压电传感器真菌鉴定中的应用及镍和柠檬酸配位研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
一.多通道串联式压电传感器(MSPQC)具有适用对象宽,测定灵敏度高,操作简单方便,可用于实时或在位检测等优点,其应用涉及到分析化学、生命科学、环境监测、临床医学等众多领域。本文充分利用MSPQC的响应特性,并和临床念珠菌的新陈代谢特征相结合,拓宽了压电体声波传感器在临床医学中的应用,使临床念珠菌的检出、鉴定工作更加准确容易,快速方便。鉴于此开展了以下研究工作:
     1.利用MSPQC和模式识别技术来早期鉴定临床常见念珠菌属病原菌。通过仔细研究MSPQC对不同念珠菌生长情况的响应发现:在相同的实验条件下,不同种的念珠菌在1-2天的培养中产生明显不同类型的频率曲线。利用这种响应曲线的差异,结合偏最小二乘技术(PLS)对不同种真菌产生的特征曲线有效区分,提出了MSPQC-PLS法早期鉴定常见念珠菌的方法。利用所提出的方法,我们成功的将从临床病人身上收集来得73株念珠菌区分成了5个种类(白色念珠菌、光滑念珠菌、热带念珠菌,克柔念珠菌,近平滑念珠菌),区分率达到97.3%。且通过模拟临床情况发现新建的MSPQC-PLS法不仅能够区分这些临床最常见的念珠菌,同时还能够在培养未经处理的临床样本的同时就鉴定出念珠菌的种类,极大的缩短了鉴定时间。
     2.深入研究了临床常见念珠菌在MSPQC中出现不同响应曲线的原因。利用9M阻抗仪实时记录五种常见念珠菌生长过程中培养瓶电极两端的电参数变化情况,通过与平行在MSPQC中生长得到的频移曲线相对比得出MSPQC中真菌生长的特殊频移曲线的出现主要是由于真菌生长过程改变培养基电导变化引起的,生长过程引起的电容变化不起主导作用。再通过真菌的吸附试验证明真菌的吸附作用引起的电导变化对频移曲线也不起主导作用。利用真菌在YC培养基中不同生长阶段的显微照片我们得出真菌的多形态性所导致的新陈代谢过程的相对复杂性是真菌生长出现特殊代谢曲线的原因。
     二.柠檬酸是电镀行业常用的一种弱酸配体,准确测定柠檬酸及其盐在电镀过程中的存在形式即其含量对指导电镀生产,发展电镀理论都是及其重要的,然而在电镀过程所处的高温和高离子强度背景条件下的柠檬酸及其盐的配合物组成及其稳定常数的测定一直存在空缺。pH电位滴定法是进行溶液配位化学研究最普遍运用的方法,特点是实验程序简单,计算结果准确。特别是此方法对测定体系的离子强度背景没有限制,适合电镀体系下的配位化学研究。鉴于此本文还开展了以下工作:
     采用pH电位滴定法研究了电镀体系中Ni2+离子和柠檬酸配位情况。在60℃,I=4mol/L NaCl的实验条件下,测定了柠檬酸的质子化常数。实验确定了Ni~(2+)离子和柠檬酸二元体系在电镀生产条件下水溶液中主要存在的物种,并测定了其稳定常数。实验数据的处理运用计算机程序Hyperquad、Glee、Hyss处理。
The multi-channel series piezoelectric quartz crystal (MSPQC) biosensor has many advantages, such as broad sensing spectrum, high sensitivity, easy to operate, real-time and on-line measurement etc and can be widely used in many areas, such as analytical chemistry, life science, environmental monitoring, clinical medicine etc. In this thesis, new identification methods were presented base on the special response of piezoelectric sensor which related to some characteristics of clinical Candida species’growth and metabolism. These new methods were simple to operate and broaden their application in clinical medicine and life science. The new identification method for Candida species was ease to operate、rapid and accurate. The main work could be summarized as follows:
     1. We have in this study investigated these Candida species using a method based on the integration of the MSPQC biosensor with pattern recognition for an early identification of the most frequent Candida species encountered in human pathology. Through the careful study of these response signals produced by different Candida species in MSPQC system, we find that under identical experimental conditions, various Candida species produce a significant different type of frequency curve in 1 days’culture. Utilizing the diversity of frequency curve and the partial least square (PLS) technique, we proposed the MSPQC-PLS method for early identification of commonly encountered Candida species. Using the method proposed, we differentiated 5 species (Candida albicans, Candida glabrata, Candida parapsilosis, Candida tropicalis, Candida krusei) from a collection of 73 clinical strains of Candida, isolated from hospitalized patients, with a classification rate of 97.3%. This new proposed MSPQC-PLS method is simple, rapid and convenient to perform. It not only has the ability to differentiate these clinically most frequent encountered Candida species, but also can identify these Candida species at the same time with the culturing of the raw clinical materials. So the time for identification will be greatly shortened.
