滚动轴承故障的非接触声学检测信号特性及重构技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
滚动轴承被广泛用于石化、冶金和铁路等行业的重要设备上,是旋转设备和交通工具中易损坏的机械零件之一,约有30%的故障是由于滚动轴承的损坏造成的,并产生巨大的经济损失。因此,对滚动轴承工作状况进行实时监测和故障诊断的研究越来越受到人们的重视。目前,国内外将振动和声学方法用于滚动轴承故障诊断研究多数是接触式的,即所用传感器是与被测滚动轴承座或相连结构的表面相互接触,这种检测方式对低速和移动等特殊条件下运行的滚动轴承有一定的局限性。为此,本文运用声学理论和现代信号分析方法深入研究滚动轴承故障的非接触多传感器声学诊断方法,这对滚动轴承故障的早期诊断和预防事故的发生有重要的理论意义和实用价值。
     文中分析了滚动轴承的常见故障类型及形成机理,阐述了滚动轴承声发射源产生的机理,得出滚动轴承的磨损故障和表面损伤故障的形成和扩展过程均会产生声发射,故障部位与滚动轴承构件在运动过程中的相互摩擦和碰撞,也是产生声发射的重要来源。同时,对于非接触声学检测,由于声波在空气中以纵波传播,且主要受空气吸收衰减作用的影响,空气吸收系数与频率的平方成正比,所以,低频成分的声波传播的距离较远,而高频成分衰减很快,这些特性有利于非接触式滚动轴承检测的诊断和分析。
     通过建立滚动轴承非接触声发射检测实验系统,完成了无故障滚动轴承以及三种故障类型滚动轴承的非接触式声发射检测实验。通过接触式与非接触式滚动轴承检测信号的对比实验表明,由于声波在空气中的传播衰减,其幅度与撞击数在数量上后者均小于前者,但二者的撞击数都与不同故障类型的理论碰撞频率值相等,这为非接触声发射检测的故障模式识别提供依据。
     采用小波分析方法,对不同故障模式滚动轴承非接触声发射信号进行分解,依照各频段能谱分布,得出滚动轴承非接触声发射信号的特征频段,该频段的能谱系数反映了声发射源特征,根据这一特性,可实现对检测声发射信号的去噪。建立基于小波和EMD的局部Hilbert边际谱诊断方法识别滚动轴承故障频率,提取无故障滚动轴承,外圈故障滚动轴承和滚子故障滚动轴承的边际谱峰值频率,混合故障滚动轴承边际谱涵盖前三种峰值频率。上述方法,实现了对滚动轴承非接触声发射信号的去噪和有效性识别,为后续的研究工作奠定了基础。
     建立滚动轴承非接触多传感器声发射检测实验和分析方法。为了获取完整的周期性滚动轴承故障声发射信号,文中利用相关性分析方法对多个传感器得到的不同声发射信号进行分析,确定多传感器阵列中各个信号间的关系——相互关联或者是相互独立。根据信号触发时间与滚动轴承不同故障类型的理论碰撞频率间的关系,去除重叠和无效部分,并以此建立非接触多传感器声发射信号的周期性重构方法。对二个和三个传感器移动非接触检测实验数据进行周期性声信号重构,通过与单传感器重构的周期性声信号进行对比分析表明,建立的多传感器周期性声信号重构方法可获得较为完整的滚动轴承周期性声信号。通过上述研究工作,建立了声传感器阵列中相关传感器间重叠信息辨识与提取方法,实现了基于多传感器的滚动轴承故障周期性声信号重构,获取了移动中滚动轴承故障的完整周期性信息,为进一步对滚动轴承不同类型故障诊断提供了依据。
     滚动轴承故障类型识别方法的研究是本文的又一重要内容。本文提出基于滚动轴承不同故障周期性特性的声发射撞击数故障模式识别方法;该方法可实现单一故障滚动轴承的模式识别。同时,建立基于小波包和BP神经网络的滚动轴承故障模式识别方法,该方法有效地突出故障特征,提高了故障诊断的有效性和准确性。
     对于滚动轴承故障的多传感器非接触声发射检测,依据重构的完整周期性声发射信号波形图,利用模糊识别理论,结合不同滚动轴承故障的声发射信号特性,建立滚动轴承多传感器声发射信号重构波形图模糊识别方法。对不同故障模式滚动轴承声发射信号波形图进行分析,提取波形图上的5个不同特征要素——幅度电压值、上升沿宽度、波形宽度、捌点和最大余波宽度,建立了模糊识别算法。通过对已知故障类型进行训练,得到不同故障类型特征矩阵。利用该方法对滚动轴承不同故障的非接触多传感器重构周期性信号进行识别,验证了该方法的可行性,实现了对滚动轴承不同类型故障的早期诊断与预报。
Bearings are generally used in important equipments of petrochemical, metallurgy and railway, etc. And as easily broken parts, almost 30% rotating equipments and vehicles fault accidents are originated from the bearings, which result in large lost. Thus, researchers pay more and more attention to the research on monitoring state of bearings on line and diagnose faults. At present, most methods combining vibration with acoustic testing on rolling bearing fault diagnosing are contacting detection; namely, the sensors used for testing are contacted with bearing seat or connected structure surface, which is not applicable for the testing of bearings under low rotating speed or moving bearings. The paper focus on the research of non-contacting rolling bearing fault diagnosing with acoustic theories and modern signals analysis method. All of these are valuable on theory and application for early diagnosis of rolling bearing fault and preventing failures.
