高速货车转向架焊接部件疲劳强度研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
为适应我国快速发展的铁路运输形势,尽快开行满足运行速度为120-160km/h甚至更快的高速货物列车已势在必行。高速货车的开发成为最重要的研究课题之一,而转向架研制则是其核心技术。分析表明,焊接构架式转向架是我国高速货车必然采用的走行部技术模式,而其关键承载部件焊接构架和摇枕的疲劳强度性能,将直接决定着车辆在使用寿命期限内的运行安全性和可靠性。
     当前国内铁道车辆行业缺乏对动态承载焊接钢结构疲劳强度的系统深入研究,而大量运营实践表明车辆焊接部件的疲劳破坏问题已十分严重,工程上迫切需要对其机理的深入研究,应用更为实用的疲劳工程分析技术解决业已出现的各类问题。鉴于此,论文结合国家科技支撑计划项目,以我国最新开发研制的160km/h高速货车转向架焊接承载部件为目标研究对象,主要在以下三个方面进行了系统研究:
     1.动态承载焊接钢结构的疲劳工程分析技术研究;
     2.高速货车转向架焊接部件的疲劳设计载荷和强度评定准则研究:
     3.高速货车转向架焊接构架及摇枕的疲劳强度分析评定研究。
     首先针对焊接钢结构的疲劳工程分析技术,论文主要在回顾总结和深入分析国际上以往及当前最新研究成果基础上,对三种适于工程应用的焊接结构疲劳分析方法:名义应力法、表面外推热点应力法和Battelle热点应力法,以及四类关键疲劳影响因素:焊接残余应力、低应力范围循环、多轴应力和焊后改进工艺,进行了全面的系统和深入研究,总结提出了工程实际中各疲劳分析方法的合理应用方式及各疲劳影响因素的合理修正准则。
     其次论文在对比分析现有多种方法基础上,明确了两类基于强度试验规范的转向架焊接承载部件疲劳设计载荷确定方法,在现阶段工程应用中最为实用,并进一步探讨了其亦存在的局限性及在不同线路条件下的适用性。在对高速货车转向架焊接构架及摇枕结构不同部位的实际承载特点进行深入分析,以及对载荷确定相关因数的疲劳损伤影响规律和程度进行系统研究基础上,论文综合并合理改进了以上两类方法,确定出了高速货车转向架焊接承载部件的疲劳设计载荷及强度评定准则。
     最后基于论文总结的三类焊接结构疲劳工程分析方法、各关键疲劳影响因素修正准则、确定的疲劳设计载荷及强度评定准则,依据具体情形选择合适的方法完成160km/h高速货车转向架焊接构架和摇枕的疲劳强度分析,进而依据评定结果提出了结构优化设计和焊接制造工艺改进方案。通过将理论计算结果与样机疲劳试验结果进行必要比较,并结合当前转向架焊接承载结构的运用实践,验证了论文分析方法的可靠性和优越性。
In order to fit the fast development of Chinese railway transportation, it is imperative that the high-speed freight trains, of which the running speed is 120-160 km/h or more high, should be operated as soon as possible. The development of high-speed freight car is one of the most important reseach items and the bogie is its core technique. It is indicated that welded frame bogie is the certain running gear technique mode for Chinese high-speed freight car. The fatigue strength of welded frame and bolster, which is the key loaded componets of bogie, directly influences the running security and reliability of the car in its life span.
     Currently, the systemic and deep research on fatigue strength of dynamically loaded welded steel structures are lacking in Chinese rolling stock applications. But it's indicated from the numerous running practices that the fatigue failure problems of car welded components have been very serious, so it is imperative that deep research on its mechanism should be done and practical fatigue analysis methods should be used to solve the problems occurred. Thus in this paper, combining with the national science and technology pillar program and aiming at the study of welded components for 160km/h high-speed freight car bogie which has been developed newly, the following three aspects were investigated systemically:
     1. Research on the project fatigue analysis technique for dynamically loaded welded steel structures;
     2. Research on the fatigue design loads and assessment criteria for welded components of high-speed freight car bogie;
     3. Research on the fatigue strength analysis and assessment for welded frame and bolster of high-speed freight car bogie.
     Firstly, based on systemically reviewing, summarizing and analyzing the former and latest international research results, three fatigue analysis approaches which is propitious to project applications for welded structures, including nominal stress method, surface extrapolation hot spot stress method and Battelle hot spot stress method, and four key fatigue effect factors including welding residual stresses, low stress range cycles, multiaxial stresses and post weld improvement techniques were studied roundly and profoundly. For practical project applications, the sound application manner of different fatigue analysis approaches and the rational modification criteria of various fatigue effect factors were discussed and summarized.
