N,N,N~',N~'-间苯二甲胺基四乙酸配体、配合物制备表征以及催化性质研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
结构新颖的金属-有机配位聚合物的设计合成已经成为当今配位化学、超分子化学、晶体工程等领域的研究重点,它们不但具有有趣的拓扑结构,而且在离子交换、吸附、手性拆分及光、电、磁、储氢、分子识别、催化等领域具有潜在的应用价值。
     在文献调研的基础上,本论文选择N,N,N',N'-间苯二甲胺基四乙酸(H_4L)作为研究对象,利用水(溶剂)热合成或室温溶剂挥发等方法,与过渡金属离子配位反应,合成配位聚合物。通过核磁共振、红外光谱、元素分析、差热-热重、单晶X-射线衍射、粉末衍射等方法,对分子和晶体结构进行了表征。同时还利用电位滴定、紫外吸收光谱、拉曼光谱、电喷雾质谱等测试方法,研究配体H_4L形成配合物在溶液中的存在形式及其稳定性。配合物与双氧水的作用形式及其对二苯氨基脲氧化为偶氮化合物的催化氧化作用及动力学。
     本论文取得了下列主要研究成果。
     1:合成了配体Li_(0.5)H_(3.5)L·H_2O,并且得到了配体的晶体H_4L·H_2O。晶体结构研究表明H_4L·H_2O为内盐结构,两个亚氨基二乙酸处于苯环的同一侧。通过氢键构成2D超分子结构。
     通过水热合成和静置挥发溶剂的方法得到了具有孔洞结构的3D配合物{[Zn_2(μ_(10)-L)( H_2O)_2]·2H_2O}_n(1),{[Co_2(μ_(10)-L)(H_2O)_2]·2H_2O}_n(2)。荧光性质表明,配体L4-与金属配位后,配合物的荧光发光属于配体发光并且强度增加。通过差热-热重分析了配合物的热稳定性,测试了不同温度下配合物的粉末衍射图谱。并且利用紫外吸收光谱测定研究了固相催化氧化二苯氨基脲(1,5-diphenylcarbonohydrazide)为红色偶氮化合物(diphenylcarbazone)。研究表明配合物1和2在双氧水存在下的乙醇溶液中催化二苯氨基脲氧化的能力不同。同样条件下,配合物1是配合物2催化能力的33倍。
     2:通过电位滴定法,研究了配体及配合物在溶液中的存在形式,得到了配体的各级质子化常数及配合物的稳定常数。绘出了分布曲线。讨论了不同温度下形成配合物的种类和稳定性。结果表明配体L的质子化常数与取代亚氨基二乙酸相近。中性溶液中配体以H_2L~(2-)形式存在。配体的质子化是一个放热反应。配体的铜、锌配合物中有配位水,配位水在中性或弱碱性溶液中电离出H~+。Cu配合物在中性溶液中以Cu_2L(H_2O)_2(OH)_2~(2-)形式存在,而锌配合物以Zn_2L,Zn_2L(OH)~-形式存在。Zn_2L(OH)_2~(2-)的形式在pH为10时最大。铜配合物的稳定性显著高于相应锌配合物。电喷雾质谱证实了电位滴定的结果。配位反应皆为吸热反应。
     3:在不同pH,不同温度下研究了铜配合物与双氧水的反应。通过拉曼光谱,电喷雾质谱等研究手段,证实了双氧水配位的双核铜配合物的存在,即铜配合物具有活化双氧的能力。铜配合物在乙醇溶液中,双氧水存在下能够均相催化二苯氨基脲氧化为红色的偶氮化合物。偶氮化合物不稳定会继续氧化分解为无色化合物。整个氧化过程为连续一级反应,并且计算了连串反应的速率常数。
     4:配体的锌配合物在弱碱性水溶液中,双氧水存在下具有催化磷酸二(对硝基苯酚)酯(BNPP)的水解能力。1.0×10~(-3) mol/L L-2Zn存在下,BNPP水解速率比自身水解速率提高了2.58×10~4倍。
The design and construction of novel coordination polymers have been one of the most important research fields on coordination chemistry, supramolecular chemistry and crystal engineering, due to their beautiful topological structures and potential applications on ion-exchange, adsorption, enantioselective catalyst, electrics, magnetism, H_2-storage, molecular recognition and catalytic fields. Dinuclear complexes that capable of dioxygen activation and DNA cleavage are one of the most active research topics in current chemistry research due to their theortical and wide application.