     The common types of faults and their mechanisms in rolling bearings are analyzed in the paper. Especially, the mechanism that acoustic sources are generated is discussed, the result shows Acoustic Emission(AE) signals mainly occur in the formation and spread stage of wear and surface damage, also, large amount of signals can be found when there are friction and collisions at fault site. To acoustic waves, they propagate in the form of longitudinal wave in air. Their propagation is mainly influenced by the absorption attenuation, and absorption factor is proportional to the square of the frequency. Low frequency acoustic waves have relatively long propagation distance, but high frequency components decay quickly, which is favorable for the diagnosis and analysis of non-contacting rolling bearings with acoustic method.
     With established testing system for rolling bearing fault detecting, non-contacting acoustic testing experiments are carried out on non-fault bearings and bearings with three different faults. Through the comparative analysis between contacting testing and non-contacting testing, the result shows that for the attenuation when acoustic waves propagate in air, the amplitude and magnitude of signals from non-contacting testing are smaller than those from contacting testing, but the number of hits of them is closer to the theoretical value of components collision frequency under different fault. It provides the basis for fault pattern recognition in non-contacting bearing AE detection.
     After wavelet decomposition of AE signals from rolling bearings under different fault modes, typical bands are obtained according to spectrum distribution of every band, whose spectrum factors representing the acoustic sources characteristics. Based on this characteristic, the denoising of AE signals can be achieved. Local Hilbert marginal spectrum diagnosis method based on wavelet and EMD is advanced and can be used to recognize fault frequency, marginal spectrum peak frequency of non-fault bearing, bearing with faults in outer ring and bearing with faults in roller. The marginal spectrum frequencies of mixed fault bearing include the above-mentioned peak frequencies. All the above methods can be used to diagnose and recognize signals from non-contacting AE testing on rolling bearings, which lays the foundation for follow-up study.
     AE experiment and analysis method is established for multi-sensors non-contacting rolling bearing fault testing. In order to obtain complete and cyclic fault acoustic signals, large amount of signals from different sensors are analyzed with the method of correlation analysis, and the relationship is determined between signals from the sensors array, that is, they are corresponding or independent. According to the relationship between hit time and theoretical striking frequency of different faults, duplicated and ineffective parts are removed. After that, cyclic reconstructing method is established for multi-sensors acoustic signals. After reconstructing cyclic acoustic signals from two and three sensors moving non-contacting testing, and comparing with the reconstructing signal form single sensor inspection, the result shows that the established reconstructing method can be used to obtain complete periodic acoustic signals. On the basis of these, overlap information identification and extraction method is established for relevant sensors in acoustic arrays. Cyclic acoustic signals reconstruction is achieved for multi-sensors rolling bearing inspection, and integral cyclic information of moving bearings with faults is obtained. All of them provide basis for the denoising of bearing with different faults.
     The method of fault pattern recognition is one of the main contents in the paper. AE signals from non-fault rolling bearing are continuous, whose energy is small, and there are no obvious peak in the signals. While, bursting signals will be get during the detection of bearings containing faults, and the magnitude of peak energy in spectrum diagram is large. On the basis of this, the state whether there are faults in bearing can be identified. To the bearings with single fault, combining with the number of hits based on theoretical characteristic frequency, the type of the fault can be achieved. Rolling bearing fault diagnosis method can effectively recognize fault characteristics based on wavelet packet and BP neural network, so as to enhance the diagnosis efficiency and accuracy.
