaturing gradient gel electrophoresis profiles of 16S rRNA-defined populations inhabiting a hot spring microbial mat community. Appl Environ Microbiol,1996,62(2):340-346
    67. Fitt G P, O'Brien R W. Bacteria associated with four species of Dacus (Diptera: Tephritidae) and their role in the nutrition of the larvae. Oecologia (Berl),1985,67: 447-454
    68. Fukatsu T, Hosokawa T. Capsule-Transmitted Gut Symbiotic Bacterium of the Japanese Common Plataspid Stinkbug, Megacopta punctatissima. Appl Environ Microbiol,2002,68(1):389-396
    69. Gelsomino A, Keijzer-Wolters A C, Cacco G, Van Elsas J D. Assessment of bacterial community structure in soil by polymerase chain reaction and denaturing gradient gel electrophoresis. J Microbiol Meth,1999,38:1-15
    70. Good I J. The population frequencies of species and the estimation of population parameters. Biometrika,1953,40:237-264
    71. Grimont P, Grimont F. The genus Serratia. Rev Microb,1978,32:221-248
    72. Gussow D, Glackson T. Direct clone characterization from plaques and colonies by the polymerase chain reaction. Nucleic Acids Res,1989,17:4000
    73. Hagen K S. Dependence of the olive fly, Dacus oleae larvae on symbiosis with Pseudomonas savastanoi for the utilization of olive. Nature,1966,209:423-424
    74. Hentschel U, Hopke J, Horn M, Friedrich A B, Wagner M, Hacker J, Moore B S. Molecular evidence for a uniform microbial community in sponges from different oceans. Appl Environ Microbiol,2002,68:4431-4440
    75. Hill T C J, Walsh K A, Harris J A, Moffett B F. Using ecological diversity measures with bacterial communities. FEMS Microbiol Ecol,2003,43:1-11
    76. Hofstad T, Olsen I, Eribe E R, Falsen E, Collins M D, Lawson P A. Dysgonomonas gen. nov. to accommodate Dysgonomonas gadei sp. nov., an organism isolated from a human gall bladder, and Dysgonomonas capnocytophagoides (formerly CDC group DF-3). Int J Syst Evol Micr,2000,50:2189-2195
    77. Hongoh Y, Deevong P, Inoue T, Moriya S, Trakulnaleamsai S, Ohkuma M, Vongkaluang C, Noparatnaraporn N, Kudol T. Intra- and interspecific comparisons of bacterial diversity and community structure support coevolution of gut microbiota and termite host. Appl Environ Microbiol,2005,71:6590-6599
    78. Howard D J, Bush G L, Breznak J A. The evolutionary significance of bacteria associated with Rhagoletis. Evolution,1985,39:405-417
    79. Howell C R, Beier R C, Stipanovic R D. Production of ammonia by Enterobacter cloacae and its possible role in the biological control of Pythium preemergence damping-off by the bacterium. Phytopatology,1988,78:1075-1078
    80. Husseneder C, Grace J K, Oishi D E. Use of genetically engineered Escherichia coli to monitor ingestion, loss, and transfer of bacteria in termites. Curr Microbiol,2005, 50(2):119-123
    81. Jamnongluk W, Kittayapong P, Baimai V, O'Neill S L. Wolbachia Infections of Tephritid Fruit Flies:Molecular Evidence for Five Distinct Strains in a Single Host Species. Curr Microbiol,2002,45(4):255-260
    82. Jang E B, Nishijima K A. Identification and attractancy of bacteria associated with Dacus dorsalis (Diptera:Tephritidae). Environ Entomol,1990,19:1726-1751
    83. Jeyaprakash A, Hoy M A, Allsopp M H. Bacterial diversity in worker adults of Apis mellifera capensis and Apis mellifera scutellata (Insecta:Hymenoptera) assessed using 16S rRNA sequences. J Invertebr Pathol,2003,84:96-103
    84. Kadookay. Effects of bifidobacteria cells on mitogenic response of splenocytes and several functions of phagocytes. Milchwessenshaft,1991,46:626-631
