贡嘎蝠蛾幼虫肠道细菌多样性分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
贡嘎蝠蛾(Hepialus gonggaensis)幼虫是名贵中药材冬虫夏草(Cordyceps sinensis)的优势寄主之一。人工培植中幼虫抗逆力弱,易受微生物感染,是影响冬虫夏草资源保护和开发的重要制约因子。研究贡嘎蝠蛾幼虫肠道菌群多样性,对于研究其营养生理,进而改善和研制人工饲料,提高幼虫抗逆力和成活率有重要意义。
    本研究以四川康定雅家埂山上采集的贡嘎蝠蛾为实验材料,按传统的培养分离方法对贡嘎蝠蛾幼虫的肠道细菌进行分离和鉴定。实验结果表明,贡嘎蝠蛾肠道细菌都属低温菌,最适生长温度15℃,在15℃培养2d 后才长出典型菌落。从肠道中分离纯化出12 个不同菌群,其中优势菌群为葡萄球菌(Staphylococcus ),菌群数量为2.05×109mL-1,检出率100%,应为幼虫肠道中的常住菌群,其它菌群检出率均低于50%,可能为肠道中的过路菌群。生化鉴定大多数菌群的符合值都较低,这与蝠蛾生活于高海拔高寒地区,其肠道微生物与常见微生物菌群有较大差异一致。
    利用分子生物学方法研究了贡嘎蝠蛾幼虫肠道细菌多样性。研究用根据大肠杆菌16SrRNA 基因保守序列设计的引物对贡嘎蝠蛾幼虫肠道基因组DNA 进行PCR 扩增,再利用变性梯度凝胶电泳对扩增得到的16SrDNA 序列进行直观分离。采用变性剂浓度范围为10%-60%时,分离得到12 条带,进一步缩小变性剂范围为25%-48%,最终分离得到76 条带。因为每个条带很可能就代表一个不同的微生物物种,所以DGGE 带谱中条带的数量和亮度,即可相应反映出该环境中微生物种类的数量及群落中的优势菌群。从实验结果可以看出,贡嘎蝠蛾幼虫肠道中存在着大量细菌,它们的种类和数量各不相同,即贡嘎蝠蛾幼虫肠道中具有丰富的细菌多样性。多次重复地从健康贡嘎蝠蛾幼虫体内取得肠道富集后,应用DGGE 技术进行研究,都可以得出比较一致的结果。由此可见,以DGGE 技术分离16SrDNA条带研究昆虫肠道细菌多样性是可行的。
    把DGGE 分离得到的最亮的8 条带进行纯化,克隆和测序,并对所得序列以分子信息技术进行BLAST 比对,结果表明:除3 条带外,其他条带的顺序与已知菌株的顺序都有较大的差异,暗示这些条带所代表的菌株可能尚未被人们获得并研究过,因此采用此方法对贡嘎蝠蛾幼虫肠道微生物进行研究将是可行的。
    在DGGE 与纯培养的比较研究中,两种方法检测到的细菌多样性结果不完全一致,说明每种方法都有一定的选择性和局限性,得到纯培养的物种并不一定是肠道环境中的真正的优势类群,它们或许只占环境中细菌总数的一小部分。
The larvae of Hepialus gonggaensis is one of the predominant host of Cordyceps sinensis. The insect infected by C. sinensis can produce famous herb medicine Dongchongxiacao which has very high price in China and Asia area. The intestinal microbial flora played an important action in larvae’s development, nutrient and resistant to the diseases.