     Combining with AE signals characteristics of different bearing faults, pattern recognition method of multi-sensors signal reconstructing waveform is advanced based on fuzzy recognition theory. After the analysis of different waveforms belong to different faults, fuzzy recognition algorithm is achieved according to five different recognition elements in the waveform diagram, i.e., voltage of peak amplitude, risetime range width, waveform width, inflection point and largest remaining wave width. Through the exercise of known faults, fault signals from rolling bearings can be recognized properly.
引文
[1]钟秉林,黄仁.机械故障诊断学[M].北京:机械工业出版社,2007.
    [2]李伟,何涛,吴庆华.小波变换与滚动轴承振动的故障诊断方法研究[J].三峡大学学报(自然科学版),2006,28(3):233~235.
    [3]黄采伦,余小华,陈安华等.基于频谱细化的列车轮对滚动轴承故障在线检测[J].中国工程科学,2007,9(7):61~65.
    [4]迫孝司.用声发射法诊断低速滚动轴承[J].设备管理与维修,1998,(7):36~38.
    [5]冯庚斌.机车车辆故障诊断技术[M].北京:中国铁道出版社,1994.
    [6] Tandon N,Choudhury A.A review of vibration and acoustic measurement methods for the detection of defects in rolling element bearings[J].TribologyInternational,1999,32(2):69-480.
    [7]常晏铭,吴张永,李健锋,等.浅析振动分析技术在滚动轴承故障诊断中的应用[J].机械,2007,34(4):56~58.
    [8]陈刚.滚动轴承故障的现代诊断技术[J].工程机械与维修,2007,(11):173.
    [9]宁练,周孑民.滚动轴承内部温度状态监测技术[J].滚动轴承,2007,(2):25~27.
    [10]萧汉梁.铁谱金属及其在机械监测中的应用[M].北京:人民交通出版社,1993.
    [11]戴光,李伟,张颖.过程装备安全管理与检测[M].北京:化学工业出版社,2004:241~242.
    [12]沈功田,戴光,刘时风.中国声发射技术进展[C].中国第十届声发射学术研讨会论文集,2004:1~7.
    [13]刘瑞阳.货车滚动轴承早期故障轨边声学诊断系统的应用与展望[J].中国铁路,2004,(8):31~35.
    [14] D. Mba,Raj B. K. N. Rao. Development of Acoustic Emission Technology for Condition Monitoring and Diagnosis of Rotating Machines: Bearings, Pumps, Gearboxes, Engines, and Rotating Structures [J]. The Shock and Vibration Digest,2006,38(1):3–16.
    [15] Catlin, J. B. Jr.The Use of Ultrasonic Diagnostic Technique to Detect Rolling Element Bearing Defects[C],Proceedings of the Machinery and Vibration Monitoring and Analysis Meeting,Israel 1983:123–130.
    [16] Holroyd, Trevor J.The application of AE in condition monitoring [J],Non-Destructive Testing and Condition Monitoring,2005,47(8): 481-484.
    [17] Warren, A.W.; Guo, Y.B. The impact of surface integrity by hard turning versus grinding on rolling contact fatigue - Part I: Comparison of fatigue life and acoustic emission signals [J],Mechanical Engineering ,2007,30(8):698-711.
    [18]宋风书,曹志礼.铁路货车转向架技术考察报告[J].铁道车辆,2000,38(6):8.
    [19]梅宏斌.滚动轴承监测与诊断理论·方法·系统[M].北京:机械工业出版社,1995.
    [20] Miettinen,uha.Operation monitoring of grease lubricated rolling bearings by acoustic emission measurement[J],International Journal of COMADEM,2004(2):2-11.
    [21] Kaewkongka,T. Au, Y.H.J.Application of acoustic emission to condition monitoring of rolling element bearings [J], Measurement and Control,2001,34(8):245-247.
    [22] Hawman, Galinaitis, W. S Acoustic Emission Monitoring of Rolling Element Bearings [C],Proceedings of the IEEE Ultrasonic Symposium, Chicago,USA,1988:885–889.
    [23] Tandon.N.,Nakra,B. C Effect Detection of Rolling Element bearings by Acoustic Emission Method[J] Acoustic Emission,1990,9(1):25-28.
    [24] Choudhary, A.,Tandon Application of Acoustic Emission technique for the Detection of Defects in Rolling Element Bearings [J] Tribology International,2000,33(2):39–45.
