基于碳纳米管构筑用作超级电容器电极的纳米复合材料
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
作为超级电容器电极材料,碳纳米管具有导电性高和循环稳定性好的特点,但比容量偏低;而导电高分子和过渡金属氧化物具有很高的比电容量、但循环稳定性较差。本工作中拟将聚苯胺、二氧化锰和碳纳米管有机复合,通过材料间协同增强作用,制备出电导率高、比电容大和循环稳定好的超级电容复合储能材料。为此我们制备了具有核壳结构的碳纳米管/聚苯胺纳米复合材料,碳纳米管和纳米晶二氧化锰复合材料,和碳纳米管/二氧化锰/聚苯胺三元复合材料,并作为超级电容器电极材料对其结构性能进行了有效表征。本文主要内容如下:
     1.采用苯胺和表面缺陷较少的多壁碳纳米管,超声辅助原位合成了一系列具有不同壳层厚度的碳纳米管/聚苯胺复合物;采用SEM、TEM、FTIR、Raman、XRD等分析手段研究了材料的形貌与结构,采用电导测量和电化学测试表征了材料的电学性能与电化学性能;提出了在无缺陷碳管表面发生聚苯胺原位聚合、形成具有核壳结构的纳米复合材料的机理;电化学分析表明复合电极材料的电容由双电层电容和赝电容两部分组成,电极的储能机理是复合储能,电极反应可逆性较好;当碳纳米管含量达到33%时,纳米复合材料的比电容最高,可达到560F/g。
     2.以高锰酸钾为氧化剂,醋酸锰和碳纳米管为还原剂,草酸和盐酸为质子源调节体系得pH值,采用水热反应制备出一系列二氧化锰与碳纳米管的复合材料;通过合成条件的选择,可以有效地控制复合材料的形貌与复合方式。电化学测试表明系列材料中以纳米晶二氧化锰/碳纳米管核壳结构的复合材料性能最佳;体系中被纳米晶二氧化锰包覆碳纳米管充当导电通路,大大降低电极材料的电阻,而碳管表面所包覆的针状二氧化锰极大地增加了材料的比表面积,核壳结构的复合方式增加了体系的稳定性,其比电容也高达到550F/g,并表现出优异的电化学循环的稳定性。
     3.以碳纳米管/纳米晶二氧化锰为反应性模板,超声辅助原位合成了碳纳米管/二氧化锰/聚苯胺三元纳米复合材料;该体系中二氧化锰和聚苯胺与碳纳米管的复合提供了较高的比表面积和较低的电阻,二氧化锰与聚苯胺为主要的电化学活性物质,而聚苯胺的引入方便电极制作,无需外加粘合剂就可成型。初步电化学测试表明该三元复合材料材料具有良好超电容特性,比电容也可达134F/g。其电化学性能可通过优化复合体系的微结构、实现材料间协同增强作用而得到进一步的改进。
Carbon nanotubes with high surface area,high conductivity and good stability are suitable electrode materials for electrochemical double layer supercapacitors,but the double-layer capacitance of carbon materials is relatively low and highly depends on the pore accessibility and pre-treatment;the conjugated polymers and oxidations of transition metal have high specific capacitances,but they are were not stable enough comparing with the carbon nanotubes during cycling.The combined advantages from carbon nanotubes and the conjugated polymers and oxidations of transition metal and the cooperative effect could make such hybrid composites excellent choices for supercapacitive electrode materials.In our work,we fabricated successfully the nano-hybrid composites of polyaniline/carbon nanotubes with core-shell structures,the manganese dioxide microcrystallites/carbon nanotubes,and ternary composites of carbon nanotubes/manganese dioxides/polyaniline.As supercapacitive electrode materials,structures and properties of these nano-hybrid composites were studied.Our main results are listed as following:
     1.Multi-wall carbon nanotubes/polyaniline composites with core-shell structures were fabricated using the commercial multi-wall carbon nanotubes treated in the condensed hydrochloric acid and the aniline monomer.By changing the carbon nanotubes and aniline monomer ratio,we can easily control the thickness of polyaniline layer.The structures and morphologies of the composites were studied by means of SEM,TEM,FTIR,Raman and XRD,and more attentions were paid to their electrochemical properties as supercapacitive electrode materials.The results showed that the supercapacitive behavior for the nano-hybrid composites included the electrochemical double-layer capacitance type and the pseudocapacitive type,and the composites exhibited good stable electrochemical properties during recycling.The highest specific capacitance to 560 F/g was obtained for 33wt%multi-wall carbon nanotubes in the composites.