     2. We carfully studied the cause of production of significant different type of frequency curve by various Candida species cultured in MSPQC. Using the 9M impedance instrument, the real-time electric parameters change between the two conductive stainless steel electrodes during the culture time of 5 species of Candida were recorded. Comparing to these frequency-shift curve recorded by MSPQC in parallel experiment, we conclude that the chief cause of the special frequency-shift curve is the change of the conductance between the two electrodes and the change of the capacitance caused by the growth of those Candida species is not significant. Through the adsorbtion experiment, we confirmed that the conductance change caused by the adsorbtion effect of fungi is not in dominant. The metallograph of different Candida species in different growing stage showed that the complexity of metabolism caused by the polymorphism of fungi is the chief cause of the production of special frequency curve by various Candida species.
     3. Under the given conditions(60=℃,I=4mol/L NaCl),the protonation constants of ligand citric acid had been determined by pH potentiometry in aqueous solution. For the binary system Ni(II)-Citric acid,the complexes species as well as their stability constants were determinated under the same conditions as the condition mentioned above. the experimental data was calculated by employing prograins Hyperquad,Glee,and Hyss.
引文
[1]张文广,凌志华. 596株临床分离真菌分布及药物敏感性分析.实用医技杂志,2007,14(19):2565-2566
    [2]曹清,周云芳,薛惠良等.医院深部真菌感染患儿死亡危险因素分析.中国小儿急救医学,2007,14(3):206-208
    [3]曹彬.肺部真菌感染152例病原谱再评价.中华结核和呼吸杂志,2007,30(4):726-727
    [4]刘宗师,陈裕胜,吴晓琴.危重症患者并发深部真菌感染的早期治疗.广州医药,2007,38(4):19-21
    [5]郭凤玲,杨玉林.真菌性肺炎临床分析.医药论坛杂志,2007,28(20):96-96
    [6] Shen D Z, Li Z Y, Nie L H, et al. Behavior of series piezoelectric sensor inelectrolyte solution. Anal. Chim. Acta,1993,280: 209-216
    [7] Shen D Z, Li Z Y, Nie L H, et al. Behavior of a series piezoelectric sensor inelectrolyte solution: part I. Theory. Anal. Chim. Acta,1993,276:87–97
    [8]魏景超.真菌鉴定手册(第一版).上海:上海科学技术出版社,1979
    [9]卢先雷.临床真菌检验方法的选择和组合.中国检验医学杂志,2004,27(3):201-203
    [10]徐红,顾菊林.医学真菌检验.中国真菌学杂志,2006,1(2):111-116
    [11]王家俊.临床真菌检验.第一版.上海:上海医科大学出版社,1995
    [12]黄晓燕,刘海英,王露霞等.干扰CHROMagar假丝酵母菌显色培养基结果的细菌分析.临床检验杂志,2006,24(2):145-145
    [13]黄晓燕,刘海英. CHROMagar念珠菌显色培养基细菌干扰分析.广东医学,2006,27(6):906-907
    [14] LARONE D.H. Medically Important Fungi. A Guide to Identification. ThirdEdition. Washington, D.C.: American Society for Microbiology,1995
    [15] Shen DZ, Zhu WH, Nie LH, et al. Behaviour of a series piezoelectric sensor inelectrolyte solution. Analytica Chimica Acta,1993,276(1):87-97
    [16] Deng L, Tan HW, Yao SZ. On-line Rapid detection of urea-producing bacteriawith a novel bulk acoustic wave ammonia sensor. Enzyme and MicrobialTechnology,1997,21(4):258-264
    [17] Bao L L, Deng L, Nie L H, et al. Determination microorganism with a quartzcrystal microbalance sensor. Analytica Chimica Acta,1996,319(1-2):97-101
    [18] Bao L L, Deng L, Yao S Z. A thin liquid film thickness shear mode bulk acoustic wave sensor for determination of Porteus mirabilis. Talanta,1996,46(4): 675-680
    [19] Bao L L, Tan HW, Duan Q, et al. A rapid method for determination of Staphylococcus aureus based on milk coagulation by using a series piezoelectric quartz crystal sensor. Analytica Chimica Acta,1998,369(1-2):139-145
    [20] Qu X G, Bao LL, Su XL, et al. Rapid detection of Escherichia coliform with a bulk acoustic wave sensor based on the gelation of Tachypleus amebocyte lysate. Talanta,1998,47(2):285-290
    [21] Zhang J Z, Xie Y T, Wei W Z. A series of piezoelectric quartz crystal microbial sensing technique used for biochemical oxygen demand assay in environmental monitoring. Microchemical Journal,1999,63(3):405-412