    [25] Al-Ghamdi,A. M.,Mba,D A Comparative Experimental Study on the Use of Acoustic Emission and Vibration Analysis for Bearing Defect Identification and Estimation of Defect Size[J],Mechanical Systems and Signal Processing,2006,20(7):1537-1571.
    [26] Cline.James E.,Bilodeau.James R,Smith.Richard L. Acoustic wayside identification of freight car roller bearing defects[C].Proceedings of the IEEE/ASME Joint Railroad Conference,1998,79-83.
    [27] Ohta,Hiromitsu,Seto,Kunisato.Acoustic diagnosis on rolling bearings based on presumption of a division term by locally stationary AR model[J].Transactions of the Japan Society of Mechanical Engineers.2004,70(3):664-670.
    [28]理华,徐春广,肖定国,等.小波包原理在滚动轴承声发射检测技术中的应用[J].机械,2002,29(4):11~12.
    [29]杜永明.货车滚动轴承故障检测仪的研制[D].西南交通大学,2006:10~12.
    [30]李琛.基于噪声分析的内燃机主滚动轴承状态监测与故障诊断[D].大连理工大学,2002.
    [31]梁杰,孙巍,惠玥.虚拟式噪声测试分析系统的研制[J].实验技术与管理,2004,21(2):50~52.
    [32]理华,徐春广,肖定国,等.滚动轴承声发射检测技术[J].滚动轴承,2002,(7):24~26.
    [33]杨黎明.声发射技术用于段修货车滚动轴承故障诊断研究[D].西南交通大学,2003.
    [34]李凤英,沈玉娣,熊军.滚动轴承故障的声发射检测技术[J].无损检测,2005,27(11):583~585.
    [35]廖传军,罗晓莉,李学军.基于声发射的滚动轴承损伤振动机理研究[J].无损检测,2007,29(12):712~715.
    [36]赵转哲,李孟源.铁路货车滚动轴承故障声发射信号的小波分析处理[J].滚动轴承,2005,(3):30~31.
    [37]李孟源,陈春朝,任焕琴.小波神经网络在货车滚动轴承故障检测中的应用[J].机械,2005,32(11):52~54.
    [38]蔡海潮,李孟源,陈春朝,等.352226X2滚锥滚动轴承内圈松动的声发射诊断[J].河南科技大学学报(自然科学版),2007,28(3):14~17.
    [39]周艳玲,杨德斌,徐金梧等.基于声信号的滚动轴承故障诊断方法[J].振动与冲击,2002,21(2):21~23.
    [40]印欣运.声发射技术在旋转机械碰摩故障诊断中的应用[D].清华大学,2005.
    [41]丁文捷,金路.基于声卡的离心泵状态监测[J].石油化工应用,2006,25(6):37~39.
    [42]万雄,骆英,李伯全.基于虚拟仪器实现结构声发射检测的研究[J].传感器与仪器仪表,2007,23(4):190~192.
    [43]黄建新.多传感器数据重构技术在滚动轴承故障诊断中的应用研究[D].武汉:武汉理工大学,2006.
    [44]秦香敏,潘宏侠.滚动轴承故障诊断方法研究[J].科技情报开发与经济,2007,17(2):150~151.
    [45]濮良贵,纪名刚.机械设计(第七版)[M].高等教育出版社,2001:300~330.
    [46]常晏铭,吴张永,李健锋,等.浅析振动分析技术在滚动轴承故障诊断中的应用[J].机械,2007,34(4):56~58.
    [47]梅宏斌.滚动轴承振动检测与诊断[M].机械工业出版社,1995:30~34.
    [48]宋万民,郝如江.小波变换在滚动轴承故障声发射信号降噪中的应用[J].石家庄铁道学院学报,2006,19(4):34~37.
    [49]郝如江,卢文秀,褚福磊.声发射检测技术用于滚动轴承故障诊断的研究综述[J].振动与冲击,2008,27(3):75~79.
    [50]刘松平,Mich声发射l Connan,陈积愈.模态声发射检测技术[J].无损检测,2000,22(1):38~41.
    [51]马大猷.现代声学理论基础[M].北京:科学出版社,2004:135~138.
    [52]马大猷.声学手册[M].北京:科学出版社,2004:130~150.
    [53]滕山邦久.声发射(声发射)技术的应用[M].北京:冶金工业出版社,1997:12~17.
    [54]许肖梅.声学基础[M].北京:科学出版社,2003:135~139.