     In this dissertation, chelete ligand 1,3-xylenediamine N,N,N',N'-tetraacetic acid and its complexes were synthesized and characterized by nuclear magnetic resonance spectroscopy, infrared spectroscopy, elemental analysis. Its complexes were synthesized and characterized through TG, single crystal x-ray diffraction and PXRD in solid state. Its solution chemistry were studied using potentiometric titration, UV-vis, Raman Spectroscopy and electrospray ionization mass spectrometry. Main research conclusions are as follows:
     1: The title ligand, Li_(0.5)H_(3.5)L·H_2O was synthesized through condensation of 1,3-xylenediamine and bromoacetic acid in the presence of LiOH. Crystal of ligand H_4L.H_2O {C_(16)H_20N_2O_8·H_2O}_n was obtained in dilute acidic solution. H_4L.H_2O is a inner salt. The two iminoaiacetic moieties are on the same side of the central benzene plane. 3D coordination polymers, {[Zn_2(μ_(10)-L)( H_2O)_2]·2H_2O}_n(1) and {[Co_2(μ_(10)-L)(H_2O)_2]·2H_2O}_n(2) were synthesized hydrothermally as well as static volatile methods. Research indicated that the fluorescence of the complexes can be designed to ligand emission. Thermogravimetric analysis agrees well with the crystal structure on coordination and crystalline water molecules. Both IR and PXRD indicate that complex 1, 2 and Mn(Ⅱ) analog are amphorous. Both 1 and 2 can catalytic the oxidation of colorless 1,5-diphenylcarbonohydrazide into red diphenylcarbazone in ethanol solution hetergenously in the presence of excess H_2O_2 at room temperature. The catalytic effect of 1 is 33 times that of 2 in identical reaction conditions.
     . 2: Potentiometric titration indicate that H_4L has four proton process. The first two steps are the protonation of iminodiacetate nitrogen atom, protonation constants are similar to N-substituted iminodiacetic acid. The third and fourth protonation are <3 and <2 respectively. Temperature dependence protonation constants indicate that the protonation process is exothermic. The species and its stability constants of Cu(Ⅱ) and Zn(Ⅱ) complexes were also determined. In neutral aqueous solution, Cu_2L(H_2O)_2(OH)_2~(2-) is the main specie. While for Zn(Ⅱ) complexes, Zn_2L ,Zn_2L(OH)-are the main species in neutral aqueous solution. The stability of Cu(Ⅱ) complexes are obviously larger than corresponding Zn(Ⅱ) complexes. Electrospray mass spectra agrees well with the titration data.
     Copper((Ⅱ) complex can activate dioxygen and catalytic the oxidation of colorless 1,5-diphenylcarbonohydrazide into red diphenylcarbazone. Red diphenylcarbazone can be further oxidized into colorless product. The whole catalytic process is a consecutive first-order process. Dinuclear zinc complexes in weak basic aqueous solution can catalyticly hydrolysis bis(p-nitrophenol) phosphate diester).
引文
[1] A. Werner, Z. Anorg. All. Chem., 1893, 3, 267.
    [2] N.R.Champness, M Schroder, Current Opinion in Solid State & Material Science, 1998, 3, 419-424.
    [3] Bruser H J, Schwarzenbach D, Petter W, et al. Inorg. Chem., 1977, 16, 2704-2710
    [4]J.M.Lehn, Supramolecular Chemistry: Concepts and Perpectives[M]. VCH, Weinheim, 1995,3
    [5] G. W. Gokel, Advances in Supramolecular Chemistry[M].1992
    [6] J. W. Steed,J.L.Atwood, Supermolecular chemistry. Willey & Sons, 2000.