    [22] Zhang J Z, Wei W Z. Monitoring of mutagenic process with piezoelectric quartz crystal impedance analysis. Talanta,2000,55(3):525-533
    [23] Zhang J Z, Bao L L, et al. A novel method for mutagenicity test of carcinogen by using a series piezoelectric quartz crystal bacterial growth sensor. Analytical Letter,1999,32(14):2775-2883
    [24] Liao Haiping, Zhang Zhaohui, Nie Lihua, et al. Electrosynthesis of polyacrylamide membranes for the stereospecific L-histidine sensor & its characterization by AC impedance spectroscopy and piezoelectric quartz crystal(PQC) technique. Journal of Biochemical and Biophysical Methods, 2004,59(1):75-87
    [25] Liu D Z, Nie L H, Yao S Z. Rapid deection of L-glutamic acid using a series-elecrode piezoelectric quartz crystal sensor. Analytica Chimica Acta, 1995,313(3):229-236
    [26] Chen P, Nie L H, Yao S Z. Application of a series piezoelectric sensor as a deector in ion chromatography. Journal of Chromatographic Science, 1995,33(4):268-272
    [27] Chen P, Nie L H, Yao S Z. Determination lactic acid and pyruvic acid in serum and erebrospinal fluid by ion-exclusion chromatography. Journal of Chromatographic B: Biomedical Science and Application,1995,673(2):153-158
    [28] Xie Y T, Chen P, Wei W Z. Rapid analysis of preservatives in bevervages by ion chromatography with series piezoelectric quartz crystal as detector. Microchemical Journal,1999,61(1):58-68
    [29] Xie Y T, Zeng H S, Yao S Z, et al. Monitoring fermentation media by ion-chromatography with a double chamber bulk acoustic wave detector.Talanta,1999,50(5):1019-1023
    [30] Zhang S F, Wei W Z, J Z Zhang, et al. Monitoring environmental wastewater using a piezoelectric impedence microbial sensing technique. International Journal of Environmental Analytical Chemistry,2002,82(3):113-122
    [31] He F J, Geng Q, Zhu W, et al. Rapid Detection of Escherichia Colform using a separated electrode piezoeletric crystal sensor. Analytica Chimica Acta,1994, 289(3):313-321
    [32] He F J, Geng Q, Zhu W, et al. Rapid detection of Escherichia Colform using a series of electrode piezoeletric crystal sensor. Analytical Letter,1994,27(4): 655-669
    [33]张进忠.压电体声波微生物传感器及其应用研究:[湖南大学博士学位论文].长沙:湖南大学化学化工学院,2001,61-69
    [34] Zhang J Z, Wei W Z, Mao Y A, et al. Monitoring of bio-oxidation process of ferrous ion by using piezoelectric impedance analysis. Current Microbiology, 2001,43(2):83-88
    [35] Attili B S, Suleiman A A. A piezoelectric immunosensor for the detection of cocaine. Microchemical Journal,1996,54(2):174-179
    [36] He D L, Bao L L, et al. A new study of the enzymatic hydrolysis of carboxymethyl cellulose with a bulk acoustic wave sensor. Talanta, 2000,50(6),1267-1273
    [37] Bjerrum.J., Metal Ammine Formation in Aqueous Solution. Haase, Copenhagen,I941(reprinted 1957)
    [38] (a)Perrin D.D. Stability Constants of Metal-Ion Complexes.Part B.Organic Ligands.Oxford: Pergamon Press,l979;(b)Hogfeldt E..Stability Constants of Metal-Ion Complexes.Part A.Inorganic Ligands.Oxford: Pergamon Press,1982
    [39] Smith R M, Martell A.E.Critical Stability Constants. New York: Plenum Press,l989
    [40] K szegi-Szalai H. Equilibrium Studies of Mercury Complexes with Pnicillamine.Talanta, l999, 48:393-402
    [41] Disic J , Trifunovic S , Grujic S , et a1 . Solution Equilibria between Ethylenediamine-N-di-3-propionate and Some Transition Metal Ions. Talanta,l999,49:473-482
    [42] Cini R, Sabatini A, Vacca A,et a1. Metal Complexes of Propane-1.2.3- triamine:Potentiometric and Calorimetric Investigations. Can J Chem, 1997.75:212-219
    [43] Kurzak B,Kam eka A,and Jezierska J et a1. Potentiometric and SpectroscopicStudies ofthe Copper Complexes with Some Aminodiphosphonic Acids in Aqueous Solution. Polyhedron, l998, l7:4403-44l0