     Secondly, by comparing different methods, it's included that for bogie welded components, two types of fatigue design loads defining methods based on strength testing codes are most practical in current project applications. Farthermore the limitations of both methods and their applicability while using in different line conditions were discussed. By detailedly analyzing the actual loading characteristic of different structural positions on welded frame and bolster for high-speed freight car bogie, and systemically investigating the fatigue damage effecting pattern and extent of relevant loads defining factors, the two above loads defining methods were improved and colligate reasonably. Then the fatigue design loads and strength assessment criteria for welded components of high-speed freight car bogie were determined.
     Finally, based on the three project fatigue analysis methods for welded structures, the rational modification criteria of various fatigue effect factors, the fatigue design loads and strength assessment rules summarized or determined in this paper, the fatigue strength analysis of welded frame and bolster for 160km/h high-speed freight car bogie were carried out. And according to the assessment results, the improved scheme for structural optimization design and welding technology were presented. By comparing the theoretical calculating results with the prototype fatigue testing results and combining with the current running practices of bogie welded loaded components, the reliability and advantage of the methods presented in this paper were validated.
引文
[1]钱立新主编.世界高速铁路技术.北京:中国铁道科学出版社,2003
    [2]何华武主编.中国铁路既有线200km/h等级提速技术.北京:中国铁道出版社,2007
    [3]中华人民共和国铁道部.铁路主要技术政策.北京:中国铁道出版社2004
    [4]Dale M.北美铁路货车转向架的发展(待续).国外铁道车辆.2000,37(4):1-7
    [5]Dale M.北美铁路货车转向架的发展(续一).国外铁道车辆.2000,37(5):1-7
    [6]王其利.法国铁路货车的发展.国外铁道车辆.1978,15(1):1-22
    [7]铁道车辆编辑部.西欧铁路联盟Y25型标准货车转向架及其系列转向架.铁道车辆.1973,11(1):36-46
    [8]陈殿奎.东欧车辆技术考察见闻及几点体会.铁道车辆.1984,22(8):33-35
    [9]Gourgouillon D,Daffos J.Y37型转向架.国外铁道车辆.1990,27(5):13-14
    [10]Lothar M.德国160km/h货车列车.国外铁道车辆.1993,30(1):19-24
    [11]吴铎.高速货车转向架的发展.铁道车辆.1994,32(9):1-6
    [12]傅茂海,李芾,尚军.德国高速货车转向架——DRRS.国外铁道车辆.2001,38(1):22-25
    [13]李芾,傅茂海.国外高速货车转向架发展和运用.铁道车辆.2001,39(6):15-20
    [14]李芾,傅茂海.铁路高速货车及相关技术研究.交通运输工程学报.2002,2(1):6-12
    [15]Parker D.英国新型货车转向架.国外铁道车辆,2007,44(3):22-23
    [16]中国铁道科学研究院.提速货车120km/h环行线可靠性试验研究报告.北京:2004
    [17]李芾,傅茂海.我国高速货车转向架发展模式.中国铁路.2001,(5):12-15
    [18]傅茂海,李芾,于明等.160km/h高速货车货车转向架方案及其动力学性能分析.铁道车辆.2003,41(11):1-6
    [19]于明,徐世峰,谢素明等.160km/h高速货车转向架的研制.铁道车辆,2006,44(7):8-11
    [20]米彩盈.高速动力车承载结构疲劳强度工程方法研究.成都:西南交通大学博士学位论文,2006
    [21]Gurney T R. Fatigue of welded structures. London:Cambridge University Press,1979
    [22]Dahle T, Larsson B. Spectrum fatigue data in comparison to design curves in the long life regime. Solin J, Marquis G, Siljander A, et al. Fatigue design: ESIS Publication 16. London:Mechanical Engineering Publication Ltd., 1993.:63-71