     2.A series of nano-hybrid composites were synthesized by the hydrothermal reaction of manganese dioxides microcrystallites and the multi-wall carbon nanotubes, in which potassium permanganate was used as oxidant,manganese acetate and multi-wall carbon nanotubes as reducing agent.The morphologies and microstructures of manganese dioxides microcrystallites could be controlled in order of increasing acid strength.The results showed that among these composites,the needle-like manganese dioxide microcrystallites coated on multi-wall carbon nanotubes exhibited excellent supercapacitive properties,in which the multi-wall carbon nanotubes acted as an effective electron conductor,and the needle-like manganese dioxide microcrystallites have large surface area.Good cycling stability of nano-hybrid composites benefited from the structural stability due to the formation of the core-shell structures,and the specific capacitance was about 550 F/g.
     3.A novel ternary hybrid materials composed of multi-wall carbon nanotubes, manganese dioxides microcrystallites and polyaniline was prepared by using the needle-like manganese dioxide microcrystallites coated on multi-wall carbon nanotubes as the reactive template and ultrasonic assisted in-situ polymerization of aniline.These ternary hybrid materials are very interesting since materials have large surface area, good conductive channel and flexible processing.Measurements of the electrochemical properties of these materials show that manganese dioxide and the polyaniline played important roles during electrochemical process,and the specific capacitance to 134 F/g was obtained.This kind of hybrid materials was the more potential candidates for high-performance supercapacitive electrode materials.Ternary hybrid system could be further optimized to bring the cooperative effect into full play.
引文
[1]Conway B.E,In Electrochemical Supercapacitors:Scientific Fundamentals and Technological Applications,New York:Kluwer Academic/Plenum Publishers,1999:233
    [2]Elzbieta F and Frangois B,Carbon materials for the electrochemical storage of energy in capacitors,Carbon,2001,39:937-950
    [3]Xu ZH,Wu Y and Hu B,Carbon nanotube effects on electroluminescence and photovoltaic response in conjugated polymers.Applied Physics Letters,2005,87:263113-263118
    [4]Kaneto K,Tsuruta M and Sakai G et al,Electrical conductivities of multi-wall carbon nanotubes,Synthetic Metals,1999,103:2543-2546
    [5]Ando Y,Zhao X and Shimoyama H et al,Physical properties of multiwalled carbon nanotubes,International Journal of Inorganic Materials,1999,1:77-82
    [6]Chmiola J,Yushin G and Gogotsi Y et al,Anomalous increase in carbon capacitance at pore sizes less than 1 nanometer,Science,2006,313:1760-1763
    [7]Kim C and Yang KS,Electrochemical properties of carbon nanofiber web as an electrode for supercapacitor prepared by electrospinning,Applied Physics Letters,2003,83:1216-1220
    [8]Kim C,Yang KS and Kojima M et al,Fabrication of electrospinning-derived carbon nanofiber webs for the anode material of lithium-ion secondary batteries,Advanced Functional Materials,2006,16:2393-2397
    [9]Beguin F,Szostak K and Lota G et al,A self-supporting electrode for supercapacitors prepared by one-step pyrolysis of carbon nanotube/polyacrylonitrile blends,Advanced Materials,2005,17:2380-2391
    [10]Girija TC and Sangaranarayanan MV,Investigation of polyaniline-coated stainless steel electrodes for electrochemical supercapacitors,Synthetic Metals,2006,156:244-250
    [11]Pan LJ,Pu L and Shi Y et al,Synthesis of polyaniline nanotubes with a reactive template of manganese oxide,Advanced Material,2007,19:461-464
    [12]Huang XP,Pan CX and Huang XT,Preparation and characterization of γ-MnO_2/CNTs nanocomposite,Materials Letters,2007,61:934-936