    [44] Sanchiz J,Esparza P,Dominguez S,et a1.Solution Studies ofComplexes of lron with lminod iacetic AIkyl- substituted lminod iacetic and Nitrilotriacetic Acids by Potentiometry and Cyclic Voltametry.Inorg Chim Acta,1999,291:l58-165
    [45] Hedwig G R, J R Liddle, et al. Complex formation of nickel(II) ions with citric acid in aqueous solution: a potentiometric and spectroscopic study. Australian Journal of Chemistry, 1980, 8: 1685-1693
    [46] IUPAC.Manual of Symbals and Term inology for Physioehemical Quantities and Units1973 Edition. Oxford: International Union of Pure and Applied Chemistry, l975
    [47] Gans P, O Sullivan B.GLEE,A New Computer Program for Glass Electrode Calibration. Talanta, 2000, 5l:33-37
    [48] Zuberbuhler A D, Kaden Th A, TITFIT a Comprehensive Program for Numerical Treatment of Potentio-metric Data by using Analytical Derivatives and Automatically Optimized Subroutines with the Newton-Gauss-Marquardt Algorithm.Talanta,1982,29:201-206
    [49] A Sabatini, A Vacca , P Gans, Miniquad—A general computer programme for the computation of formation constants from potentiometric data. Talanta, 1974, 21:53-77
    [50] P Gans, A Sabatini, A Vacca, An improved computer program for the computation of formation constants from potentiometric data. Inorg Chim Acta, 1976,18:239
    [51] P Gans, A Sabatini, A Vacca. Superquad an improved general program for computation of formation constants from potentionaetric data. J Chem Sot Dalton Trans, 1985,1195
    [52] R J Motekaitis, A E Martell. BEST-A new program for rigorous calculation of equilibrium parameters of complex multicomponent systems. Can J Chem, 1982,60:2403-2409
    [53]章开诚,蔡青云.两相滴定法研究溶剂苯取机理的通用计算机程序.高等学校化学学报,1989,10(2):135-139
    [54]吴益和.pH-电位法测定多元配合物稳定常数的计算程序.计算机与应用化学,1989,6(4):138-143
    [55]孙宏伟.[南开大学博士学位论文].南开:南开大学,1997,145-153
    [56] Peter Gans,Antonio Sabatini,Alberto Vacca. Investigation of equilibria insolution.Determination of equilibrium constants with the hyperquad suit of programes.Talanta, 1996, 43:1739-1753
    [57] M A Pfaller. Nosocomial candidiasis: emerging species reservoirs and modes of transmission, Clin Infect Dis, 1996,22:S89– S94
    [58] D Abi-Said, E Anaissie, O Uzun, et al. The epidemiology of hematogenous candidiasis caused by different Candida species. Clin Infect Dis, 1997,24:1122– 1228
    [59] A Lupetti, A Tavanti, P Davini, etal. Horizontal transmission of Candida parapsilosis candidemia in a neonatal intensive care unit. J Clin Microbiol, 2002, 40:2363–2369
    [60] J Bross, G H Talbot, G Maislin, etal. Risk factors for nosocomial candidemia: a case-control study in adults without leukemia. Am J Med, 1989, 87:614– 620
    [61] S B Wey, M Motomi, M A Pfaller. Risk factors for hospital-acquired candidemia: a matched case-control study. Arch Intern Med, 1989,149:2249– 2253
    [62] J A Vazquez, L M Dembry, V Sanchez, et al. Nosocomial Candida glabrata colonization: an epidemiologic study. J Clin Microbiol. 1998, 36: 421–426
    [63] Beck Sague, R Jarvis, et al. Secular trends in the epidemiology of nosocomial fungal infections in the United States 1980–1990. J Infect Dis, 1993,167:1247–1251
    [64] Fridkin S K, W R Jarvis. Epidemiology of nosocomial fungal infections. Clin Microbiol Rev, 1996, 9:499–511
    [65] Trick W E, S K Fridkin, J R Edwards, et al. Secular trend of hospital-acquired candidemia among intensive care unit patients in the United States during 1989–1999. Clin Infect Dis, 2002, 35: 627–630
    [66] Pfaller M A. Nosocomial candidiasis: emerging species, reservoirs, and modes of transmission. Clin Infect Dis,1996, 22(Suppl. 2):S89–S94