    [23]Dahle T. Long life spectrum fatigue tests of welded joints. International Journal of Fatigue.1994,16(6):392-396
    [24]Leluan A. Fatigue test method and damage models used by SNCF for railway vehicle structures. Amzallag C. Automation in fatigue and fracture: testing and analysis, ASTM STP 1231. Philadelphia:American Society for Testing and Materials,1994:405-418
    [25]Marquis G. High cycle spectrum fatigue of welded components. Espoo: Dissertation for the Degree of Doctor of VTT Manufacturing Technology, 1995
    [26]Marquis G, Dahle T, Solin J. Service load fatigue testing of railway bogie components. Underwood J H, Macdonald B D, Mitchell M R. Fatigue and fracture mechanics:28th Volume, ASTM STP 1321. Philadelphia:American Society for Testing and Materials,1997.:342-354
    [27]石塚弘道.转向架构架及车轴的强度与无损探伤.国外铁道车辆.2000,37(5):37-42
    [28]Schabert H M, Moser C. Nachweis der betriebsfestigkeit von drehgestellen und deren bauteilen auf dem schwingungsprufstand gesamtwirkung und wirtschaftliche aspekte ZEV+DET Glas. Ann.2000,124 (4):291-296
    [29]Bartosch S, Exner J. Entwicklung von voith-powerpacks. ZEVrail Glas. Ann.2004:224-232
    [30]公江茂树.新干线车辆车体的强度和安全性评价.国外铁道车辆.2003,40(6):12-16
    [31]San Roman J L, Alvarez-Caldas C, Quesada A. Structural validation of railway bogies and wagons using finite elements tools. Proc. IMechE Vol.219 Part F:J. Rail and Rapid Transit.2005:139-150
    [32]石塚弘道.关于铁道车辆强度的研究开发动向.国外铁道车辆.2009,46(1):1-4
    [33]Tsuyoshi Y, Yasutomo O, Hiromichi I, et al. Fatigue design diagram for weld joints on aluminum alloy carbody shells. OR of RTRI.2007,48 (1): 15-21
    [34]虞大联.206WP.206KP型转向架裂纹原因分析及对策.四机科技.1998,(4):8-10
    [35]杨文义,翟炜华.提速后客车转向架构架裂纹原因分析及对策.铁道车辆.2000,38(5):12-14
    [36]谢敏.CW-2型转向架裂纹分析及处理的几点建议.机车车辆工艺.2002,(5):25-27
    [37]赵景思.SS8型机车转向架构架裂纹分析与改造.电力机车与城轨车辆.2003,26(1):34
    [38]褚建国,邢春阳.CW-2系列转向架轴箱弹簧定位座裂纹原因分析及改进措施.铁道车辆.2006,44(12):42-43
    [39]周皓华,丁建宏.NYJ1型动车构架裂纹分析与处理方案.内燃机车2005,(4):34-36
    [40]梁圣童.DPU-30型机车底架裂纹和改进的分析研究.内燃机车.2006,(9):6-8.
    [41]梁瑞芬,梁栋.浅析提速货车焊接转向架的裂纹问题.机械工程师.2006,(3):54-55
    [42]程照升.浅析转8G转向架交叉杆盖板的裂损.铁道车辆.2002,40(12):43-44
    [43]王晓琳.对转8G、转8AG原型交叉杆疲劳裂纹问题的研究.中国新技术新产品.2008,(9):15
    [44]王勤家.C80B型运煤敞车枕梁裂纹的原因分析及改进措施.铁道车辆.2008,46(5):37-38
    [45]孙晓云.基于疲劳强度的焊接结构设计细节.机车车辆工艺.2007,(2):1-4
    [46]JIS E 4207. Truck frames for railway rolling stock-General rules for design.2004
    [47]UIC 510-3. Wagons-Strength testing of 2 and 3-axle bogies on test rig. 1994
    [48]UIC 515-4. Passenger rolling stock-Trailer bogies-Running gear-Bogie frame structure strength tests.1993
    [49]UIC 615-4. Powered vehicles-Bogies and running gear-Strength tests of bogie frames.1994
    [50]UIC 566. Loadings of coach bodies and their components.1990
    [51]EN 12663. Railway applications-Structural requirements of railway vehicle bodies.2000