    In the study, intestinal microbial flora of H. gonggaensis larvae, collected from Kangding, Sichuan Province, had been isolated and identified with classic methods. The results showed that the intestinal microbial flora of H. gonggaensis belongs to low-temperature bacteria. The bacteria grew very slowly and the typical colony appeared on cultural plate only after 2 days incubated under the most profitable temperature, 15℃. Totally 12 different isolates of bacteria were obtained from the larvae intestine with 5 different of cultural media. It showed that Staphylococcus. sp was the predominant community, whose numberable colony counted 2.05×109mL-1, and the detection rate as high as 100%. It revealed that Staphylococcus sp. could be the normal flora in the larva’s intestine. And the other isolates can only be detected occasionally; they were supposed to be the passer microbes. The biochemical identity showed that the identifying values are relative low for most bacteria, which are consistent with the larvae’s abnormal living environment.
    Because of large sorts of bacteria could be uncultured, molecular technology were also applied to analyze the bacteria diversity in the larva gut of H. gonggaensis. The primers designed by conservative sequences of 16SrRNA gene of E.coli was used to amplificate intestinal bacterial gene group DNA from H. gonggaensis , and then amplificational products were separated directly by DGGE. Twelve bands were obtained with DGGE in the denaturant range of 10%~60%, and 76 bands were separated at last under the much narrow denaturant range of 25%~48%. Every band might present a different microbiological sort, so the number and the brightness of bands in DGGE patterns can reflect the number of bacterium sorts and the predominant bacterium in intestinal flora. All the study indicated that there were great number of bacterium sorts and quantity in the intestine of H. gonggaensis. Repeated experiment can get the same result. It showed that 16SrDNA sequence combined DGGE analysis was effective method for larvae’s intestinal bacterial diversity study.
    The eight most bright bands separated by DGGE were purified, cloned and sequenced. The sequences were compared with the database in Gene Bank and aligned by the software BLAST. The results showed that the 5 of 8 sequences of isolators were different from that of bacteria which were already knew by biologists. This suggested that these bacteria had not be studied yet up to now. The different bacterial flora was obtained by classic culture and DGGE, especialy the predominant species. This inconsistant probably because of each method having limited use area and not perfect for all sorts of bacterial. It also indicated that the predominance bacterial strains got from purified culture were probably not the real predominant flora. They maybe only accounted a few part of flora in the insect intestine.
引文
[1] 尹定华. 贡嘎蝠蛾生态分布的研究.特产研究.1994,(1):6-9.
    [2] 尹定华. 贡嘎蝠蛾幼虫生物学特性的观察.昆虫知识.1995, 32(5):289-291.
    [3] Yuichi Hongoh. Molecular analysis of bacterial microbiota in the gut of the termite Reticulitermes speratus (Isoptera; Rhinotermitidae).Microbiology Ecology. 2003, 44:231-242
    [4] Eutick, M.L., Veivers, P.C., O’Brien, R.W. and Slaytor, M.Bacteria from the gut of Austrilian termites [J]. Appl Environ Microbiol, 1978,35(5):823-828
    [5] Breznak, J.A. Dependence of the higher termite, Nasutitermes exitiosus and the lower termite, Coptotermes lacteus on their gut flora. J. Insect Physiol.2000, 24:363-368
    [6] Abe, T., Bignell, D.E. and Higashi, M., Eds. Ecology of prokaryotic microbes in the guts of wood-and litter-feeding termites. In Termites: Evolution, Sociality, Symbioses, Ecology 2003,32:209-232.
    [7] Kluwer Academic, Dordrecht. Brune, A. and Friedrich, M. Microecology of the termite gut:structure and function on a microscale. Curr. Opin. Microbiol. 2000, 3:263-269.)
    [8] 康白.微生态学.大连:大连出版社,1988.64-81
    [9] 陈仕江. 贡嘎蝠蛾卵的扫描电镜和生物学观察. 四川动物.1997,16(3):102-105.
    [10] 尹定华. 贡嘎蝠蛾各虫态生态学的研究. 特产研究. 1994,(4):5-8 .
    [11] 曾纬. 冬虫夏草寄主昆虫拟青霉病研究.中国中药杂志. 2001, 26(7):455-456.