    [67] Pfaller M A, D J Diekema, R N Jones, et al. International surveillance of bloodstream infections due to Candida species: frequency of occurrence and in vitro susceptibilities to fluconazole, ravuconazole, and voriconazole of isolates collected from 1997 through 1999 in the SENTRY Antimicrobial Surveillance Program. J. Clin. Microbiol, 2001, 39:3254–3259
    [68] P R Murray, E J Baron, M A Pfaller, et al. Manual of Clinical Microbiology 7th edR. Washington DC: ASM Press, 1999: 193–201
    [69] M A Pfaller. Molecular approaches to diagnosing and managing 246 M. Essendoubi etal. Biochimica et Biophysica Acta, 2005,1724 : 239–247
    [70] S.A. Sakallah. Molecular diagnostics of infectious diseases: state of the technology. Biotechnol. Annu. Rev, 2000, 6: 141–161
    [71] Albert K J, Lewis N S, Schauer C L,et al. Cross-reactive chemical sensor arrays. Chem Rev, 2000, 100: 2595-2626
    [72] Jurs P C, Bakken G A, McClelland H E. Computational methods for the analysis of chemical sensor array data from volatile analytes.Chem Rev, 2000, 100: 2649-2678
    [73] Lavine B, Workman J. Chemometrics. Anal Chem, 2004, 76: 3365-3372
    [74] Lopez Diez E C, Goodacre R. Characterisation of microorganisms using UV resonance Raman spectroscopy and chemometrics. Anal Chem, 2004, 76: 585-591
    [75] Mohammed Essendoubi, Dominique Toubasb, Mohamed Bouzaggou, etal. Rapid identification of Candida species by FT-IR microspectroscopy. Biochimica et Biophysica Acta, 2005,1724:239-247
    [76] Shen D Z, Li Z Y, Nie L H, et al. Behavior of series piezoelectric sensor in electrolyte solution. Anal Chim Acta,1993,280:209–216
    [77] He F J, Zhang X Q, Zhou J D, et al. A new MSPQC system for rapid detection of pathogens in clinical samples. J Microbiol Methods, 2006, 66:56-62
    [78] Fengjiao He, Juan Zhou. A new antimicrobial susceptibility testing method of Escherichia coli against ampicillin by MSPQC. Journal of Microbiological Methods, 2007,68: 563-567
    [79] He F J, Zhu W H, Geng Q, etal. Rapid detection of Escherichia coliform using a series electrode piezoelectric crystal sensor. Anal Lett, 1994, 27: 655-669
    [80] He F J, Zhao J W, Zhang L D, et al. A rapid method for determining Mycobacterium tuberculosis based on a bulk acoustic wave impedance biosensor. Talanta, 2003,59:935-941
    [81] Peter Connolly, Stephanie J. A medium for the detection of yeasts using a conductimetric method. international journal of food microbiology 1988,7:31-40
    [82] Irene A, Watson-Craik. Induction of conductance and capacitance changes by food-borne fungi. Food Microbiology, 19896: 231-244
    [83] B J Schaertel, Nora Tsang, Ruth Firstenberg-Eden. Impedimetric detection of yeast and mold. Food Microbiology, 1987,4:155-163
    [84] Eden R, Eden G. Impendance Microbiology. Herts: Research Studies Press, 1984,56-70
    [85]朱元成.配合物稳定常数的测定方法及玻璃电极矫正的测定方法.天水师范学院学报,2003,23(2):37-39
    [86] Ru Ding, Scott A Wood. The potentiometric determination of stability constants for lanthanum acetate complexes in aqueous solutions to 85℃.Seventh Annual V. M. Goldschmidt Conference,1995,7:2056
    [87] Alderighi L, Gans P, A Ienco, D Peters, et al. Hyperquad simulation and speciation (HySS): a utility program for the investigation of equilibria involving soluble and partially soluble species. Coordination Chemistry Reviews,1999,184:311-318
    [88] Dean A John. Lange’s handbook of Chemistry (Fifteenth edition). New York: McGRAW-HILL,1999
    [89] Hedwig G R, J R Liddle, et al. Complex formation of nickel (II) ions with citric acid in aqueous solution: a potentiometric and spectroscopic study. Australian Journal of Chemistry,1980,8: 1685-1693
    [90] Still E R, P Wikberg. Solution studies of systems with polynuclear complex formation 2 The nickel (II) citrate system. Inorganica Chimica Acta,1980,46: 153-155

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700