    [52]EN 13749. Railway applications-Methods of specifying structural requirements of bogie frames.2005
    [53]AAR. Manual of standards and recommended practices-Section C-Part Ⅱ:Specifications for design, fabrication and construction of freight cars. Washington:The Association of American Railroads,1997
    [54]Luo R K, Gabbitas B L, Brickle B V. Fatigue life evaluation of a railway vehicle bogie using an integrated dynamic simulation. Proc. Instn Mech Engrs Part F:Journal of Rail and Rapid Transit.1994,208:123-132
    [55]Luo R K, Gabbitas B L, Brickle B V. Dynamic stress analysis of an open-shaped railway bogie frame. Engineering Failure Analysis. International Journal of Fatigue.1996,3 (1):53-64
    [56]Dietz S, Netter H, Sachau D. Fatigue life prediction of a railway bogie under dynamic loads through simulation. Vehicle System Dynamics.1998, 29:385-402
    [57]Stichel S, Knothe K. Fatigue life prediction for an S-train bogie. Vehicle System Dynamics Supplement.1998,28:390-403
    [58]Claus H, Schiehlen W. Modeling and simulation of railway bogie structural vibrations. Vehicle System Dynamics Supplement.1998,28:538-552
    [59]Niemi E, Fricke W, Maddox S J. Fatigue analysis of welded components: Designer's guide to the structural hot-spot stress approach. Cambridge: Abington Publishing,2006
    [60]王成国,孟广美,原亮明等.新型高速客车构架的疲劳寿命数值仿真分析.中国铁道科学.2001,22(3):91-95
    [61]阳光武.机车车辆零部件的疲劳寿命预测仿真.成都:西南交通大学博士学位论文,2005
    [62]缪炳荣.基于多体动力学和有限元法的机车车体结构疲劳仿真研究.成都:西南交通大学博士学位论文,2006
    [63]任尊松,孙守光,李强等.构架结构振动与动态应力仿真研究.机械工程学报.2004,40(8):187-192
    [64]刘德刚,劭力耕.考虑车体和构架的弹性对构架动载荷、动应力及疲劳损伤的影响.铁道车辆.2005,43(11):1-4
    [65]王文静,孙守光,李强.柔性构架的动应力仿真[J].铁道学报.2006,28(1):44-49
    [66]米彩盈.机车转向架焊接构架轻型化评定和疲劳强度分析.西南交通大学学报.1999,34(1):104-108
    [67]米彩盈,李芾.焊接转向架疲劳强度评定的工程方法.内燃机车.2002,(6):11-14
    [68]米彩盈,李芾.高速动力车转向架焊接构架优化设计.机车电传动.2005,(1):46-49
    [69]米彩盈,李芾.基于谱载荷的高速列车转向架构架的疲劳强度.西南交通大学学报.2006,41(3):381-385
    [70]缪龙秀,孙守光,吕澎民等.提速客车转向架焊接构架应力谱的试验研究.铁道车辆.1998,36(12):30-34
    [71]李强,刘志明,张桂青等.提速客车转向架构架动应力分布拟和的研究.铁道学报.2001,23(4):105-108
    [72]秦国栋,刘志明,崔二光等.提速转向架焊接构架疲劳寿命的实用分析方法.中国铁道科学.2004,25(1):46-51
    [73]谢素明,陈亚军,兆文钟等.货车焊接结构疲劳寿命预测研究.铁道车辆.2006,44(6):1-4
    [74]谢素明,时慧焯,李娅娜等.基于IIW标准的提速客车转向架焊接构架疲劳寿命预测.大连铁道学院学报.2006,27(3):17-21
    [75]关晓丽,李向伟,兆文钟.虚拟疲劳试验及其在重载敞车结构设计中的应用.大连铁道学院学报.2006,27(2):21-24
    [76]李晓峰,李向伟,兆文忠.基于二次开发技术及AAR标准的货车焊接结构疲劳寿命预测.铁道学报.2007,29(3):94-99
    [77]周张义,李芾,卜继玲.基于名义应力法的焊接结构疲劳强度评定方法研究.内燃机车.2007,(7):1-4
    [78]丁彦闯,兆奇,兆文忠.铁道车辆虚拟疲劳试验技术研究.铁道车辆.2008,46(4):1-4
    [79]王忠,张开林,魏朔.机车减振器焊缝疲劳的热点应力分析.内燃机车.2006,(8):12-14
    [80]王忠.基于热点应力法的转向架关键部件疲劳寿命研究.成都:西南交通大学硕士学位论文,2006
    [81]张开林.基于热点应力法的转向架构架疲劳寿命工程评定方法.机车电传动.2006,(5):8-10
    [82]张开林,颜志军.电力机车转向架构架焊接补板疲劳强度分析.机车电传动.2007,(6):45-47
    [83]高红义,张开林,张明晶.基于热点应力的转向架铝合金构架焊接结构疲劳问题研究.机车电传动.2008,(2):11-14
    [84]程育仁,缪龙秀等.疲劳强度.北京:中国铁道出版社,1990
    [85]赵少汴,王忠保.抗疲劳设计——方法与数据.北京:机械工业出版社,1995
    [86]Pook L. Metal Fatigue-What it is, why it matters. Netherlands:Springer, 2007.