    [12] 黄天福. 光照强度与光色对贡嘎蝠蛾性行为的作用. 中国中药杂志.1997,22(4)206-209
    [13] 李黎. 康定冬虫夏草子囊孢子的生长发育.中国中药杂志. 2000, 25(8):501-502
    [14] McFall-Ngai, M. J.. The development of cooperative associations between animals and bacteria: Establishing detente among Domains. Am. Zool.1998, 38: 593–608;
    [15] Henderson, B., Wilson, M., McNab, R., and Lax, A. J..“Cellular Microbiology: Bacteria–Host Interactions in Health and Disease.”Wiley, New York/Chicester, UK;1999,23:197-199
    [16] Hooper, L. V., and Gordon, J. I.. Commensal host–bacterial relationships in the gut. Science 2001,292: 1115–1118.;
    [17] Margaret J. McFall-Ngai:Unseen Forces: The Influence of Bacteria on Animal Development. Developmental Biology.2002, 242:1–14
    [18] Amdreyeva,Z. M..J.Hyg,Epidemion.Microbiol.Immunol.1977,291-295
    [19] Dubos,R.Am.J.Med.Sci.1962,24:264-265
    [20] 杨景云编《肠道菌群与健康》.哈尔滨:黑龙江科学出版社.1991;
    [21] (美)艾.贾维茨等著,邓瑞麟等译.《医学微生物学》.人民卫生出版社.1989,1(2): 102-104
    [22] 张国华,麻致中,康白.人体正常皮肤,鼻粘膜需氧微生物群的定量分析.中国微生态学杂志.1990,2(1):35~38
    [23] Amann R, Ludwig I W, Schleifer K H. Phylogenetic identification and in situ detection of individual microbial cells without cultivation. Microbiol Rev, 1995,59:143-169.
    [24] 分子生物学技术在肠道正常菌群研究中的应用楼金钎等,国外医学儿科学分册2004,31(1)1-4
    [25] Hoshina S,Machida K.Diagnostic microbiology of DNA in septicemia.Rinsho Byori,1996,44:314-321.
    [26] Nickel J C,Downey J,Johnston B,et al.Predictors of patient response to antibiotic therapy for the chronic prostatitis/chronic pelvic pain syndrome:a prospective multicenter clinical trial.Urol,2001,165:1539-1544
    [27] Bale M,Vaneechoutte M, Verhelst R, et al. Identification of lactobarcillus species using tDNA-PCR Microiol Methods,2002,50(3):263-271
    [28] Tannock G W. Analysis of the intestinal microflora using molecular methods Eur J Clin Nutr, 2002,56(Suppl 4);S44-49
    [29] Vincent D ,Roy D, Mondou F, et al.Characterization of bidido-bacteria by random DNA amplification Int J Food Microbiol, 1998,43(3):185-193
    [30] Daud Khaled AK, Neilan BA, Henriksson A, et al. Identification and phylogenetic analysis of Lactobacillus using multiplex RAPD-PCR FEMS Microbiol Lett, 1997,153 (1):191-197
    [31] von Wintzingerode F,Gobel UB, Stackebrandt E. Determination of microbial diversity in environmental samples: pitfalls of PCR-based r RNA analysis FEMS Microbiol Rev, 1997,21 (3):213-229
    [32] Myers R.M., Fischer S.G.., Lerman L.S. and Maniatis T., Nearing all single base substitutions in DNA fragments joint to a GC-clamp can be detected by denaturing gradient gel electrophoresis [J]. Nucleic Acids Res. 1985,13:3131-3145
    [33] 罗海峰,齐鸿雁,薛凯等.在PCR-DGGE 研究土壤微生物多样性中应用GC 发夹结构的效应.生态学报,2003,23(10):2170-2175
    [34] Eerris M J,Muyzer G. and Ward D M. Denaturing gradient gel electrophoresis profiles of 16SrRNA-defined populations inhabiting a hot spring microbial mat community [J].Appl Environ Microbiol,1996,62(2):340-346
    [35] Ward D M,Ferris M J, Nold S C,et al.A natural view of microbial biodiversity within hot spring cyanobacterial mat communities Microbiol Nol BiolRev,1998,62(4):1353-1370.