    [7] J.M. Lehn, Angew. Chem. Int. Ed., 1988, 27, 89-112
    [8] H. J.Schneider,Yatsimirsky A. Chem.Eur. J,1999 , 5,1284-1290
    [9] S.S.Y. Chui, S.M.F. Lo, J.P.H. Charmant, A.G. Orpen, L.D. Williams, Science 1999, 283, 1148-1150.
    [10] Kahn O. Accounts of Chemical Research, 2000, 33, 647-657。
    [11] Fu-Chuan Fang, Cheng-Che Chu, Chih-Hao Huang ,Chemical Communications, 2008, 47,6369-6371
    [12] Livage C, Egger C, Férey G. Chem.Mater., 2001, 13, 410-414
    [13] John J.Perry IV, Jason A.Perman , Michael J.Zaworotko, Chem.Soc.Rev., 2009, 38, 1400-1417.
    [14] Vishnyakov A, Ravikovitch P I ,Neimark A V, Nano Letters, 2003, 3, 713-718.
    [15] Düren T, Sarkisov L, Yaghi O M, Langmuir, 2004, 20, 2683-2689.
    [16] Rowsell J L C, Millward A R,Yaghi O M, J.Am.Chem. Soc., 2004, 126, 5666-5667.
    [17] Tina Duren, Youn-Sang Bae, Randall Q.Snurr, Chem.Soc.Rev., 2009, 38, 1237-1247.
    [18] Liqing Ma, Carter Abney , Wenbin Lin, Chem.Soc.Rev., 2009, 38, 1248-1256.
    [19] R.J.Hill, D.L.Long, N.R.Champness and M.Schroder, Acc.Chem.Res., 2005, 38,335-348.
    [20] D.Bradshaw, J.E.Warren ,M.J.Rosseinsky, Science, 2007, 315, 977-980.
    [21] S.H.Cho, J.T.Hupp ,T.E.Albrecht-Schmitt,Chem.Commun.,2006, 24,2563-3565.
    [22] T.Ezuhara, K.Endo ,Y.Aoyama, J.Am.Chem.Soc., 1999, 121, 3279-3283.
    [23] R.Vaidhyanathan, D.Bradshaw , M.J.Rosseinsky, Angew.Chem.Int.Ed., 2006, 45,6495-6499.
    [24] M.J.Ingleson, J.P.Barrio , M.J.Rosseinsky, Chem.Commun., 2008, 1287-1289.
    [25] Takashi Uemura, Nobuhiro Yanai and Susumu Kitagawa, Chem.Soc.Rev., 2009,38, 1228-1236.
    [26] R.E.Kleiner, Y.Brudno ,D.R.Liu, J.Am.Chem.Soc., 2008, 130, 4646-4659.
    [27] M.Higuchi, S.Horike and S.Kitagawa, Supramol.Chem.,2007, 19, 75-78.
    [28] S.Kitagawa, S.-i.Noro and T.Nakamura, ChemCommun., 2006, 7,701-707.
    [29] S.Habaue and Y.Okamoto, Chem.Rec., 2001, 1, 46-52.
    [30] T.Uemura, K.Kitagawa , K.Endo, Chem.Commun., 2005, 48,5968-5970.
    [31] T.Uemura, D.Hiramatsu,S.Kitagawa, Angew.Chem.Int.Ed., 2007, 46, 4987-4990.
    [32] H. Li, M. Eddaoudi, M. O’Keeffe, O. M. Yaghi, Nature, 1999, 402, 276-279
    [33] Lu Chunli, Fu Zaihui, Liu Yachun ,Acta Phys Chim. Sin., 2010, 26,2705-2710
    [34] Qin Gang,Zhang Rui,Wan Xing, Polymer Bulletin 2010,4,88-94.
    [35] Lai M F,Li J,Liu J.Therm Ana1 Calorim,2005,82,293-298
    [36]Hui Gao, Zhuofeng Ke, Nathan J. DeYonker, J. Am. Chem. Soc. 2011, 133,2904-2915
    [37] Hideki Furutachi, Mizue Murayama, Amane Shiohara, Chem. Commun. , 2003, 15,1900–1901.
    [38] Yongmei Zhao , Shourong Zhu , Min Shao , Inorg.Chemi.Commun 2008, 11, 925–928.