    [87]Radaj D. Design and analysis of fatigue-resistant welded structures. Cambridge:Abington Publishing,1990
    [88]Maddox S J. Fatigue strength of welded structures. Cambridge:Abington Publishing,1991
    [89]Hobbacher A F. Recommendations for fatigue design of welded components. Cambridge:Abington Publishing,1996
    [90]Radaj D, Sonsino C M. Fatigue assessment of welded joints by local approaches. Cambridge:Abington Publishing,1998
    [91]霍立兴.焊接结构的断裂行为及评定.北京:机械工业出版社,2000
    [92]Gurney T R. Cumulative damage of welded joints. Cambridge:Abington Publishing,2006
    [93]GB 50017-2003.钢结构设计规范.北京:中国计划出版社,2003
    [94]TB 10002.2-2005.铁路桥梁钢结构设计规范.北京:中国铁道出版社2005
    [95]GB/T 3811-2008.起重机设计规范.北京:中国标准出版社,2008
    [96]中国船级社指导性文件-船体结构疲劳强度指南.北京:人民交通出版社,2007
    [97]SY/T 10049-2004.海上钢结构疲劳强度分析推荐作法.北京:石油工业出版社,2004
    [98]BS 5400 Part 10-1980. Steel, concrete and composite bridges-Part 10: Code of practice for fatigue. London:British Standards Institution,1999
    [99]BS 7608-1993. Code of practice for fatigue design and assessment of steel structures. London:British Standards Institution,1995
    [100]PD 5500-2006. Specification for unfired fusion welded pressure vessels. London:British Standards Institution,2006
    [101]AWS D1.1/D1.1M-2006. Structural welding codes-Steel. Miami: American Welding Society,2006
    [102]JSSC. Fatigue design recommendations for steel structures. Tokoy: Japanese Society of Steel Construction,1995
    [103]道路钢桥疲劳设计指针.东京:日本道路协会,2002
    [104]LRFD bridge design specifications. Washington:American Association of State Highway and Transportations Officials,1998
    [105]Manual of steel construction-Load and resistance factor design. Chicago: American Institute of Steel Construction, Inc.,2003
    [106]BS EN 1993-1-9-2005. Eurocode 3:Design of steel structures Part 1.9: Fatigue. London:British Standards Institution,2006
    [107]JIS B 8821-2004. Calculation standards for steel structures of cranes
    [108]DNV-PR-C203 Fatigue design of offshore steel structures. Norway:Det Norske Veritas,2008
    [109]DNV-PR-C206. Fatigue methodology of offshore ships. Norway:Det Norske Veritas,2006
    [110]Hobbacher A F. The new IIW fatigue design recommendations-Newly revised and expanded. Welding in the World.2007,51 (1):243-254
    [111]BS EN 15085-3-2007. Railway applications-Welding of railway vehicles and components-Part 3:Design requirements. London:British Standards Institution,2007
    [112]BS EN 13445-3. Unfired pressure vessels-Part 3:Design. London:British Standards Institution,2002
    [113]Van Wingerde A M, Packer J A, Wardenier J. Criteria for the fatigue assessment of hollow structural section connections. Journal of Constructional Steel Research.1995,35 (1):71-115
    [114]Iwahashi Y, Sumi Y, Hu T, et al. Finite element comparative study of ship structural detail. Marine Structures.1998,11 (4):127-139
    [115]Huther I, Gorski S, Lieuradel H P, et al. Longitudinal non-loaded welded joints geometrical stress approach. Welding in the World.1999,43 (3): 20-26
    [116]Gergan P G, Losberg I. Fatigue capacity of FPSO structures. Journal of Offshore Mechanics and Arctic Engineering.2006,128 (5):156-161
    [117]王甲畏,王德禹.基于热点应力的FPSO焊接结构疲劳问题研究.船舶工程.2005,27(1):62-66
    [118]詹志鹄,夏洪禄.船舶纵向构件疲劳评估的热点应力方法.船海工程.2007,36(4):15-19
    [119]Svvaidis G, Vormwald M. Hot spot stress evaluation of fatigue in welded structural connections supported by finite element analysis. International Journal of Fatigue.2000,22 (2):85-91
    [120]Han S H, Shin B C. The use of hot spot stress for estimating the fatigue strength of welded components. Steel Research.2000,71 (11):466-473
    [121]Fricke W. Recommended hot spot analysis procedure for structural details of FPSO's and ships based on round-robin FE analyses. International Journal of Offshore and Polar Engineering.2002,12(1):40-47
    [122]Niemi E. Stress determination for fatigue analysis of welded components. Cambridge:Abington Publishing,1995
    [123]Niemi E, Tanskanen P. Hot spot stress determination for welded edge gussets. Welding in the World.2000,44 (5):31-37
    [124]Tveiten B W, Moan T. Determination of structural stress for fatigue assessment of welded aluminum ship details. Marine Structures.2000,13 (3):189-212
    [125]Losberg I. Overview of the FPSO-Fatigue capacity JIP.20th International Conference on Offshore Mechanics and Arctic Engineering. Rio de Janeiro: ASME,2001':1-9
    [126]Bergan P G, Losberg I, Fricke W, et al. Overview of the FPSO-Fatigue capacity JIP.21st International Conference on Offshore Mechanics and Arctic Engineering. Oslo:ASME,2002:1-8