    [13]Pang SC,Anderson MA and Chapman TW,Novel electrode materials for thin-film ultracapacitors:Comparison of electrochemical properties of sol-gel-derived and electrodeposited manganese dioxide,Journal of the Electrochemical Society,2000,147:444-450
    [14]Reddy R.N and Reddy R.G,Sol-gel MnO2 as an electrode material for electrochemical capacitors,Journal of Power Sources,2003,124:330-337
    [15]Wang XY,Wang XY,Huang WG,Sebastian P.J and Gamboa S,Sol-gel template synthesis of highly ordered MnO_2 nanowire arrays,Journal of Power Sources,2005,140:211-215
    [16]Chang JK and Tsai WT,Material characterization and electrochemical performance of hydrous manganese oxide electrodes for use in electrochemical pseudocapacitors,Journal of the Electrochemical Society,2003,150:A1333-1338
    [17]Hu CC and Wang CC,Nanostructures and capacitive characteristics of hydrous manganese oxide prepared by electrochemical deposition,Journal of the Electrochemical Society,2003,150:A1079-1084
    [18]Hu CC and Tsou TW,Ideal capacitive behavior of hydrous manganese oxide prepared by anodic deposition,Electrochemistry Communications,2002,4:105-109
    [19]Toupin M,Brousse T and Belanger D,Influence of microstucture on the charge storage properties of chemically synthesized manganese dioxide,Chemical Material,2002,14:3946-3952
    [20]Lee HY and Goodenough JB,Supercapacitor behavior with KCl electrolyte,Jounal of Solid State Chemistry,1999,144:220-223
    [21]Zolfaghari A,Ataherian F and Ghaemi M et al,Capacitive behavior of nanostructured MnO_2 prepared by sonochemistry method,Electrochimica Acta,2007,52:2806-2814
    [22]Xu MW,Zhao DD and Bao SJ et al,Mesoporous amorphous MnO_2 as electrode material for supercapacitor,Jounal of Solid State Electrochemistry,2007,11:1101-1107
    [23]Yu YJ,Che B and Si ZH et al,Carbon nanotube/polyaniline core-shell nanowires prepared by in situ inverse microemulsion,Synthetic Metals,2005,150:271-277
    [24]Khomenko V,Frackowiak E and Beguin F,Determination of the specific capacitance of conducting polymer/nanotubes composite electrodes using different cell configurations,Electrochimica Acta,2005,50:2499-2506
    [25]Cochet M,Maser WK and Benito AM et al,Synthesis of a new polyaniline/nanotube composite:"in-situ" polymerisation and charge transfer through site-selective interaction,Chemical Communications,2001,1450-1451
    [26]Zhou YK,He BL and Zhou WJ et al,Electrochemical capacitance of well-coated single-walled carbon nanotube with polyaniline composites,Electrochimica Acta,2004,49:257-262
    [27]Wu MQ,Snook GA and Gupta V et al,Electrochemical fabrication and capacitance of composite films of carbon nanotubes and polyaniline,Jounal of Material Chemistry,2005,15:2297-2303
    [28]Jang J,Bae J and Choi M et al,Fabrication and characterization of polyaniline coated carbon nanofiber for supercapacitor,Carbon,2005,43,2730-2736
    [29]Konyushenko EN,Stejskal J and TrchovaM et al,Multi-wall carbon nanotubes coated with polyaniline,Polymer,2006,47:5715-5723
    [30]Gupta V and Miura N,Polyaniline/single-wall carbon nanotube(PANI/SWCNT)composites for high performance supercapacitors,Electrochimica Acta,2006,52:1721-1726
    [31]Maser WK,Benito AM and Callejas MA et al,Synthesis and characterization of new polyaniline/nanotube composites,Materials Science and Engineering C,2003,23:87-91
    [32]Lee CY,Tsai HM and Chuang HJ et al,Characteristics and Electrochemical Performance of Supercapacitors with manganese oxide-carbon nanotube nanocomposite electrodes,Journal of The Electrochemical Society,2005,52:A716-A720
    [33]Raymundo-Pinero E,Khomenko V and Frackowiak E et al,Performance of Manganese Oxide/CNTs Composites as Electrode Materials for Electrochemical Capacitors,Journal of The Electrochemical Society,2005,52:A229-A235
    [34]Brousse T,Toupin M and B(?)langer D,A Hybrid Activated Carbon-Manganese Dioxide Capacitor using a Mild Aqueous Electrolyte,Journal of The Electrochemical Society,2004,51:A614-A622