    85. Kikuchi Y, Hosokawa T, Fukatsu T. Insect-Microbe Mutualism without Vertical Transmission:a Stinkbug Acquires a Beneficial Gut Symbiont from the Environment Every Generation. Appl Environ Microbiol,2007,73(13):4308-4316
    86. Kittayapong P, Milne J R, Tigvattananont S, Baimai V. Distribution of the Reproduction-modifying Bacteria, Wolbachia, in Natural Populations of Tephritid Fruit Flies in Thailand. Science Asia,2000,26:93-103
    87. Knapp B A, Podmirseg S M, Seeber J, Meyer E, Insam H. Diet-related composition of the gut microbiota of Lumbricus rubellus as revealed by a molecular fingerprinting technique and cloning. Soil Bio Biochem,2009,41:2299-2307
    88. Koizumi Y, Kojima H, Fukui M. Characterization of depth-related microbial community structure in lake sediment by denaturing gradient gel electrophoresis of amplified 16S rDNA and reversely transcribed 16S rRNA fragments. FEMS Microbiol Ecol,2003,46(2):147-157
    89. Kowalchuk G A, Stephen J R, De Boer W, Prosser J I, Embley T M, Woldendorp J W. Analysis of ammonia-oxidizing bacteria of the (3-subdivision of the class Proteobacteria in coastal sand dunes by denaturing gradient gel electrophoresis and sequencing of PCR-amplified.16S ribosomal DNA fragments. Appl Environ Microbiol,1997,63(4):1489-1497
    90. Kuzina L V, Peloquin J J, Vacek D C, Miller T A. Isolation and identification of bacteria associated with adult laboratory Mexican fruit flies, Anastrepha ludens (Diptera:Tephritidae). Curr Microbiol,2001,42:290-294
    91. Lauzon C R. Symbiotic relationships of tephritids. Insect Symbiosis (ed. by Bourtzis K, Miller T A.),2003, pp.115-129. CRC Press, Boca Raton, FL
    92. Leadbetter J R, Schmidt T M, Graber J R, Breznak J A. Acetogenesis from H2 plus CO2 by spirochetes from termite guts. Science,1999,283(5402):686-689
    93. Lemos F J, Terra W R. Digestion of bacteria and the role of midgut lysozyme in some insect larvae. Comp Biochem Physiol B,1991,100:265-268
    94. Lloyd A C, Drew R A I, Teakle D S, Hayward A C. Bacteria associated with some Dacus species (Diptera:Tephritidae) and their host fruit in Queensland. Aust J Biol Sci,1986,39:361-368
    95. MacCollom G B, Lauzon C R, Weires Jr R W, Rutkowski A A. Attraction of adult apple maggot (Diptera:Tephritidae) to microbial isolates. J Econ Entomol,1992,85: 83-87
    96. Magurran A E. Ecological diversity and its measurement. Chapman and Hall,1996, London
    97. Maidak B L, Cole J R, Lilburn T Q Parker Jr C T, Saxman P R, Farris R J, Garrity G M, Olsen G J, Schmidt T M, Tiedje J M. The RDP-Ⅱ (Ribosomal Database Project). Nucleic Acids Res,2001,29:173-174
    98. Makhmoor H D, Singh S T. Efective concentration of methyl eugenol for the control of guava male annihilation in guava orchard. PakJZool,1993,22(1):82-84
    99. Martinez A J, Robacker D C, Garcia J A, Esau K L. Laboratory and field olfactory attraction of the Mexican fruit fly (Diptera:Tephritidae) to metabolites of bacterial species. Fla Entomol,1994,77:117-126
    100. Mohr K I, Tebbe C C. Diversity and phylotype consistency of bacteria in the guts of three bee species (Apoidea) at an oilseed rape field. Environ Microbiol,2006,8: 258-272
    101. Muniz C A, Jaillard D, Lemaitre B, Boccard F. Erwinia carotovora EVf antagonizes the elimination of bacteria in the gut of Drosophila larvae. Cell Microbiol,2006,9: 106-119
    102. Ohkuma M, Noda S, Hongoh Y, Kudo T. Diverse bacteria related to the Bacteroides subgroup of the CFB phylum within the gut symbiotic communities of various termites. Biosci Biotechnol Biochem,2002,66(1):78-84