    [127]Maddox S J. Hot spot stress design curves for fatigue assessment of welded structures. International Journal of Offshore and Polar Engineering.2002, 12(2):134-141
    [128]Losberg I, Taskheim D O, Haavi T, et al. Full scale fatigue testing of side longitudinals in FPSOs. Proceedings of the Eleventh International Offshore and Polar Engineering Conference. Stavabger:The International Society of Offshore and Polar Engineers,2001:67-72
    [129]Kang S W, Kim W S. A proposed S-N curve for welded ship structures. Welding Journal.2003,82(7):161-168
    [130]Kim W S, Lotsberg I. Fatigue test data for welded connections in ship-shaped structures. Journal of Offshore Mechanics and Arctic Engineering.2005,127(11):359-365
    [131]Losberg I. Assessment of fatigue capacity in the new bulk carrier and tanker rules. Marine Structures.2006,19(1):83-96
    [132]Losberg I. Fatigue design of plated structures using finite element analysis. Ships Offshore Structures.2006,1(1):45-54
    [133]Losberg I, Sigurdsson G. Hot spot stress S-N curve for fatigue analysis of plated structures. Journal of Offshore Mechanics and Arctic Engineering. 2006.128(11):330-336
    [134]Dong P, Hong J K, Osage D, et al. Master S-N curve method for fatigue evaluation of welded components. New York:Welding Research Council, 2002:1-50
    [135]Dong P, Hong J K, Cao Z. A new mesh-insensitive procedure for characterizing stress concentration at welds.2001 ASME Pressure Vessels and Piping Conference. Atlanta:The American Society of Mechanical Engineers,2001:85-103
    [136]Dong P. A structural stress definition and numerical implementation for fatigue analysis of welded joints. International Journal of Fatigue.2001,23 (10):865-876
    [137]Dong P, Hong J K, Cao Z. Stresses and stress intensities at notches: 'anomalous crack growth'revisited. International Journal of Fatigue.2003, 25 (9-11):811-825
    [138]Dong P, Hong J K, Osage D, et al. Assessment of ASME's FSRF rules for vessel and piping welds using a new structural stress method. Welding in the World.2003,47 (1-2):31-43
    [139]Dong P, Hong J K. CAE weld durability prediction:A robust single damage parameter approach. SAE 2002 World Congress. Detroit:Society of Automotive Engineers,2003:1-13
    [140]Dong P. A robust structural stress method for fatigue analysis of ship structures. The 22nd International Conference on Offshore Mechanics and Arctic Engineering. Cancun:The American Society of Mechanical Engineers,2003:1-13
    [141]Dong P, Hong J K. Analysis of hot spot stress and alternative structural stress methods. The 22nd International Conference on Offshore Mechanics and Arctic Engineering. Cancun:The American Society of Mechanical Engineers,2003:1-12
    [142]Dong P, Hong J K. The master S-N curve approach to fatigue of piping and vessel welds. Welding in the World.2004,48 (1-2):28-36
    [143]Dong P, Hong J K. The master S-N curve approach to fatigue evaluation of offshore and marine structures. The 23rd International Conference on Offshore Mechanics and Arctic Engineering. Vancouver:The American Society of Mechanical Engineers,2004:1-9
    [144]Dong P. A robust structural stress method for fatigue analysis of offshore and marine structures. Journal of Offshore Mechanics and Arctic Engineering.2005,127 (2):68-74
    [145]Kyuba H, Dong P. Equilibrium-equivalent structural stress approach to fatigue analysis of a rectangular hollow section joint. International Journal of Fatigue.2005,27 (1):85-94
    [146]Dong P, Prager M, Osage D. The design master S-N curve in ASME DIV 2 rewrite and its validations. Welding in the World.2007,51 (5-6):53-63
    [147]Dong P, Hong J K, De Jesus A M P. Analysis of recent fatigue data using the structural stress procedure in ASME Div2 rewrite. Journal of Pressure Vessel Technology.2007,129(8):355-362
    [148]Kim K S, Kang J K, Heo J H. Applicability evaluation of SS (Structural Stress) method on actual project. Materials Science Forum.2008,580-582: 633-636
    [149]Dong P. Length scale of secondary stresses in fracture and fatigue. International Journal of Pressure Vessels and Piping.2008,85 (3):128-143
    [150]2007 ASME Boiler and Pressure Vessel Code. Section VIII Division 2 Part 5:Design by analysis requirements. New York:The American Society of Mechanical Engineers,2007
    [151]API 579-1/ASME FFS-1. Fitness-for-service. Washington:The American Petroleum Institute,2007
    [152]Doerk O, Fricke W, Weissenbom C. Comparison of different calculation method for structural stresses at welded joints. International Journal of Fatigue.2003,25 (5):359-369