    [35]Arabale G,Wagh D and Kulkarni M et al,Enhanced supercapacitance of multiwalled carbon nanotubes functionalized with ruthenium oxide,Chemical Physics Letters,2003,376:207-213
    [36]Chang JK,Lin CT and Tsai WT et al,Manganese oxide/carbon composite electrodes for electrochemical capacitors,Electrochemistry Communications,2004,6:666-671
    [37]Wang GX,Zhang BL and Yu ZL et al,Manganese oxide/MWNTs composite electrodes for supercapacitors,Solid State Ionics,2005,176:1169-1174
    [38]Yang BJ,Wu YH and Zong BY et al,Electrochemical Synthesis and Characterization of Magnetic Nanoparticles on Carbon Nanowall Templates,Nano Letters,2002,2:751-754
    [39]Fan Z,Chen J H and Wang MY et al,Preparation and characterization of manganese oxide/CNT composites as supercapacitive materials,Diamond and Related Materrials,2006,15:1478-1483
    [40]Wang YG,Li HQ and Xia YY,Ordered whiskerlike polyaniline grown on the surface of mesoporous carbon and its electrochemical capacitance performance,Advanced Material,2006,18:2619-2623
    [41]Sun J,Gao L and Iwasa M,Noncovalent attachment of oxide nanoparticles onto carbon nanotubes using water-in-oil microemusions,Chemistry Communication,2004,3:832-835
    [42]Leela Mohana Reddy A and Ramaprabhu S,Nanocrystalline metal oxides dispersed multiwalled carbon nanotubes as supercapacitor electrodes,Journal of Physics and Chemistry.C,2007,111:7727-7734
    [43]Choi HC,Shim M and Bangsaruntip S et al,Spontaneous reduction of metal ions on the sidewalls of carbon nanotubes,Journal of the American Chemical Society,2002,124:9058-9059
    [44]Fan Z,Chen JH and Wang MY et al,Preparation and characterization of manganese oxide/CNT composites as supercapacitive materials,Diamond & Related Materials,2006,15:1478-1483
    [45]Arico AS,Bruce P and Scrosati B et al,Nanostructured materials for advanced energy conversion and storage devices,Nature Materials,2005,4:366-377
    [46]Jiang Q,Qu MZ and Zhou GM et al,A study of activated carbon nanotubes as electrochemical supercapacitors electrode materials,Materials letters,2002,57:988-991
    [47]Fuertes AB,Pico F and Rojo JM,Influence of pore structure on electric double-layer capacitance of template mesoporous carbons,Journal of Power Sources,2004,133:329-336
    [48]Chmiola J,Yushin G,Gogotsi Y,Portet C,Simon P and Taberna PL,Anomalous increase in carbon capacitance at pore sizes less than 1 nanometer,Science,2006,313:1760-1762
    [49]Winter M and Brodd RJ,What are batteries,fuel cells,and supercapacitors?,Chemical Reviews,2004,104:4245-4269
    [50]Arbizzani C,Mastragostino M and Soavi F,New trends in electrochemical supercapacitors,Journal of Power Sources,2001,100:164-170
    [51]Ma LP and Yang Y,Solid-state supercapacitors for electronic device applications,Applied Physics Letters,2005,87:123503-123506
    [52]Kaneto K,Tsuruta M,Sakai G,Cho W Y,Ando Y,Electrical conductivities of mult i-wallc arbon nano tubes,Synthetic Metals,1999,103(1-3):2543-2546
    [53]Wu TM and Lin YW,Doped polyaniline/multi-walled carbon nanotube composites:Preparation,characterization and properties,Polymer,2006,47:3576-3582
    [54]Ginic-Markovic M,Matisons JG and Cervini R et al.,Synthesis of new polyaniline/nanotube composites using ultrasonically initiated emulsion polymerization,Chemistry of Materials,2006,18:6258-6265
    [55]Konyushenko EN,Stejskal J,Trchova M et al,Multi-wall carbon nanotubes coated with polyaniline,Polymer,2006,47:5715-5723
    [56]Wu TM,Lin YW and Liao CS,Preparation and characterization of polyaniline/multi-walled carbon nanotube composites,Carbon,2005,43:734-738
    [57]Baibarac M,Baltog I and Lefrant S et al,Polyaniline and carbon nanotubes based composites containing whole units and fragments of nanotubes,Chemistry of Materials,2003,15:4149-4155