    103. Oliver K M, Russell J A, Moran N A, Hunter M S. Facultative bacterial symbionts in aphids confer resistance to parasitic wasps. P Natl Acad Sci USA,2003,100: 1803-1807
    104. Prosser W A, Douglas A E. The aposymbiotic aphid:an analysis of chlortetracycline-treated pea aphid, Acyrthosiphon pisum. J Insect Physiol,1991,37: 713-719
    105. Qiu X Y, Wu L Y, Huang H S. Evaluation of PCR-generated chimeras, mutations, and heteroduplexes with 16S rRNA gene-based cloning. Appl Environ Microbiol,2001, 67:880-887
    106. Radek R F. Baeteria and fungi ssoeiated with termites:diversity and function:in nutrition a review. Ecotropica,1999,5:183-196
    107. Rani A, Sharma A, Rajagopal R, Adak T, Bhatnagar R K. Bacterial diversity analysis of larvae and adult midgut microflora using culture-dependent and culture-independent methods in lab-reared and field-collected Anopheles stephensi-an Asian malarial vector. BMC Microbiol,2009,9:1471-2180
    108. Ranner H. Investigations on the biology and management of the European cherry fruit fly Rhagoletis cerasi L. (Diptera:Tephritidae)-V. Experiments on the control of the European cherry fruit fly by means of the Incompatible Insect Technique (ITT) Pflanzenschutzberichte,1990,51:1-16
    109. Reeson A F, Jankovic T, Kasper M L, Rogers S, Austin A D. Application of 16S rDNA-DGGE to examine the microbial ecology associated with a social wasp Vespula germanica. Insect Mol Biol,2003,12:85-91
    110. Riegler M, Stauffer C. Wolbachia infections and superinfections in cytoplasmically incompatible populations of the European cherry fruit fly Rhagoletis cerasi (Diptera, Tephritidae). Mol Ecol,2002,11:2425-2434
    111. Riemann L, Steward G F, Fandino L B, Campbell L, Landry M R, Azam F. Bacterial community composition during two consecutive NE Monsoon periods in the Arabian Sea studied by denaturing gradient gel electrophoresis (DGGE) of rRNA genes. FEMS Deep-Sea Research Ⅱ,1999,46:1791-1811
    112. Robacker C, Robert J B. Chemicals attractive to Mexican fruit fly from Klebsiella pneumoniae and Citrobacter freundii cultures sampled by solid-phase microextraction. J Chem Ecol,1997,23(12):2897-2915
    113. Robacker D C, Flath R A. Attractants from Staphylococcus aureus cultures for the Mexican fruit fly, Anastrepha ludens. J Chem Ecol,1995,21:1861-1874
    114. Robacker D C, Moreno D S. Protein feeding attenuates attraction of Mexican fruit flies (Diptera:Tephritidae) to volatile bacterial metabolites. Fla Entomol,1995,78: 62-69
    115. Robacker D C, Warfield W C, Albach R F. Partial characterization and HPLC isolation of bacteria produced attractants for the Mexican fruit fly, Anastrepha ludens. J Chem Ecol,1993,19:543-548
    116. Saitou N, Nei M. The neighbor-joining method:a new method for reconstructing phylogenetic trees. Mol Biol Evol,1987,4:406-425
    117. Samuel K, Shen, Dowd P F. Xenobiotic induction of esterases in cultures of the yeast-like symbiont from the cigarette beetle. Entomol Exp Appl,1989,52:179-184
    118. Sandstrom J, Moran N. How nutritionally imbalanced is phloem sap for aphids? Entomol Exp Appl,1999,19(1):203-210
    119. Sasaki T, Kawamura M, Ishikama H. Nitrogen recycling in the brown planthopper, Nilaparvata lugens:involvement of yeast-like endosymbionts in uric acid metabolism. J Insect Physiol,1996,42(2):125-129
    120. Schafer A, Konrad R, Kuhinigk T, Kuhnigk P, Hertel H, Konig H. Hemicellulose-degrading bacteria and yeasts from the termite gut. J Appl Bacteriol, 1996,80(5):471-478
    121. Sekiguchi H, Watanabe M, Nakahara T, Xu B, Uchiyama H. Succession of Bacterial Community Structure along the Changjiang River Determined by Denaturing Gradient Gel Electrophoresis and Clone Library Analysis. Appl Environ Microbiol, 2002,68(10):5142-5150