    [153]Poutiainer I, Tanskanen P, Marquis G. Finite element method for structural hot spot stress determination-a comparison of procedures. International Journal of Fatigue.2004,26 (11):1147-1157
    [154]Fricke W, Kahl A. Comparison of different structural approaches for fatigue assessment of welded ship structures. Marine Structures.2005,18 (7): 473-488
    [155]Fayard J L, Bignonnet A, Dang Van K. Fatigue design criterion for welded structures. Fatigue Fract. Engng. Mater. Struct.1996, (15):723-729
    [156]Fermer M, Andreasson M, Frodin B. Fatigue life prediction of MAG welded thin-sheet structures. Proceedings of the IBEC98.1998,2:1280-1286
    [157]Fransson P, Petterrsson G. Fatigue life prediction using forces in welded plates of moderate thickness. Dissertation for the Degree of Master of University of Karlskrona/Ronneby,2000
    [158]Fermer M, Svensson H. Industrial experiences of FE-based fatigue life predictions of welded automotive structures. Fatigue Fract. Engng. Mater. Struct.2001, (24):489-500
    [159]朱涛,高峰,张步良等.汽车结构中焊缝疲劳寿命预估.汽车技术.2006,(10):37-40
    [160]Gurney T R. The influence of residual stresses on the fatigue strength of plates with fillet welded attachments. British Welding Journal.1960,7(6): 415-431
    [161]Fisher J W. Improved performance through large scale dynamic testing of structures. Maddox S J, Prager M, et al. International Conference on Performance of Dynamically Loaded Welded Structures. San Francisco: Welding Research Council, Inc.,1997:1-21
    [162]Maddox S J. Influence of tensile residual stresses on the fatigue behavior of welded joints in steel. Residual Stress Effects in Fatigue. American Society for Testing and Materials,1982:63-96
    [163]Maddox S J. Developments in fatigue design codes and fitness-for-service assessment methods. Maddox S J, Prager M, et al. International Conference on Performance of Dynamically Loaded Welded Structures. San Francisco: Welding Research Council, Inc.,1997:22-42
    [164]Ohta A, Maeda Y, Mawari T, et al. Fatigue strength evaluation of welded joints containing high tensile residual stresses. International Journal of Fatigue.1986,8 (2):147-150
    [165]Ohta A, Suzuki N, Maeda Y. Effect of residual stresses on fatigue of weldment. Maddox S J, Prager M, et al. International Conference on Performance of Dynamically Loaded Welded Structures. San Francisco: Welding Research Council, Inc.,1997:108-122
    [166]Ohta A, Maeda Y, Suzuki N. Residual stress effect on fatigue strength of non-load-carrying cruciform welded joints of SM570Q steel for welded structures. Welding in the World.2002,46 (11-12):20-25
    [167]Ohta A, Suzuki N, Maeda Y. Shift of S-N curves with stress ratio. Welding in the World.2003,47 (1-2):19-24
    [168]DIN 15018.起重机-钢结构计算原则.1984
    [169]FEM 1.001. Rules for the design of hoisting appliances.1998
    [170]Krebs J, Kassner M. Influence of welding residual stresses on fatigue design of welded joints and components. Welding in the World.2007,51 (7-8):54-68
    [171]Sonsino C M. Effect of residual stresses on the fatigue behaviour of welded joints depending on loading conditions and weld geometry. International Journal of Fatigue.2009,31 (1):88-101
    [172]Sonsino C M. Course of SN-curve especially in the high-cycle fatigue regime with regard to component design and safety. International Journal of Fatigue.2007,29 (12):2246-2258
    [173]Tilly G P, Nunn D E. Variable amplitude fatigue in relation to highway bridges. Proceedings of the Institute of Mechanical Engineers.1981,194: 259-267
    [174]Miki C, Murakosi J, Sakano M. Long life fatigue behavior of fillet welded joints under computer simulated highway and railroad loading. Structural Engineering/Earthquake Engineering.1983,6 (1):41-49
    [175]Fisher J W, Nussbaumer A, Keating P B, et al. Resistance of welded details under variable amplitude long-life fatigue loading. NCHRP report 354. Washington:Transportation Research Board, National Research Council, 1993:1-32
    [176]Zhang Y H, Maddox S J. Investigation of fatigue damage to welded joints under variable amplitude loading spectra. International Journal of Fatigue. 2009,31 (1):138-152
    [177]Eulitz K G, Kotte K L. Damage accumulation limitations and perspective for fatigue life assessment. Materials Week 2000 Proceedings.2000:25-28
    [178]Berger C, Eulitz K G, Heuler P, et al. Betriebsfestigkeit in Germany-An overview. International Journal of Fatigue.2002,24 (6):603-625
    [179]Sonsino C M, Lagoda T, Demofonti G. Damage accumulation under variable amplitude loading of welded medium- and high-strength steels.
