NPN型晶体管辐射损伤及退火效应研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文采用低能质子和电子作为辐照源,研究了NPN双极型晶体管(3DG112D)在辐照过程中的性能退化规律。电流增益是双极型晶体管的电性能参数中关键的参数,其衰减是双极型晶体管最显著同时也是最典型的辐射损伤效应。本文中除研究双极型晶体管电流增益随辐照注量的变化外,还在辐照试验完成后,研究了电流增益随退火时间、温度、偏置条件的变化规律。
     研究表明,在相同的辐照源种类、粒子能量及通量条件下,NPN型晶体管电性能参数随着辐照注量的不断增加而加剧;当晶体管受到110和70keV电子辐照,70keV质子辐照时,其电流增益的倒数随辐照注量的增加而增加且逐渐趋于饱和状态;当晶体管受到170keV质子辐照时其电流增益的倒数随辐照注量的增加而增加且呈线性关系;当170keV与110keV电子同时辐照时,位移损伤效应起了主导作用,而电离效应会对加剧位移损伤的影响。
     退火试验结果表明,等温退火时,NPN型晶体管电性能随退火时间的增加逐渐恢复。等时退火时,温度越高,NPN型晶体管电性能的退火效应越明显。在退火过程中,发射结反偏,会加速NPN型晶体管的电性能恢复;而发射结正偏的影响较小。不同种类辐照源对退火效应的影响也不相同。低能电子对NPN型晶体管造成的电离损伤在较低温度(低于300℃)就能完全恢复,而由低能质子造成损伤则需要较高的温度(500℃)才能有明显的恢复效果。
The degradation caused by low energy protons and electrons are examined for the NPN transistors (3DG112D). The current gain is one of the most important parameters of bipolar junction transistors (BJTs). The degradation of the current gain for transistor is significant and typical radiation damage effect. The electrical parameters of NPN transistors are measured during the irradiation. After irradiation, the changes in current gain with annealing time, temperature and bias are investigated.
     The results show that, with increasing the irradiation fluence, the trends of degradation in electrical parameters of NPN transistors are similar, under the irradiation of different particles, fluxes and energies. When the NPN transistors are irradiated by 110keV, 70keV electrons and 70keV protons, the reciprocal of the current gain of NPN transistors increases and is gradually saturated with increasing the fluence. When the NPN transistors are irradiated by 170keV, the reciprocal of the current gain of NPN transistors increases linearly with the irradiation fluence. The damage irradiated by both 110keVelectrons and 170keV protons at the same time is more serious than that by just one kind of irradiation sources.
     Based on the annealing effects research, the current gain of the NPN transistor is gradually recovered with time during isothermal annealing, while the higher the temperature, the larger the annealing velocities during isochronous annealing. Moreover, the annealing will be accelerated, if the emitter is negative biased. However, there will be little influence if the emitter is positive biased. On the other hand, the annealing effect is also affected by the irradiation sources. The ionization damage caused by low energy electrons could disappear with relatively low annealing temperature (300℃). The damage induced by low energy protons will not be removed entirely even with rather high the temperature (500℃).
引文
1 E. R. Benton, E. V. Benton. A Survey of Radiation Measurements Made Aboard Russian Spacecraft in Low-Earth Orbit. NASA/CR-1999-209256, 1999:6~50
    2张庆祥,及莉,王立.卫星空间辐射效应及防护技术飞行试验初步设想.航天器环境工程. 2008, 25(3):247~250
    3 G. Santin. Space Environments and Effects Analysis for ESA Missions. Nuclear Physics B - Proceedings Supplements. 2006, 150:377~381
    4 D. J. Barnhart, T. Vladimirova, M. N. Sweeting and K. S. Stevens. Radiation Hardening by Design of Asynchronous Logic for Hostile Environments. IEEE Journal of Solid-State Circuits. 2009,44(5):1617~1627
    5 S. Duzellier. Radiation Effects on Electronic Devices in Space. Aerospace Science and Technology. 2005,9(1):93~99
    6 D. J. Hall, A. Holland. Space Radiation Environment Effects on X-ray CCD Background. Nuclear Instruments and Methods in Physics Research Section A. 2010,612(2):320~327
    7 N. V. Kuznetsov. The Rate of Single Event Upsets in Electronic Circuits onboard Spacecraft. Cosmic Research. 2005,43:423~431
    8 C. Dyer. Radiation Effects on Spacecraft & Aircraft. QinetiQ, 2001:1~8
    9 W. W. Vaughan, K. O. Niehuss and M. B. Alexander. Spacecraft Environments Interactions: Solar Activity and Effects on Spacecraft. NASA Reference Publication 1396, 1996:2~26
    10刘振兴.太空物理学.哈尔滨工业大学出版社, 2005: 95~173.