    122. Shinzato N, Muramatsu M, Matsui T, Watanabe Y. Molecular phylogenetic diversity of the bacterial community in the gut of the termite Coptotermes formosanus. Biosci Biotechnol Biochem,2005,69(6):1145-1155
    123. Shinzato N, Muramatsu M, Matsui T, Watanabe Y. Phylogenetic analysis of the gut bacterial microflora of the fungus-growing termite Odontotermes formosanus. Biosci Biotechnol Biochem,2007,71(4):906-915
    124. Simpson J M, Kocherginskaya S A, Aminov R I, Skerlos L T, Bradley T M, Mackie R I, White B A. Comparative microbial diversity in the gastrointestinal tracts of food animal species. Integr Comp Biol,2002,42:327-331
    125. Singleton D R, Furlong M A, Rathbun S L, Whitman W B. Quantitative comparisons of 16S rRNA gene sequence libraries from environmental samples. Appl Environ Microbiol,2001,67:4374-4376
    126. Smalla K, Wieland Q Buchner A, Zock A, Parzy J, Kaiser S, Roskot N, Heuer H, Berg G. Bulk and Rhizosphere Soil Bacterial Communities Strdied by Denaturing Gradient Gel Electrophoresis:Plant-Dependent Enrichment and Seasonal Shifts Revealed. Appl Environ Microbiol,2001,67(10):4742-4751
    127. Songjinda P, Nakayama J, Kuroli Y. Molecular monitoring of the developmental bacterial community in the gastrointestinal tract of Japanese infants. Biosci Biotechnol Biochem,2005,69(3):638-641
    128. Steiner L F. Low-cost plastic fruit fly trap. JEcon Entomol,1957,50:508-509
    129. Stevenson B S, Eichorst S A, Wertz J T, Schmidt T M, Breznak J A. New strategies for cultivation and detection of previously uncultured microbes. Appl Environ Microbiol, 2004,70(8):4748-4755
    130. Stingl U, Radek R, Yang H, Brune A. "Endomicrobia":cytoplasmic symbionts of termite gut protozoa form a separate phylum of prokaryotes. Appl Environ Microbiol, 2005,71(3):1473-1479
    131. Thompson J D, Gibson T J, Plewniak F, Jeanmougin F, Higgins D G. The CLUSTAL_X windows interface:flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res,1997,25:4876-4882
    132. Torsvik R, Goksoyr J, Daae F L. High diversity in DNA of soil bacteria. Appl Envirn Microbiol,1990,56(3):782-787
    133. Ward D M, Ferris M J, Nold S C, Bateson M M. A natural view of microbial biodiversity within hot spring cyanobacterial mat communities. Microbiol Nol Biol Rev,1998,62(4):1353-1370
    134. Wilkinson T L. The elimination of intracellular micro-organisms from insects:an analysis of antibiotic-treatment in the pea aphid (Acyrthosiphon pisum). Comp Biochem Phys A,1998,119,871-881
    135. Woese C R. Bacterial evolution. Microbiol Rev,1987,51(2):221-271
    136. Xiang H, Wei G, Jia S, Huang J, Miao X, Zhou Z, Zhao L, Huang Y. Microbial community in the larval midgut of laboratory and field populations of cotton bollworm (Helicoverpa armigera). Can JMicrobiol,2006,52:1085-1092
    137. Yoshiyama M, Kimura K. Bacteria in the gut of Japanese honeybee, Apis cerana japonica, and their antagonistic effect against Paenibacillus larvae, the causal agent of American foulbrood. J Invertebr Pathol,2009,102:91-96
    138. Zhang H, Jackson T A. Autochthonous bacterial flora indicated by PCR-DGGE of 16S rRNA gene fragments from the alimentary tract of Costelytra zealandica (Coleoptera: Scarabaeidae). JAppl Microbiol,2008,105:1277-1285
    139. Zinder D E, Dworkin M. Morphological and physiological diversity. The Prokaryotes (ed. by Dworkin M, Rosenberg E, Schleifer K H, Stackebrandt E.),3rd edn,2000, pp. 185-220, Springer Verlag, New York, NY

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700