    International Journal of Fatigue.2004,26 (5):487-495
    [180]Sonsino C M, Maddox S J, Hobbacher A F. Fatigue life assessment of welded joints under variable amplitude loading-State of present knowledge and recommendations for fatigue design regulations. Welding in the World.2004,48 (1-2):1-16
    [181]Sonsino C M. Principles of variable amplitude fatigue design and testing. Journal of ASTM International.2004,1 (10):3-23
    [182]Sonsino C M. Fatigue testing under variable amplitude loading. International Journal of Fatigue.2007,29 (6):1080-1089
    [183]Hobbacher A F. The new IIW recommendations for fatigue assessment of welded joints and components-A comprehensive cod recently updated. International Journal of Fatigue.2009,31 (1):50-58
    [184]Maddox S J, Razmjoo G R. Interim fatigue design recommendations for fillet welded joints under complex loading. Fatigue Fract. Engng. Mater. Struct.2001, (24):329-337
    [185]BS EN 13445-3-2002. Unfired pressure vessels-Part 3:Design. London: British Standards Institution,2002
    [186]Gough J L, Pollard H V. The strength of metals under combined alternative stresses. Proc. Inst Mech Eng.1935,131:1-101
    [187]Sonsino, C M. Multiaxial fatigue assessment of welded joints Recommendations for design codes. International Journal of Fatigue.2009, 31 (1):173-187
    [188]SFS 2378. Welding-Load capacity of welded joints in fatigue loaded steel structures. Helsinki:Finnish Standards Association,1992
    [189]Sonsino C M. Overview of the state of the art on multiaxial fatigue of welds. The 5th International Conference on Biaxial/Multiaxial fatigue and Fracture. Cracow:European Structural Integrity Society,1997:195-217
    [190]Marquis G. State-of-the-art and future trends in multiaxial fatigue assessment. Materialprufung.2005,47 (5):260-266
    [191]Archer R. Fatigue of a welded steel attachment under combined direct stress and shear stress. International Conference on Fatigue of Welded constructions. Brighton:The Welding Institute,1987:50.1-50.10
    [192]Siljander A. Nonproportional biaxial fatigue of welded joints. Solin J. Fatigue Design 1991. Espoo:VTT Manufacturing Technology,1991: 121-164
    [193]Sonsino C M. Multiaxial fatigue of welded joints under in-phase and out-of-phase local strains and stresses. International Journal of Fatigue. 1995,17 (1):55-70
    [194]Backstrom M, Siljander A, Kuitunen R, et al. Multiaxial fatigue experiments of square hollow section tube-to-plate welded joints. Blom A F. Welded High Strength Steel Structures. London:EMAS Publishing,1997: 163-177
    [195]Dahle T, Olsson K E, Samuelsson J. Fatigue design optimization of welded box beams subjected to combined bending and torsion. Marquis G, Solin J. Fatigue design 1998. Espoo:VTT Manufacturing Technology,1998: 217-230
    [196]Backstrom M, Marquis G. On the multiaxial fatigue of weldments: Experimental results, design code and critical plane approaches. Marquis G, Solin J. Fatigue design 1998. Espoo:VTT Manufacturing Technology, 1998:231-244
    [197]Backstrom M, Marquis G. Evaluation of interaction equations for multiaxial loaded welded joints. De Freitas M M. The 6th International Conference on Biaxial/Multiaxial fatigue and Fracture. Lisbon:1997:65-72
    [198]Backstrom M. Multiaxial fatigue life assessment of welds based on nominal and hot spot stresses. Lappeenranta:Dissertation for the Degree of Doctor of Lappeenranta University of Technology,2003
    [199]Susmel L, Tovo R. Local and structural Multiaxial stress states in welded joints under fatigue loading. International Journal of Fatigue.2006,28 (5-6):564-575
    [200]Susmel L. Modified Wohler Curve Method, theory of critical distances and Eurocode 3:A novel engineering procedure to predict the lifetime of steel welded joints subjected to both uniaxial and multiaxial fatigue loading. International Journal of Fatigue.2008,30(5):888-907
    [201]Susmel L. The Modified Wohler Curve Method calibrated by using standard
    fatigue curves and applied in conjunction with the theory of critical distances to estimate fatigue lifetime of aluminium weldments. International Journal of Fatigue.2009,31 (1):197-212
    [202]Susmel L. Three different ways of using the Modified Wohler Curve Method to perform the multiaxial fatigue assessment of steel and aluminium welded joints. Engineering Failure Analysis.2009,16(4):1074-1089
    [203]Sonsino C M. Multiaxial fatigue of welded structures-Problem and present solutions. The 6th International Conference on Biaxial/Multiaxial fatigue and Fracture. Lisboa:2001,1:3-15
    [204]Sonsino C M, Lagoda T. Assessment of multiaxial fatigue behavior of welded joints under combined bending and torsion by application of a fictitious notch radius. International Journal of Fatigue.2004,26 (3): 265-279
    [205]TB/T 2368-2005.动力转向架构架强度试验方法.北京:中国铁道出版社,2005
    [206]TB/T 2637-2008.铁道客车转向架构架、摇枕及摇动台.北京:中国铁道出版社,2008
    [207]严隽耄,傅茂海.车辆工程.第三版.北京:中国铁道出版社,2008
    [208]李晏良.符合中国铁路线况的转向架动态载荷系数研究.北京:北京交通大学硕士学位论文,2007
    [209]中国北车集团四方车辆研究所.中国南车集团眉山车辆厂160km/h转向架焊接构架、摇枕、轴箱静强度及疲劳试验报告.青岛:中国北车四方车辆研究所,2006

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700