    [55]杨占才.声发射事件谱分析技术在滚动轴承故障诊断中的应用[J].设备管理&维修,2000,12:27~28.
    [56]耿荣生,沈功田,刘时风,等.声发射信号处理和分析技术[J].无损检测,2002,24(1):23~28.
    [57] J.Kwak,M.Ha.Neural network approach for diagnosis of grinding operation by acoustic emission and power signals[J].Journal of Materials Processing Technology,2004,147(1): 65-71.
    [58]沈功田,段庆儒,周裕峰,等.压力容器声发射信号人工神经网络模式识别方法的研究[J].无损检测,2001,23(4):144~149.
    [59]王宏禹.非平稳随机信号分析与处理[M].北京:国防工业出版社,1999:174~205.
    [60] A Terchi,Y H J Au. Acoustic Emission Signal Processing[J].Measurement and Control,2001,4(8):240~244.
    [61]耿荣生.声发射信号处理和分析技术[J].无损检测,2002,24(1):23~28.
    [62]陈志奎.工程信号处理中的小波基和小波变换分析仪系统的研究[D].重庆:重庆大学,1998:24~27.
    [63]于德介,程军圣,杨宇.机械故障诊断的Hilbert-Huang变换方法[M].北京:科学出版社,2006:24~25.
    [64]飞思科技产品研发中心.小波分析理论及MATLAB7实现[M].北京:电子工业出版社,2005.
    [65]陈逢时.小波变换理论及其在信号处理中的应用[M].北京:国防工业出版社,1998:30~32.
    [66] Mitakovi D,Grabec I,Sedmark S. Simulation of AE Signals and Signal Analysis Systems[J]. Ultrasonics,1985,23(5):227~232.
    [67]胡广书.现代信号处理教程[M].北京:清华大学出版社,2004.
    [68] Mallat S G..Theory for Multiresolution Signal Decomposition:the Wavelet Represention[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,1989,11(7):674~693.
    [69]陈玉华.基于全波形声发射技术的应用研究[D].北京:清华大学,2002.
    [70]周伟.Matlab小波分析高级技术[M].西安:西安电子科技大学出版社,2006:9~10.
    [71]韩力群.人工神经网络理论、设计及应用[M].化学工业出版社,2004:127~129.
    [72]陈桂明,戚红雨,潘伟.MATLAB数理统计[M].科学出版社,2002:78~79.
    [73]于德介,程军圣,杨宇.Hilbert-Huang变换在滚动轴承故障诊断中的应用[J].中国机械工程,2003,14(24):2140~2142.
    [74] H. Li, H. Q. Zheng ,L. W.. Hilbert-Huang Transform and its Application in Gear Faults Diagnosis[J]. Key Engineering Materials,2005,291-292: 655-660.
    [75]丁娜,关立行,文常保.基于Morlet小波的滚动轴承故障信号奇异性分析[J].滚动轴承,2006,1:29~32.
    [76]陈刚,廖明夫.基于小波分析的滚动轴承故障诊断研究[J].科学技术与工程,2007,7(12):2810~2814.
    [77]张国新.基于小波包分析的滚动轴承模糊聚类方法[J].中国设备工程,2007,1:42~43.
    [78]刘华胜.基于EMD的滚动轴承故障诊断方法研究[D].大连:大连理工大学硕士学位论文,2007.
    [79]胡劲松,杨世锡,吴昭同,等.基于经验模态分解的旋转机械振动信号滤波技术研究[J].振动、测试与诊断,2003,23(2):96~98.
    [80]张璇.基于小波包和EMD的滚动轴承故障信号分析[D].北京:北京化工大学,2008.
    [81]王焱.经验模态分解结合神经元网络在滚动轴承故障诊断中的研究与应用[D].杭州:浙江大学,2007.
    [82] Mba .D.Mechanical evolution of the rotating biological contactor into the 21st century [J].Proc Instn Mech Engrys,2003,217(part E):189-219.
    [83]高广华.基于EMD的时频分析方法在机车滚动轴承故障诊断中的应用研究[D].长沙:中南大学硕士学位论文,2007.
    [84]田慕琴.基于模型的异步电动机早期故障智能诊断[D].太原理工大学,2006.
    [85]邓超.多传感器定位在高速铁路的应用[J].铁道通信信号,2006, 42(12):28~30.
    [86]杨露菁,邹岗,李启元.多传感器分布式重构检测自适应算法[J].探测与控制学报,2006,28(5):28~32.