    [36] Casamayor E O,Schafer H, Baneras L,et al. Identification of and spatio-temporal diffenrences between microbial assemblages from two nerghboring sulfurous lakes :
    comparison by microscopy and denaturing gradient gel electrophoresis.Appl Environ
    Microbiol,2000,66(2):499-508
    [37] Sekiguchi H,Watanabe M,Nakahara T, et al.Succession of Bacterial Community Structure along the Changjiang River Determined by Denaturing Gradient Gel Electrophoresis and Clone Library Analysis.Appl Environ Microbiol, 2002,68(10):5142-5150 ;
    [38] Yoshikazu Koizumi , Hisaya Kojima, Manabu Fukui, Characterization of depth-related microbial community structure in lake sediment by denaturing gradient gel electrophoresis of amplified 16S rDNA and reversely transcribed 16S rRNA fragments .FEMS. Microbiology Ecology 2003,46: 147-157
    [39] Ruben Araya,Katsuji Tani,et al. Bacterial activity and community composition in stream water and biofilm from an urban river determined by fluorescent in situ hybridization and DGGE analysis FEMS.Microbiology Ecology 2003 (43) 111-119
    [40] Lasse Riemann , Grieg F. Steward ,et al. Bacterial community composition during two consecutive NE Monsoon periods in the Arabian Sea studied by denaturing gradient gel electrophoresis (DGGE) of rRNA genes. FEMS. Deep-Sea Research II 1999,46: 1791~1811
    [41] Bano N and Hollibaugh J T. Phylogenetic Composition of Bacterioplankton Assemblage from the Arctic Ocean. Appl Environ Microbiol, 2002,68(2):505-518
    [42] Duineveld B M, Rosado A, Elsas J D, et al. Analysis of the dynamics of bacterial communities in the rhizophere of the chrysanthemum via denaturing gradient gel electrophoresis and substrate utilization patterns Appl Environ Microbiol, 1998,64(12):4950-4957
    [43] Smalla K, Wieland G, Buchner A, et al. Bulk and Rhizosphere Soil Bacterial Communities Strdied by Denaturing Gradient Gel Electrophoresis: Plant-Dependent Enrichment and Seasonal Shifts Revealed Appl Environ Microbiol ,2001,67(10): 4742~4751
    [44] V. Andreoni, L. Cavalca , et al. Bacterial communities and enzyme activities of PAHs polluted soils Chemosphere 2004 (57):401–412
    [45] Kowalchuk G A, Stephen J R, de Boer W, et al. Analysis of ammonia-oxidizing bacteria of the β-subdivision of the class proteobacteria in coastal sand dunes by denaturing gradient gel electrophoresis and sequencing of PCR-amplified. 16S ribosomal DNA fragments Appl Environ Microbiol ,1997,63(4): 1489-1497
    [46] Eerris M J,Muyzer G. and Ward D M. Denaturing gradient gel electrophoresis profiles of 16SrRNA-defined populations inhabiting a hot spring microbial mat community. Appl Environ Microbiol,1996,62(2):340-346
    [47] Santegoeds C M, Nold S, and Ward D M. Denaturing gradient gel electrophoresis used to monitor the enrichment culture of aerobic chemoorganotrophic bacteria from a hot spring
    cyanobacterial mat [J]. Appl Environ Microbiol, 1996, 62 (11): 3922-3928
    [48] Wawer C, Jetten M S M, and Muyzer G. Genetic diversity and expression of the [NiFe] hydrogenase large-subunit gene of desulfovibrio sp. In environmental samples Appl Environ Microbiol ,1997, 63 (11):4360-4369.