    [39] Steve Laborda, Rodolphe Clérac, Christopher E. Anson Inorg. Chem. 2004, 43, 5931-5943
    [40] Louise S. Natrajan, Phillipa L. Timmins, Matthew Lunn, Inorg. Chem. 2007, 46, 10877-10886
    [41] Que, L. and Tolman W.,Nature, 2008,455, 333-340
    [1] Hideki Furutachi, Mizue Murayama, Amane Shiohara, Chem. Commun. , 2003, 1900–1901.
    [2] Gerard,A.V.A.,Japp,G.H.,Jan.R., Polyhedron, 1995, 14, 2467-2473.
    [3] Owen.R.E., Wang.Z.-Y. and Lin.W.B., Inorg.Chem. 1999, 38, 2969-2973.
    [4] Chen.Z.-F., Xiong.R.-G. and Che.C.M., J.Chem.Soc.Dalton.Trans., 2001, 2453-2459.
    [5] Software packages SMART, and SAINT, Siemens Analytical X-ray Instrument s Inc.,1996.
    [6] SHELXTL, Version 5.1; Siemens Industrial Automation, Inc.,1997.
    [7] G.M. Sheldrick, SHELXS-97, Program for Crystal Structure Solution,1997.
    [8] G.M. Sheldrick, SHELXL-97, Program for Crystal Structure Refinement,1997.
    [9] M.A.Hidalgo,J.Suárez-Varela, J.C.Avila-Rosón ,Acta Cryst. 1996, C52, 810-812
    [10] Lu-Bin Ni, Rong-Hua Zhang, Qiong-Xin Liu ,Journal of Solid State Chemistry 182 ,2009, 2698–2706
    [11] Tianjun Ni , FeiFei Xing , Min Shao ,Crystal Growth & Design, Just Accepted
    [1] Lin wenru,Li changhua, Chinese journal of analysis laboratory ,1994,13. 35-37
    [2] Shourong Zhu, Fuping Kou,Huakuan Lin , Inorg. Chem. 1996, 35, 5851-5859
    [3] Jerry L. Sides , Charles ,T. Kenner ,Analytical Chemistry, 1966, 38, 707
    [4] Leif H?ggman,Cecilia Lindblad,Hans Oskarsson, Ann-Sofi Ullstr?m, In8gmar Persson,J. Am. Chem. Soc., 2003, 125 , 3631–3641
    [5] Hitoshi Katada ,Hidetake Seino,Yasushi Mizobe J.Biol.Inorg Chem ,2008,13, 249-255
    [6] Nele Steens, Ahmed M. Ramadan, Gregory Absillis Dalton Trans., 2010, 39, 585–592
    [7] Francisco Aguilar-Pe′rez, Paola Go′mez-Tagle, Elisa Collado-Fregoso, Inorg. Chem., 2006, 45 , 9502–9517
    [8] Fiona H. Fry, Paul Jensen, Christopher M. Kepert ,Inorg.Chem., 2003, 42 , 5637–5644
    [9] Massimiliano Arca, Andrea Bencini, Emanuela Berni ,Inorg. Chem., 2003, 42 , 6929–6939
    [10] C. Allen Chang, Bo Hong Wu, Bu Yuan Kuan ,Inorg.Chem. 2005, 44, 6646-6654
    [11] Meng Zhao, Li Zhang, Huo-Yan Chen Chem. Commun., 2010, 46, 6497–6499
    [12] Qing xiang xiang , Li Qun Zhang , Xiao Qi Yu ,Chinese Chemical Letters 2009, 20, 523-526
    [13] Wang ying,Hu Wei,Li minjiao,Chem. Research and application ,2006 ,18,1393- 1397
    [14] Jiang Fubin, Du Juan, Yu Xiaoqi, Journal of Colloid and Interface Science, 2004, 273,497-504
    [15]Mary.Jane.Young, Daphne Wahnon, Rosemary C. J. Am. Chem. Soc, 1995, 117, 9441-9447
    [16]陈万东,朱守荣,林华宽等,化学学报,1997,55,1097-1102

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700