    11 R. F. Pierret.半导体器件基础.黄如,王漪,王金延等译.电子工业出版社, 2007:269
    12 B. L. Anderson, R. L. Anderson.半导体器件基础.邓宁,田立林,任敏译.清华大学出版社, 2008:428
    13万发荣.金属材料的辐射损伤.科学出版社, 1993:35-37
    14 N. J. Carron. An Introduction to the Passage of Energetic Particles through Matter. CRC, 2007:25~301
    15 A. Sharma, A. Fettouhi, A. Schinner and P. Sigmund. Stopping of Swift Ionsin Compounds. Nuclear Instruments and Methods in Physics Research B. 2004,218:19~28
    16 J. M. Killiany. Radiation Effects on Silicon Charge-Coupled Devices. IEEE Trans. on Components, Hybrids, and Manufacturing Technology. 1978,CHMT-1(4):353~364
    17 S. P. Ahlen. Theoretical and Experimental Aspects of the Energy Loss of Relativistic Heavily Ionizing Particles. Reviews of Modern Physics. 1980,52(1):121~152
    18郁金南.材料辐照效应.化学工业出版社, 2007:168
    19 S. R. Messenger, E. A. Burke, G. P. Summers and R. J. Walters. Limits to the Application of NIEL for Damage Correlation. IEEE Trans. on Nuclear Science. 2004,51(6):3201
    20 S. Sato, H. Miyamoto, M. Imaizumi, K. Shimazaki, C. Morioka, K. Kawano and T. Ohshima. NIEL Analysis of Radiation Degradation Parameters Derived from Quantum Efficiency of Triple-Junction Space Solar Cell. IEEE 33rd Photovoltaic Specialists Conference, San Diego, CA, 2008. Inst Elect & Elect Engn, 2008:1435~1439
    21 J. Bogaerts, B. Dierickx, G. Meynants and D. Uwaerts. Total Dose and Displacement Damage Effects in a Radiation-Hardened CMOS APS. IEEE Trans. on Nuclear Science. 2003,50(1):84
    22汤家墉,张祖华.离子在固体中阻止本领、射程和沟道效应.原子能出版社. 1988: 32~40.
    23 G. J. Brucker, W. J. Dennehy and A. G. Holmes-Siedle. Ionization and Displacement Damage in Silicon Transistors. 1966,NS-13(6):188
    24肖海英.带电粒子辐照ZnO/硅树脂白漆光学退化效应及机理.哈尔滨工业大学博士学位论文. 2009:22~23
    25 M. Asai, D. Axen, S. Banerjee, G. Barrand and F. Behner. Geant4-A Simulation Toolkit. Nuclear Instruments and Methods in Physics Research A. 2003,506:250~303
    26 G. C. Messenger, M. S. Ash. The Effects of Radiation on Electronic Systems. Second Edition. Van Nostrand Reinhold, 1992:223~263
    27 A. H. Siedle, L. Adams. Handbook of Radiation effects. Second Edition. Oxford, 2004:209~213
    28 G. Messenger, J. Spratt. Displacement Damage in Silicon and Germanium Transistors. IEEE Trans. on Nuclear Science. 1965,12(2):53~74
    29李兴冀.星用双极型器件带电粒子辐照效应及损伤机理.哈尔滨工业大学博士学位论文. 2010:87~88
    30 X. Chen, H. J. Barnaby, Bert Vermeire. Post-Irradiation Annealing Mechanisms of Defects Generated in Hydrogenated Bipolar Oxides. IEEE Trans. on Nuclear Science. 2008,55(6):3032~3038
    31 K. V. Madhu, S.R. Kulkarni, M. Ravindra, R. Damle, DLTS study of deep level defects in Li-ion irradiated bipolar junction transistor. NINB. 2007:98~104
    32 R. L. Pease. Total Ionizing Dose Effects in Bipolar Devices and Circuits. IEEE Trans. on Nuclear Science. 2003,50(3):539~551
    33 J. R. Srour, C. J. Marshall and P. W. Marshall. Review of Displacement Damage Effects in Silicon Devices. IEEE Trans. on Nuclear Science. 2003,50(3):653~666
    34 S. R. Messenger, E. A. Burke, G. P. Summers and J. Walters. Application of Displacement Damage Dose Analysis to Low-Energy Protons on Silicon Devices. IEEE Trans. on Nuclear Science. 2002,49(6):2690~2694
    35 S. R. Messenger, E. A. Burke, G. P. Summers and R. J. Walters. Limits to the Application of NIEL for Damage Correlation. IEEE Trans. on Nuclear Science. 2004,51(6):3201
    36 X. X. Tang, W. Y. Luo, C. Z. Wang, X. F. He, Y. Z. Zha, S. Fan, X. L. Huang and C. S. Wang. Non-Ionizing Energy Loss of Low Energy Proton in Semiconductor Materials Si and GaAs. ACTA Physica Sinica. 2008,57(2):1266~1270
    37 I. Jun. Effects of Secondary Particles on the Total Dose and the Displacement Damage in Space Proton Environments. IEEE Trans. on Nuclear Science. 2001,48(1):162
    38 J. Bogaerts, B. Dierickx, G. Meynants and D. Uwaerts. Total Dose and Displacement Damage Effects in a Radiation-Hardened CMOS APS. IEEE Trans. on Nuclear Science. 2003,50(1):84
    39 G. P. Summers. Displacement Damage: Mechanisms and Measurements. In 1992 IEEE Nuclear and Space Radiation Effects Conf. Short Course Notes,1992:IV-1~IV-58
    40陈盘训.半导体器件和集成电路的辐射效应.国防工业出版社, 2005: 28.
    41丁富荣,班勇,夏宗璜.辐射物理.北京出版社, 2004:17~22
    42 J. R. Srour, J. W. Palko. A Framework for Understanding Displacement Damage Mechanisms in Irradiated Silicon Devices. IEEE Trans. on Nuclear Science. 2006,53(6):3610~3620
    43 J. H. Warner, S. R. Messenger, R. J. Walters and G. P. Summers. Displacement Damage Correlation of Proton and Silicon Ion Radiation in GaAs. IEEE Trans. on Nuclear Science. 2005,52(6):2678
    44 C. Claeys.先进半导体材料及器件的辐射效应.刘忠立译.电子工业出版社, 2008:69

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700