    [49] Randazzo CL, Torriani S, Akkermans AD, et al. Appl Environ Microbiol, 2002,68:1882-1892
    [50] Songjinda P, Nakayama J, Kuroki Y, Molecular monitoring of the developmental bacterial community in the gastrointestinal tract of Japanese infants,Biosci Biotechnol Biochem. 2005.69(3):638-641
    [51] Suchodolski JS, Ruaux CG,Application of molecular fingerprinting for qualitative assessment of small-intestinal bacterial diversity in dogs. J Clin Microbiol. 2004 Oct;42(10):4702-4708
    [52] Smith AH, Mackie RI,Effect of condensed tannins on bacterial diversity and metabolic activity in the rat gastrointestinal tract. Appl Environ Microbiol. 2004 Feb;70(2):1104-1115
    [53] Walter J, Hertel C, Tannock G W, et al. Appl Environ Microbiol, 2001, 67: 2578 -2585
    [54] ZoetendalEG,etal.ApplEnvironMicrbiol,1998,64(10):3854-3859.
    [55] KimuraK, etal. ApplEnvironMicrobiol,1997,63:3394-3398.
    [56] Schwiertz A, Gruhl B, Lobnitz M, Michel P, Radke M, Blaut M. Development of the intestinal bacterial composition in hospitalized preterm infants in comparison with breast-fed, full-term infants. Pediatr Res. 2003 Sep;54(3):393-399. Epub 2003 Jun 4.
    [57] 付琳林等,利用变性梯度凝胶电泳分析微生物的多样性,生物技术通报,2004(2)38-40
    [58] Muyzer G, Waal E C, and Uittrlinden A G. Profiling of complex microbial populations by denaturing gradient gel electrophoreses analysis of polymerase chain reaction-amplified genes coding for 16SrRNA Appl Environ Microbiol, 1993,59(3):695-700
    [59] Omar NB, Ampe F. Appl Environ Microbiol, 2000,66:3664-3673
    [60] Cocolin L, Manzano M, Cantoni C. Appl Environ Microbiol,2001,67:5113-5121
    [61] Vallaeys T, Topp E, Muyzer G, et al. Evaluation of denaturing gradient gel electrophoresis in the detection of 16SrDNA sequence variation in rhizobia and methanotrophs FEMS Microbiol Ecol. 1997,24:279-285
    [62] Ingmar Janse*, Jasper Bok, Gabriel Zwart A simple remedy against artifactual double bands in denaturing gradient gel electrophoresis Journal of Microbiological Methods 57 (2004) 279–281
    [63] Murray A E, Hollibaugh J T, and Orrego C. Phylogenetic compositions of bacterioplankton from two California estraries compared by denaturing gradient gel electrophoresis of 16S rDNA fragments. Appl Environ Microbiol, 1996,62(7):2676-2680.
    [64] Komatsoulis G A, and Waterman M S. A new computational method for detection of chimeric 16S rRNA artifacts generated by PCR amplification from mixed bacterial populations Appl Environ Microbiol,1997,63(6):2338-2346
    [65] Veivers P.C.O’Brien R.W.,Slaytor M.Role of bacteria in maintaining the redox potential in the hindgut of terminates and preventing entry of foreign bacteria J. Insect Physiol. 1982,28:947-951
    [66] Rouland C, Civas A, Renoux J, Petek F. Purifiactiaon and properties of the termite Macrotermes mulleri (Terrmitdae, Macrotermitinae) and its symbiotic fungus termitomyces sp.Comp. Biochem. Physiol. 1988,91:449-518
    [67] Tokuda G, Hirofumi Watanabe, Tadao Matsumoto, Hiroaki Noda.Cellulose digestion in the wood-eating higher termite Nsutiterme takasafoensis (Shiraki): distribution of cellulase and properties of Endo-β-1,4-glucanase Zoological Science. 1997,14:83-97
    [68] Watanabe H, Nakamura M, Tokuda G, Yamaoka I, Scrivener AM, Noda H. Site of secretion and properties of endogenous endo-β-1,4-glucanase components from Reticulitermes speratus (Kolbe), a Japanese subterranean termite. Insect Biochem. Molec. Biol.1997,27(4):305-313
    [69] 何正波,殷幼平,曹月青,等.微生物学报,2001,41(6):741-743.