    [58]Feng W,Bai XD and Lian YQ et al,Well-aligned polyaniline/carbon-nanotube composite films grown by in-situ aniline polymerization,Carbon,2003,41:1551-1557
    [59]Zengin H,Zhou WS and Jin JY et al,Carbon nanotube doped polyaniline,Advanced Materials,2002,14:1480-1483
    [60]Yan XB,Han ZJ and Yang Y et al,Fabrication of carbon nanotube-polyaniline composites via electrostatic adsorption in aqueous colloids,Journal of Physical Chemistry C,2007,111:4125-4127
    [61]Do Nascimento GM,Corio P and Novickis RW et al,Synthesis and characterization of single-wall-carbon-nanotube-doped emeraldine salt and base polyaniline nanocomposites,Journal of Polymer Science A,2005,43:815-822
    [62]Yang MJ,Koutsos V and Zaiser M,Interactions between polymers and carbon nanotubes:A molecular dynamics study,Journal of Physical Chemistry B,2005,109:10009-10014
    [63]Chen J,Liu HY and Weimer WA et al,Noncovalent engineering of carbon nanotube surfaces by rigid,functional conjugated polymers,Journal of the American Chemical Society,2002,124:9034-9035
    [64]Chen RJ,Zhang YG and Wang DW et al,Noncovalent sidewall functionalization of single-walled carbon nanotubes for protein immobilization,Journal of the American Chemical Society,2001,123:3838-3839
    [65]Boyer MI,Quillard S and Rebourt E et al,Vibrational analysis of polyaniline:A model compound approach,Journal of Physical Chemistry B,1998,102:7382-7392
    [66]Liu SW,Yue J and Wehmschulte RJ,Large thick flattened carbon nanotubes,Nano Letters,2002,2:1439-1442
    [67]Chang JK,Chen YL and Tsai WT,Effect of heat treatment on material characteristics and pseudo-capacitive properties of manganese oxide prepared by anodic deposition,Journal of power sources,2004,135:344-353
    [68]Subramanian V,Zhu HW and Vajtai R et al,Hydrothermal synthesis and pseudocapacitance properties of MnO_2 nanostructures,Journal of Physical Chemistry.B,2005,109:20207-20214
    [69]Subramanian V,Zhu HW and Wei BQ,Nanostructured MnO_2:hydrothermal synthesis and electrochemical properties as a supercapacitor electrode material,Journal of Power Sources,2006,159:361-364
    [70]Subramanian V,Zhu HW and Wei BQ,Synthesis and electrochemical characterizations of amorphous manganese oxide and single walled carbon nanotube composites as supercapacitor electrode materials,Electrochemistry Communications,2006,8:827-832
    [71]Wang HG,Lu ZG and Qian D et al,Single-crystal alpha- MnO_2 nanorods:synthesis and electrochemical properties,Nanotechnology,2007,18:115616-115620
    [72]Ma SB,Ahn KY and Lee ES et al,Synthesis and characterization of manganese dioxide spontaneously coated on carbon nanotubes,Carbon,2007,45:375-382
    [73]Wang X and Li YD,Selected-control hydrothermal synthesis of alpha-and beta-MnO_2single crystal nanowires,Journal of American Chemical Society,2002,124:2880-2883
    [74]Ma SB,Nam KW,Yoon WS,Yang XQ,Ahn KY,Oh KH and Kim KB,Electrochemical properties of manganese oxide coated onto carbon nanotubes for energy-storage applications,Journal of Power Sources,2008,178:483-489
    [75]Yue HJ,Huanng XK and Yang Y,Preparation and electrochemical performance of manganese oxide/carbon nanotubes composite as a cathode for rechargeable lithium battery with high power density,Materials Letters,2008,62:3388-3390
    [76]Fan ZJ,Qie ZW,Wei T,Yan J and Wang SS,Preparation and characterization of nanostructured MnO_2/MWCNTs using microwave irradiation method,Material Letters,2008,62:3345-3348
    [77]Xu MW,Kong LB,Zhou WJ and Li HL,Hydrothermal synthesis and pseudocapacitance properties of a-MnO_2 hollow spheres and hollow urchins,the Journal of Physical Chemistry C,2007,111:19141-19147
    [78]彭波,MnO_2级超级电容器电极材料的制备及性能研究,2005
    [79]Sivakkumar S.R,Ko J.M,Kim D.Y,Kim B.C,Wallace G.G,Performance evaluation of CNT/polypyrrole/MnO2 composite electrodes for electrochemical capacitors,Electrochimica Acta,2007,52:7377-7385

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700