    [87] Ghasem Mirjalily,Zhi-Quan Luo,Timothy.N.Davidson,eta.BlindAdaptiveDecision Fusion for Distributed Detection [J]. IEEE Transactions on AE rospace and Electronic Systems. 2003,39(1): 34-51.
    [88] Robert.N.Mc,Donough,Anthony.D.Whalen. Detection of Signals in Noise[M].USA: Academic Press,2002.
    [89]关键,何友,彭应宁.多传感器分布式检测综述[J].系统工程与电子技术,2000,22(12):11~14.
    [90]杨黎明.声发射技术用于段修货车滚动轴承故障诊断研究[D].成都:西南交通大学,2003.
    [91]李百栋.滚动轴承故障诊断技术与应用[J].设备管理与维修,2007,5:43~45.
    [92]陈长征,孙长城.低速滚动轴承故障信号捕捉与分离研究[J].沈阳工业大学学报,2007,29(2):121~124.
    [93]李光海,刘正义.声发射源多传感器数据重构识别技术[J].计算机测量与控制,2002,10(5):345~348.
    [94]白云飞,曲尔光.多传感器信息重构技术及其应用[J].机械管理开发,2008,23(1):69~70.
    [95] Jamaludin N,Mba D,Bannister R H.Condition moni-toring of slow-speed rolling element bearing using stress waves [J]. Proc Instn Mech Engrs,2001,215 (part E):246-271.
    [96]谭逢友,卢宏伟.信息重构技术在机械故障诊断中的应用[J].重庆大学学报,2006,1:15~18.
    [97]孔凡天,陈幼平.基于多传感信息重构的分布式气体检测系统[J].计算机测量与控制,2006,14(4):421~424.
    [98]贾伯年,俞朴.传感器技术[M].南京:东南大学出版社,2000.7~20.
    [99] Mba D,Bannister R H,Findlay G E.Mechanical redesign of the rotating biological contactor [J].Water Res,1999,33(19):3679-3688.
    [100]刘朝阳,蔡自兴.基于信息重构的多传感器侦察技术[J].计算机时代,2004,10:25~28.
    [101]藏大进,严宏凤.多传感器信息重构技术综述[J].工矿自动化,2005,6:30~32.
    [102]汤晓君,刘军华.多传感器技术的现状和展望[J].仪器仪表学报,2005,26(12):1309~1312.
    [103]欧彦江,袁中凡.神经网络在二维图像识别中的应用[J].中国测试技术,2006,32(1):111~113.
    [104]傅德胜,寿亦禾.图形图像处理学[M].南京:东南大学出版社,2002.
    [105]孙即祥,王晓华,钟山.模式识别中的特征提取与计算机视觉不变量[M].北京:国防工业出版社,2001.
    [106]丛爽.面向MATLAB工具箱的神经网络理论与应用(第2版)[M].北京:中国科学技术出版社,2003.
    [107]陈珂,殷国富,罗小宾.基于统计特征聚类原理的图像识别技术[J].四川大学学报,2003,35(3):83~86.
    [108]陈传波,金先级.数字图像处理[M].北京:机械工业出版社,2004.
    [109]沈功田,耿荣生,刘时风.连续声发射信号的源定位技术[J].无损检测,2002,24(4):164~167.
    [110] QiGang.Wavelet-based AE characterization of composite materials[J]. NDT&E International,2000,33:133-144.
    [111] Grosse C, Reinhardt H. Localization and classification of fracture types in concrete with quantitative acoustic emission measurement techniques[J]. NDT&E Inter-national,1997,30(4):223-230.
    [112] Rajtar JM, Muthiah R. Pipeline leak detection system for oil and gas flowlines[J]. Journal of Manufacturing Science and Engineering,1997,119:105-10.
    [113]崔健.管道泄露声发射检测方法与检测系统的研究[D].北京:清华大学,2000.
    [114]沈功田,段庆儒,周裕峰,等.压力容器声发射信号人工神经网络模式识别方法的研究[J].无损检测,2001,23(4):144~146.
    [115]陈玉华,刘时风,耿荣生,等.声发射信号的谱分析和相关分析[J].无损检测,2002,24(9):395~399.
    [116] Fantozzi Marco,Fontana Emilio. Acoustic emission technique the optimum solution for leakage detection and location on water pipelines[A]. 15thWorld Conference on Nondestructive Testing[M/CD],Rome.2000.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700