    [70] 李蒙英,许宏庆,虞晓华,等.江苏蚕业,2002,2:5-7.
    [71] Husseneder C, Grace JK, Oishi DE. Use of genetically engineered Escherichia coli to monitor ingestion, loss, and transfer of bacteria in termites. Curr Microbiol. 2005 Feb;50(2):119-123.
    [72] Husseneder C, Grace JK. Genetically engineered termite gut bacteria (Enterobacter cloacae) deliver and spread foreign genes in termite colonies. Appl Microbiol Biotechnol. 2005 Mar 2
    [73] Stingl U, Radek R, Yang H, Brune A. "Endomicrobia": cytoplasmic symbionts of termite gut protozoa form a separate phylum of prokaryotes. Appl Environ Microbiol. 2005 Mar;71(3):1473-1479.
    [74] Chouari R, Le Paslier D, Dauga C, Daegelen P, Weissenbach J, Sghir A. Novel major bacterial candidate division within a municipal anaerobic sludge digester. Appl Environ Microbiol. 2005 Apr;71(4):2145-2153.
    [75] Stevenson BS, Eichorst SA, Wertz JT, Schmidt TM, Breznak JA. New strategies for cultivation and detection of previously uncultured microbes. Appl Environ Microbiol. 2004 Aug;70(8):4748-4755.
    [76] Alippi, A.M., Lopez, A.C., Aguilar, O.M., 2002. Differentiation of Paenibacillus larvae subsp. larvae, the cause of American foulbrood of honeybees, by using PCR and restriction fragment analysis of genes encoding 16S rRNA. Appl. Environ. Microbiol. 68, 3655–3660.
    [77] Martin, S.J., Beekman, M., Wossler, T.C., Ratnieks, F.L.W., 2002. Parasitic Cape honeybee workers, Apis mellifera capensis, evade policing. Nature 415, 163–165.
    [78] Jeyaprakash, A., Hoy, M.A., 2000. Long PCR improves Wolbachia DNA amplification: wsp sequences found in 76% of sixty-three arthropod species. Insect Mol. Biol. 9, 393–405.
    [79] Reeson, A.F., Jankovic, T., Kasper, M.L., Rogers, S., Austin, A.D.,2003. Application of 16S rDNA-DGGE to examine the microbial ecology associated with a social wasp Vespula germanica. Insect Mol. Biol. 12, 85–91.
    [80] Yuichi Hongoh ,Moriya Ohkuma, Toshiaki Kudo, Molecular analysis of bacterial microbiota in the gut of the termite Reticulitermes speratus (Isoptera; Rhinotermitidae) FEMS Microbiology Ecology 44 (2003) 231-242
    [81] Ayyamperumal Jeyaprakash,a,* Marjorie A. Hoy,a and Michael H. Allsoppb, Bacterial diversity in worker adults of Apis mellifera capensis and Apis mellifera scutellata (Insecta: Hymenoptera) assessed using 16SrRNA sequences.Journal of Invertebrate Pathology 84 (2003) 96–103
    [82] A. F. Reeson, T. Jankovic, M. L. Kasper, S. Rogers and A. D. Application of 16S rDNA-DGGE to examine the microbial ecology associated with a social wasp Vespula germanica Insect Molecular Biology 2003,12(1)85-90
    [83] Donovan SE, Purdy KJ, Kane MD, Eggleton P. Comparison of Euryarchaea strains in the guts and food-soil of the soil-feeding termite Cubitermes fungifaber across different soil types. Appl Environ Microbiol. 2004 Jul;70(7):3884-3892.
    [84] Fall S, Nazaret S, Chotte JL, Brauman A. Bacterial density and community structure associated with aggregate size fractions of soil-feeding termite mounds.Microb Ecol. 2004 Aug;48(2):191-199. Epub 2004 Jun 10.
    [85] Graber JR, Breznak JA.Physiology and nutrition of Treponema primitia, an H2/CO2-acetogenic spirochete from termite hindguts. Appl Environ Microbiol. 2004 Mar;70(3):1307-1314.
    [86] Sporomusa aerivorans sp. nov., an oxygen-reducing homoacetogenic bacterium from the gut of a soil-feeding termite. Int J Syst Evol Microbiol. 2003 Sep;53(Pt 5):1397-1404.
    [87] 康白.微生态学.大连:大连出版社,1988.64-81.
    [88] 陈天寿.微生物培养基的制造与应用.北京:中国农业出版社,1995.301-308.
    [89] 周德庆.微生物学实验手册.上海:上海科学出版社,1982.97-137.
    [90] Hendricks C W,Doyle J D.Appl Environ Microbiol,1995,61(5):2016-2019.
    [91] R.E.布坝南,N.E.吉本斯(中国科学院微生物研究所译.)伯杰氏鉴定手册.第8 版.北 京:科学出版社,1984.
    [92] 中国科学院微生物研究所细菌分类组编著.常见细菌系统鉴定手册.北京:科学出版社,2001.
    [93] Woese C R. Microbiol Rev,1987,51(2):221-71
    [94] 夏北成, Zhou Tiedje ,J M . 分子生物学方法在微生物生态学中的应用. 中山大学学报. 1998.32(2) : 97-101
    [95] Antonio Gelsomino ,Anneke C,Keijzer-Wolters,Giovanni Cacco etal . Assessment of bacterial community structure in soil by polymerase chain reaction and denaturing gradient gel electrophoresis ,Journal of Microbiological Methods,38(1999):1-15
    [96] Carmine Crecchio, Maddalena Curci , Maria Donata etal.Molecular approaches to I nvestigate herbicide-induced bacterial community changes in soil microcosms , Biol Fertil Soil ,2001,33:460-466
    [97]《分子克隆实验指南》第二版,科学出版社[美]J.萨姆布鲁克E.F.弗里奇T.曼尼阿蒂斯332-334
    [98] Eutick M L,O’Brien R W,Slaytor M. Appl Environ Microbiol,1978,35(5):823-828.
    [99] Ning Zhang, Sung-Oui Suh, and Meredith Blackwell,Microorganisms in the gut of beetles: evidence from molecular cloning.Journal of Invertebrate Pathology 84 (2003) 226–233
    [100] 朱伟云等,变性梯度凝胶电泳法研究断奶仔猪粪样细菌区系变化.微生物学报2003,43(4)502-508
    [101] 鲍恩东,刘思当,高洪.动物病理学.中国农业科技出版社,2000
    [102] 杨全明.仔猪消化道酶和组织器官生长发育规律的研究.中国农业大学博士论文集,1999.
    [103] Fontana C, Vignolo G, Cocconcelli PS. PCR-DGGE analysis for the identification of microbial populations from Argentinean dry fermented sausages. J Microbiol Methods. 2005 May11.
    [104] 陈灏,唐小树,林洁等.不经培养的农田土壤微生物种群构成及系统分类的初步研究,微生物学报,2002,42(2):478-483
    [105] 柴丽红等,青海两盐湖细菌多样性研究,微生物学报2004,44(3):271-275
    [106] Sekiguchi H, Yomioka N, Nakahara T, et al. A single band does not always represent single bacterial strains in denaturing gradient gel eletrophoresis analysis. Biotechnology Letters,2001,23:1205-1208.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700